1
|
Sha S, Ren L, Xing X, Guo W, Wang Y, Li Y, Cao Y, Qu L. Recent advances in immunotherapy targeting amyloid-beta and tauopathies in Alzheimer's disease. Neural Regen Res 2026; 21:577-587. [PMID: 39885674 DOI: 10.4103/nrr.nrr-d-24-00846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/28/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease, a devastating neurodegenerative disorder, is characterized by progressive cognitive decline, primarily due to amyloid-beta protein deposition and tau protein phosphorylation. Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer's disease. Conventional drugs, such as donepezil, can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline. Currently, active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer's disease and other transgenic animal models, attracting considerable attention. However, the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab. This review first discusses the advancements in the pathogenesis of Alzheimer's disease and active and passive immunotherapies targeting amyloid-beta and tau proteins. Furthermore, it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects. Although some antibodies have shown promise in patients with mild Alzheimer's disease, substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer's disease.
Collapse
Affiliation(s)
- Sha Sha
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Ren
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Wanshu Guo
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Li
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Le Qu
- Department of Dermatology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Negahdary M, Sakthinathan I, Mirsadoughi E, Ligler FS, Coté GL, Forster RJ, Mabbott S. Advances in biosensors for diagnosis of Alzheimer's and Parkinson's diseases. Biosens Bioelectron 2025; 284:117535. [PMID: 40349564 DOI: 10.1016/j.bios.2025.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Early diagnosis by detecting ultralow concentrations of disease biomarkers is critical for timely treatment of the two most common neurodegenerative diseases, Alzheimer's and Parkinson's diseases. Innovative biosensors technologies can provide accurate, faster, and cheaper diagnostic pathways. In this review, the most recent electrochemical and optical sensing and biosensing platforms for diagnosing these diseases are critically selected and reviewed. Diagnostic targets (generally biomarkers) related to each disease and novel technologies, such as nanomaterials and biomolecular techniques to optimize the detection process and enhance signals, are discussed. In particular, multiplex detection and detection of multiple analytes by a (bio) sensing platform, to improve clinical sensitivity and selectivity are considered. This review is intended to open new approaches in the field and advance future research by identifying those strategies that optimize real-world performance and minimize present shortcomings.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzel Street, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | | | - Ensiyeh Mirsadoughi
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzel Street, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzel Street, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX, 77840-3006, USA
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzel Street, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX, 77840-3006, USA; Department of Electrical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Robert J Forster
- School of Chemical Sciences, Dublin City University, Glasnevin Campus, Dublin 9, Ireland
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzel Street, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX, 77840-3006, USA.
| |
Collapse
|
3
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
4
|
Li Y, Gao S, Zhang X, Cao Z, Guo Y, Zhao R, Liu Y, Li X, Lin H, Qin Q, Yi B, Zhao G. Joint technique "parallel peptide synthesis & de novo sequencing" development for the structure verification and high-throughput activity screening of biological peptides from sea cucumber (Stichopus japonicus) intestinal hydrolysate. Food Res Int 2025; 212:116475. [PMID: 40382048 DOI: 10.1016/j.foodres.2025.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
This study introduces a novel joint technique combining "parallel peptide synthesis" and "de novo sequencing", which facilitates the high-throughput screening and structure validation of biological peptides derived from food and traditional Chinese medicine (TCM). Sea cucumber (Stichopus japonicus) was used as a model organism, undergoing simulated gastrointestinal digestion followed by de novo sequencing to predict potential peptides. Subsequently, cost-effective filter pipette tips were innovatively employed as parallel reaction vessels, enabling efficient peptide synthesis through the microfluidic flow of amino acid solutions over the loaded resin. After high-throughput biological activity screening, peptide YPGQLT was identified as the most potent antioxidant and acetylcholinesterase (AChE) inhibitor. It was then subjected to a molecular docking study to further explore its potential ligand-receptor interactions. This synergistic effect highlights peptide YPGQLT as a promising candidate for Alzheimer's disease (AD) treatment, thereby enhancing the potential biomedical application of sea cucumber. Notably, de novo predicted sequences can be further verified by comparing their characteristics, such as retention time and MS/MS spectrum, with those from the standard reference synthesized using this parallel synthesis protocol.
Collapse
Affiliation(s)
- Yimeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shengfang Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuo Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Youyou Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Runkun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinxin Li
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongying Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Qin
- Department of Neurology & Innovation center for neurological disorders, Xuanwu Hospital, Capital Medical University, Beijing 100029, China
| | - Bingqing Yi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Guodong Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
5
|
Roney M, Uddin MN, Khan AA, Fatima S, Mohd Aluwi MFF, Hamim SMI, Ahmad A. Repurposing of dipeptidyl peptidase FDA-approved drugs in Alzheimer's disease using network pharmacology and in-silico approaches. Comput Biol Chem 2025; 116:108378. [PMID: 39938415 DOI: 10.1016/j.compbiolchem.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) have similar clinical characteristics in the brain and islet, as well as an increased incidence with ageing and familial susceptibility. Therefore, in recent years there has been a great desire for research that elucidates how anti-diabetic drugs affect AD. This work attempts to first elucidate the possible mechanism of action of DPP-IV inhibitors in the treatment of AD by employing techniques from network pharmacology, molecular docking, molecular dynamic simulation, principal component analysis, and MM/PBSA. A total of 463 targets were identified from the SwissTargetPrediction and 784 targets were identified from the SuperPred databases. 79 common targets were screened using the PPI network. The GO and KEGG analyses indicated that the activity of DPP-IV against AD potentially involves the hsa04080 neuroactive ligand-receptor interaction signalling pathway, which contains 17 proteins, including CHRM2, CHRM3, CHRNB1, CHRNB4, CHRM1, PTGER2, CHRM4, CHRM5, TACR2, HTR2C, TACR1, F2, GABRG2, MC4R, HTR7, CHRNG, and DRD3. Molecular docking demonstrated that sitagliptin had the greatest binding affinity of -10.7 kcal/mol and established hydrogen bonds with the Asp103, Ser107, and Asn404 residues in the active site of the CHRM2 protein. Molecular dynamic simulation, PCA, and MM/PBSA were performed for the complex of sitagliptin with the above-mentioned proteins, which revealed a stable complex throughout the simulation. The work identifies the active component and possible molecular mechanism of sitagliptin in the treatment of AD and provides a theoretical foundation for future fundamental research and practical implementation.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - S M Istiaque Hamim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
6
|
Sengupta P, Mukhopadhyay D. IGF1R/ARRB1 Mediated Regulation of ERK and cAMP Pathways in Response to Aβ Unfolds Novel Therapeutic Avenue in Alzheimer's Disease. Mol Neurobiol 2025; 62:8065-8083. [PMID: 39969678 PMCID: PMC12078455 DOI: 10.1007/s12035-025-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
IGF1R/INSR signaling is crucial for understanding Alzheimer's disease (AD) and may aid in the development of potent therapeutic strategies. This study investigated the expression and activity of these receptors and their potential to form functional hybrids in response to amyloid beta (Aβ). IGF1R, INSR, and ARRB1 were found to be upregulated in AD. The propensity for functional hybrid formation was also greater in the presence of Aβ. The association of IGF1R with ARRB1 reached a maximum at 60 min of Aβ treatment, which coincided with increased pERK activity at approximately the same time, indicating the importance of this association in pERK regulation. Knocking down IGF1R, INSR, and ARRB1 independently reduced cAMP, whereas overexpressing IGF1R significantly increased cAMP. Knocking down ARRB1 in IGF1R-overexpressing cells led to a reduction in cAMP, indicating that the interaction of ARRB1 and IGF1R possibly contributes to cAMP dysregulation. Since cAMP plays a crucial role in cognition and memory, alterations in cAMP after receptor hybridization could be significant in AD. Additionally, we noted hyperactivation of MAPK, which is associated with aberrant cellular activity, transcriptional control, and stress pathways. This finding highlights the importance of IGF1R and INSR dysregulation, which plays a major role in addition to conventional RTK signaling through multiple pathways. Here, we focused on the ARRB1 and IGF1R interaction and showed that picropodophyllin (PPP), an IGF1R-specific inhibitor, blocks this interaction and alters the ERK and cAMP status under disease conditions. Cell viability studies further revealed that the PPP substantially improved cell viability in the presence of Aβ. This highlights the role of the PPP in regulating these cascades and opens the arena for further therapeutic development for AD.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debashis Mukhopadhyay
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
7
|
Bhatia V, Chandel A, Minhas Y, Kushawaha SK. "Advances in biomarker discovery and diagnostics for alzheimer's disease". Neurol Sci 2025; 46:2419-2436. [PMID: 39893357 DOI: 10.1007/s10072-025-08023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by intracellular neurofibrillary tangles with tau protein and extracellular β-amyloid plaques. Early and accurate diagnosis is crucial for effective treatment and management. OBJECTIVE The purpose of this review is to investigate new technologies that improve diagnostic accuracy while looking at the current diagnostic criteria for AD, such as clinical evaluations, cognitive testing, and biomarker-based techniques. METHODS A thorough review of the literature was done in order to assess both conventional and contemporary diagnostic methods. Multimodal strategies integrating clinical, imaging, and biochemical evaluations were emphasised. The promise of current developments in biomarker discovery was also examined, including mass spectrometry and artificial intelligence. RESULTS Current diagnostic approaches include cerebrospinal fluid (CSF) biomarkers, imaging tools (MRI, PET), cognitive tests, and new blood-based markers. Integrating these technologies into multimodal diagnostic procedures enhances diagnostic accuracy and distinguishes dementia from other conditions. New technologies that hold promise for improving biomarker identification and diagnostic reliability include mass spectrometry and artificial intelligence. CONCLUSION Advancements in AD diagnostics underscore the need for accessible, minimally invasive, and cost-effective techniques to facilitate early detection and intervention. The integration of novel technologies with traditional methods may significantly enhance the accuracy and feasibility of AD diagnosis.
Collapse
Affiliation(s)
- Vandana Bhatia
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India.
| | - Anjali Chandel
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India
| | - Yavnika Minhas
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India
| | | |
Collapse
|
8
|
Aggarwal R, Kumar P, Kumar S, Tiwari S, Chaturvedi RK. Synthesis and biological evaluation of novel Trifluoromethylated Arylidene-hydrazinyl-thiazoles as neuroprotective agents. Bioorg Chem 2025; 159:108390. [PMID: 40139118 DOI: 10.1016/j.bioorg.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Neurodegenerative diseases, a substantial global health challenge affecting millions, underscore the pressing need for novel and effective pharmacotherapeutic drugs to address these disorders. In this concern, a library of novel trifluoromethylated arylidene-hydrazinyl-thiazoles has been synthesized and assessed for their anti-neurodegenerative potential. Multicomponent regioselective chemical transformation has been carried out utilizing thiosemicarbazide, trifluoromethylated 1,3-diketones and heteroaryl aldehydes in the presence of N-bromosuccinimide (NBS) in refluxing ethanol. The regioisomeric structure of the synthesized products was unambiguously characterized by employing heteronuclear 2D NMR spectroscopic studies. All the synthesized derivatives were evaluated for their anti-neurodegenerative properties on rat brain hippocampus-derived Neural Stem Cells (NSCs), examining their impact on survival, proliferation and neuronal differentiation in vitro. Among the tested thiazole derivatives, compounds 4a, 4b, 4c, 4f, 4 g, 4b' and 4i' demonstrated a remarkable increase in the number of neuronal cells as compared to the control group within the NSC culture and also exhibited the ability to promote NSC differentiation towards the neuronal lineage. Additionally, the selected compounds showed protection against amyloid beta (Aβ)-induced neurotoxicity in NSCs culture. Incorporating the trifluoromethyl group into the thiazole scaffold is a pivotal factor in augmenting biopotency, resulting in a marked increase in the count of neuronal cells compared to their non-fluorinated thiazole counterparts.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India; Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research, New Delhi 110012, India.
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Gyriki D, Nikolaidis CG, Bezirtzoglou E, Voidarou C, Stavropoulou E, Tsigalou C. The gut microbiota and aging: interactions, implications, and interventions. FRONTIERS IN AGING 2025; 6:1452917. [PMID: 40438731 PMCID: PMC12116569 DOI: 10.3389/fragi.2025.1452917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025]
Abstract
The human microbiota, a complex ecosystem of microorganisms inhabiting various body sites, particularly the gut, plays a crucial role in maintaining health and influencing disease susceptibility. Dysbiosis, characterized by alterations in microbial composition and diversity, has been implicated in numerous diseases, including those associated with aging. This review examines the complex relationship between gut microbiota and aging, highlighting the age-associated gut microbiota alterations, the factors contributing to these changes, the links between microbiota and age-related diseases, and the potential of interventions targeting the microbiome to extend lifespan and improve health outcomes in the elderly. Further research is needed to unravel the intricate mechanisms underlying the interplay between the microbiome and aging, paving the way for innovative strategies to promote healthy aging.
Collapse
Affiliation(s)
- Despoina Gyriki
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, Arta, Greece
| | - Elisavet Stavropoulou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
10
|
She LY, Li LY, Tang H, Yu Q, Gao FY, Zeng YQ, Chen LJ, Xiong L, Li LW, Chen F, Sun JF, Zheng WH, Zhao X, Liang G. OTUD1 positively regulates microglia neuroinflammation and promotes the pathogenesis of Alzheimer's disease by deubiquitinating C/EBPβ. Acta Pharmacol Sin 2025:10.1038/s41401-025-01566-y. [PMID: 40335710 DOI: 10.1038/s41401-025-01566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Microglia-mediated neuroinflammation is closely associated with AD pathogenesis. Abnormal deubiquitinating enzyme (DUB) expression is associated with neuroinflammation. Identification of functional DUBs in microglia may provide novel targets for AD treatment. Here, we found that the levels of DUB, ovarian tumor deubiquitinase 1 (OTUD1), were upregulated in AD model mice and amyloid-beta-induced microglia. OTUD1 knockdown in microglia significantly inhibited neuroinflammation, thereby improving cognitive impairment in AD model mice. Liquid chromatography-tandem mass spectrometry analysis coupled with co-immunoprecipitation revealed the CCAAT/enhancer-binding protein β (C/EBPβ), a key transcription factor regulating microglial inflammation, as an OTUD1-interacting protein. Mechanistically, OTUD1 bound to C/EBPβ and maintained its stability by removing the K48 ubiquitin chain at K253 of C/EBPβ, thereby activating the C/EBPβ-nuclear factor-κB-mediated inflammatory responses in microglia. Overall, our results revealed the roles of the OTUD1-C/EBPβ axis in mediating the microglial inflammatory responses and AD pathology, facilitating the development of new strategies targeting microglial neuroinflammation for AD treatment.
Collapse
Affiliation(s)
- Ling-Yu She
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Lu-Yao Li
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Hao Tang
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qin Yu
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Feng-Yi Gao
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Qing Zeng
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Lin-Jie Chen
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Li Xiong
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Li-Wei Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Fan Chen
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Jin-Feng Sun
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Wen-Hua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Xia Zhao
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Guang Liang
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
11
|
Gupta A, Ghosh A, Sharma N, Gorain B. Advancements in Stem Cell Research for Effective Therapies Against Alzheimer's Disease: Current Investigation and Future Insight. Mol Neurobiol 2025:10.1007/s12035-025-05003-3. [PMID: 40327307 DOI: 10.1007/s12035-025-05003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in the elderly, affecting approximately 50 million individuals globally with significant impose in health and financial burdens. Despite extensive research, no current treatment effectively halts the progression of AD, primarily due to its complex pathophysiology of the disease and the limitations of available therapeutic approaches. In this context, stem cell transplantation has emerged as a promising treatment strategy, harnessing the regenerative capabilities of various stem cell types, including neural stem cells (NSCs), embryonic stem cells (ESCs), and mesenchymal stem cells (MSCs). This review explores the potential of stem cell-based therapies in AD, emphasizing the necessity for continued innovation to overcome existing challenges and enhance therapeutic efficacy. Briefly, NSCs have shown potential in improving cognitive function and reducing AD pathology through targeted transplantation and neuroprotection; however, challenges such as optimizing transplantation protocols and ensuring effective cell integration persist. Concurrently, ESCs, with their pluripotent nature, present opportunities for modulating AD and generating therapeutic neurons, but ethical concerns and immunogenicity present significant obstacles to clinical application. Moreover, MSCs have demonstrated potential in ameliorating AD-related pathology and promoting neurogenesis, offering a more accessible alternative with fewer ethical constraints. The review concludes that the combinatory approaches of different stem cells may provide synergistic benefits in addressing AD-related pathophysiology, warranting further exploration in future research.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
12
|
Pang X, Xu W, Liang J, Liu Y, Li H, Chen L. Research progress and perspectives of dual-target inhibitors. Eur J Med Chem 2025; 289:117453. [PMID: 40024166 DOI: 10.1016/j.ejmech.2025.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The occurrence and development of diseases are complex, and single-target drugs that affect only a single target or pathway often fail to achieve the expected therapeutic effect. The simultaneous effect on two key targets could not only increase patient tolerance but also accelerate disease remission. Dual-target inhibitors have already been studied the most intensively in the development of dual-target drugs. This article briefly introduces the function of drug therapy targets, and mainly summarizes the design strategies and research progress of dual-target inhibitors in neurodegenerative diseases, infectious diseases, metabolic diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Hu F, Peng J, Wang W, Shen L, Jia M. Comparing the impact of various exercise modalities on old adults with Alzheimer's disease: A Bayesian network meta-analysis. Complement Ther Clin Pract 2025; 59:101968. [PMID: 40086298 DOI: 10.1016/j.ctcp.2025.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND PURPOSE The global prevalence of Alzheimer's disease (AD) in the elderly is rising, and exercise is increasingly used as a non-pharmacological intervention. However, the most effective exercise modality for improving quality of life, alleviating depression, and reducing neuropsychiatric symptoms in AD patients remains unclear. This study aims to identify the optimal exercise modality for addressing these symptoms through a network meta-analysis. METHODS As of November 2024, we conducted a comprehensive search across six databases: PubMed, Embase, Web of Science, the Cochrane Central Register of Controlled Trials, CINAHL, and PsycINFO. This study included only randomized controlled trials (RCTs), with study durations ranging from 2 to 24 weeks, primarily set in clinical or community environments. Following the PRISMA-NMA guidelines, we conducted statistical analysis using the "gemtc" package in R and assessed evidence quality via the CINeMA online platform. RESULTS A network meta-analysis of 29 RCTs with 1507 participants showed that for global cognition, Aerobic exercise (AE) [MD = 2.83, 95 % CI (0.66, 4.85)] ranked first with 79.5 % probability; for quality of daily life, Resistance Training (RT) [SMD = 0.96, 95 % CI (-0.14, 2.07)] ranked first with 83.7 %; for depression, Physical Activity Program (PAP) [SMD = -3.76, 95 % CI (-7.06, -0.47)] ranked first with 96.0 %; and for neuropsychiatric inventory outcomes, AE [SMD = -2.35, 95 % CI (-5.95, 1.06)] ranked first with 71.1 %. CONCLUSIONS Based on the findings from retrospective studies, aerobic exercise may be an effective intervention for improving overall cognition and quality of life in individuals aged 60 and above with Alzheimer's disease.
Collapse
Affiliation(s)
- Fengting Hu
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Jin Peng
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Weiran Wang
- Department of Physical Education, Dong-A University, Busan, South Korea.
| | - Lin Shen
- Faculty for Physical Education, Zhejiang Yuexiu University, Shaoxing, Zhejiang, China.
| | - Mingyuan Jia
- Department of Physical Education, Dong-A University, Busan, South Korea.
| |
Collapse
|
14
|
Ullah A, Lee GJ, Park JH, Park AR, Kwon HT, Lim SI. Human serum albumin-coated cellulose beads for extracorporeal amyloid-beta scavenging: A promising Alzheimer's disease-modifying approach. Int J Biol Macromol 2025; 309:142757. [PMID: 40180066 DOI: 10.1016/j.ijbiomac.2025.142757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by cognitive decline, largely resulting from the accumulation of amyloid-beta (Aβ) plaques. Targeting Aβ has gained significant attention as a potential therapeutic approach for AD. In this study, cellulose beads (CBs) were covalently functionalized with human serum albumin (HSA). The functionalized CBs were extensively characterized using FTIR, SEM, XPS, and thermal analysis, confirming successful stepwise modification and HSA immobilization on their surface. The degree of HSA immobilization reached the highest level for fine CBs (50-75 μm), yielding 1.25 μg, 5.86 μg, and 6.45 μg of HSA per mg of beads treated with 1 %, 5 %, and 7 % HSA solutions, respectively. The GFP-Aβ fusion protein, recombinantly expressed and purified as a model ligand, was then adsorbed onto HSA-coated CBs and qualitatively analyzed by confocal microscopy. Quantitative adsorption studies demonstrated that HSA-coated CBs sequestered 335 ng/g of GFP-Aβ in PBS and 114 ng/g in human serum. Time-dependent and column-based assays also showed 318 ng/g sequestration capacities in PBS and 115 ng/g in human serum, respectively. These findings demonstrate HSA-functionalized CBs as a promising extracorporeal system for Aβ clearance, with vast potential therapeutic application as an AD modifying approach.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Gyu-Jin Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jong-Ha Park
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ae-Ran Park
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
15
|
Zhou H, Yin X, Zhang G, Yang Z, Zhou R. Advancing Nanomaterial-Based Strategies for Alzheimer's Disease: A Perspective. JACS AU 2025; 5:1519-1537. [PMID: 40313833 PMCID: PMC12041962 DOI: 10.1021/jacsau.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common cause of dementia. By 2050, the number of AD cases is projected to exceed 131 million, placing significant strain on healthcare systems and economies worldwide. The pathogenesis of AD is multifactorial, involving hypotheses/mechanisms, such as amyloid-β (Aβ) plaques, tau protein hyperphosphorylation, cholinergic neuron damage, oxidative stress, and inflammation. Despite extensive research, the complexity of these potentially entangled mechanisms has hindered the development of treatments that can reverse disease progression. Nanotechnology, leveraging the unique physical, electrical, magnetic, and optical properties of nanomaterials, has emerged as a promising approach for AD treatment. In this Perspective, we first outlined the major current pathogenic hypotheses of AD and then reviewed recent advances in nanomaterials in addressing these hypotheses. We have also discussed the challenges in translating nanomaterials into clinical applications and proposed future directions, particularly the development of multifunctional and multitarget nanomaterials, to enhance their therapeutic efficacy and clinical applicability in AD treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xiuhua Yin
- Center
of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center
of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guanqiao Zhang
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Han J, Zhang X, Kang L, Guan J. Extracellular vesicles as therapeutic modulators of neuroinflammation in Alzheimer's disease: a focus on signaling mechanisms. J Neuroinflammation 2025; 22:120. [PMID: 40281600 PMCID: PMC12023694 DOI: 10.1186/s12974-025-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles, which contribute significantly to neuroinflammation, a central driver of disease pathogenesis. The activation of microglia and astrocytes, coupled with the complex interactions between Aβ and tau pathologies and the innate immune response, leads to a cascade of inflammatory events. This process triggers the release of pro-inflammatory cytokines and chemokines, exacerbating neuronal damage and fostering a cycle of chronic inflammation that accelerates neurodegeneration. Key signaling pathways, such as nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), are involved in regulating the production of these inflammatory mediators, offering potential therapeutic targets for AD. Recently, extracellular vesicles (EVs) have emerged as a promising tool for AD therapy, due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic agents. Despite challenges in standardizing EV-based therapies and ensuring their safety, EVs offer a novel approach to modulating neuroinflammation and promoting neuroregeneration. This review aims to highlight the intricate relationship between neuroinflammation, signaling pathways, and the emerging role of EV-based therapeutics in advancing AD treatment strategies.
Collapse
Affiliation(s)
- Jingnan Han
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| | - Jian Guan
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
17
|
Hou T, Liu M, Wu B, Ho MH, Lin CC. Racial and Ethnic Disparities in the 11-Year Bidirectional Relationship Between Dementia and Social Isolation Among Community-Dwelling Older Adults. Am J Geriatr Psychiatry 2025:S1064-7481(25)00113-7. [PMID: 40318993 DOI: 10.1016/j.jagp.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES This study aims to investigate the longitudinal impact of dementia on social isolation and vice versa, with a focus on racial and ethnic variations in these relationships. METHODS Data from 4,403 adults aged 65 and older were gathered from the National Health and Aging Trends Study (2011-2021). Dementia was categorized as no, possible, or probable, and social isolation was classified as socially isolated or not. Two cohorts were formed based on baseline social isolation and baseline dementia status. Cox proportional hazards regression models were used to evaluate the impact of baseline social isolation on subsequent dementia and vice versa, adjusting for potential covariates. Models were stratified by race/ethnicity. All analyses were conducted using STATA/MP version 17.0 RESULTS: In fully adjusted models, participants with dementia had a 1.40-fold higher likelihood of developing social isolation over the 10-year follow-up period. Those with baseline social isolation had a 7.21-fold higher likelihood of developing dementia over time. Racial and ethnic differences were observed in the influence of dementia on social isolation incidence. Non-Hispanic whites showed a statistically significant increase, while other racial and ethnic groups did not exhibit significant changes. Conversely, the impact of social isolation on dementia incidence was significant across all racial and ethnic groups. DISCUSSION Dementia and social isolation are bidirectionally linked among older adults, with notable racial and ethnic differences. Dementia increases the risk of social isolation, particularly among non-Hispanic whites, while social isolation significantly elevates the risk of developing dementia across all racial and ethnic groups. These findings underscore the need for targeted interventions to address social isolation and cognitive decline, considering racial and ethnic differences to improve outcomes for seniors.
Collapse
Affiliation(s)
- Tianxue Hou
- School of Nursing (TH, MHH, CCL), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Minhui Liu
- School of Nursing (ML), Ningxia Medical University, Yinchuan, China
| | - Bei Wu
- Rory Meyers College of Nursing (BW), New York University, New York, NY, USA
| | - Mu-Hsing Ho
- School of Nursing (TH, MHH, CCL), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chia-Chin Lin
- School of Nursing (TH, MHH, CCL), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China; Alice Ho Miu Ling Nethersole Charity Foundation (CCL), Tai Po, Territories, Hong Kong, China; Research Unit for Enhancing Well-Being in Vulnerable and Chronic Illness Populations (CCL), Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
18
|
Hussain F, Tahir A, Rehman HM, Wu Y, Shah M, Rashid U. Promising thiazolidinedione-thiazole based multi-target and neuroprotective hybrids for Alzheimer's disease: Design, synthesis, in-vitro, in-vivo and in-silico studies. Eur J Med Chem 2025; 287:117327. [PMID: 39914143 DOI: 10.1016/j.ejmech.2025.117327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD) is marked by low neurotransmitter levels, inflammation, increased oxidative stress, and the aggregation of amyloid-β and tau proteins. The development of hybrid compounds acting as multi-target-directed ligands (MTDLs) is a novel and contemporary approach in Alzheimer's disease therapeutics. The objective of our current research focuses on identifying compounds with balanced, even moderate inhibition potential against multiple targets associated with cholinergic deficit and neuroinflammation. Inspired by our previous study, the thiazolidinedione-thiazole-based framework has been employed to design and synthesize a series of new hybrids. The inhibitory effects of the synthesized compounds on selected enzymes were investigated by employing in-vitro methods. The synergistic inhibition of acetylcholinesterase (AChE), monoamine oxidase-B (MAO-B), β-secretase (BACE-1), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) by compound 49 is believed to have a more potent effect in treating Alzheimer's disease. Enzyme kinetic studies and their effect on substrate-enzyme interactions of the compounds with significant inhibitory potency for AChE and MAO-B were also investigated. Central nervous system (CNS) penetration was determined using in-vitro PAMPA assay. A neurotoxicity test on neuroblastoma cell lines (SH-SY5Y) showed that the compounds were non-toxic. Compound 49 showed an excellent neuroprotective effect by significantly reducing H2O2-induced oxidative stress. Antioxidant enzymes were studied in an in-vivo experiment in the brains of male BALB/c mice. Compound 49 showed its ability to reduce the oxidative stress. Furthermore, molecular docking studies and 100 ns MD simulations performed on the AChE, MAO-B, and COX-2 ligand-protein complexes revealed stable conformations of the ligand-protein interactions throughout the simulations.
Collapse
Affiliation(s)
- Fahad Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Ayesha Tahir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Yurong Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|
19
|
Yuan M, Jin L, Fang Y. Disease Burden, Temporal Trends, and Cross-Country Inequality Associated with Sociodemographic Indicators in Alzheimer's Disease and Other Dementias. Am J Prev Med 2025; 68:682-694. [PMID: 40072379 DOI: 10.1016/j.amepre.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 03/22/2025]
Abstract
INTRODUCTION The purpose of this article is to describe the global burden and temporal trends of Alzheimer's disease and other dementias from 1990 to 2021 and explore cross-country inequality associated with sociodemographic development-related factors. METHODS The disability-adjusted life years of Alzheimer's disease and other dementias and sociodemographic index were extracted from the Global Burden of Disease 2021 study, and other sociodemographic development-related factors, including government expenditure on education (% of GDP), net national income per capita, health expenditure per capita, and fertility rate, were sourced from World Bank Data. Disability-adjusted life years of Alzheimer's disease and other dementias across 204 countries/territories and global age-sex distribution in 2021 were illustrated. The Joinpoint regression model was used to analyze the temporal trends of disease burden, and the slope index of inequality and concentration index were calculated to quantify cross-country inequalities. Analyses were conducted in 2024. RESULTS Significant disparities were observed in the numbers, rates, and age-standardized rates of disability-adjusted life years across 204 countries/territories. Females demonstrated higher disability-adjusted life year numbers (rates) for all age groups. Age-standardized disability-adjusted life year rate increased worldwide and was high in high-middle and middle sociodemographic index regions but increased faster in low (average annual percentage change=0.227%) and low-middle (average annual percentage change=0.244%) sociodemographic index regions. Cross-country inequality analyses indicated that disability-adjusted life years of Alzheimer's disease and other dementias were skewed and higher in countries with higher sociodemographic development, and the inequality increased with time except for education expenditure-related inequality. CONCLUSIONS The burden of Alzheimer's disease and other dementias has risen globally over the past 3 decades, accompanied by increasing cross-country inequalities, which disproportionately affects countries with high sociodemographic development. Boosting expenditure on education may narrow this inequality.
Collapse
Affiliation(s)
- Manqiong Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Lifen Jin
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Cai J, Liu Y, Fan H. Review on pathogenesis and treatment of Alzheimer's disease. Dev Dyn 2025; 254:296-309. [PMID: 39651698 DOI: 10.1002/dvdy.762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
The rising incidence of Alzheimer's disease (AD) and the associated economic impacts has prompted a global focus in the field. In recent years, there has been a growing understanding of the pathogenic mechanisms of AD, including the aggregation of β-amyloid, hyperphosphorylated tau, and neuroinflammation. These processes collectively lead to neurodegeneration and cognitive decline, which ultimately results in the loss of autonomy in patients. Currently, there are three main types of AD treatments: clinical tools, pharmacological treatment, and material interventions. This review provides a comprehensive analysis of the underlying etiology and pathogenesis of AD, as well as an overview of the current prevalence of AD treatments. We believe this article can help deepen our understanding of the AD mechanism, and facilitate the clinical translation of scientific research or therapies, to address this global problem of AD.
Collapse
Affiliation(s)
- Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
21
|
Li Z, Gu J, Du Z, Lu R, Jiang Y, Zhu H. Characteristics of adverse events and clinical risks of Lecanemab based on FAERS data. J Affect Disord 2025; 374:46-54. [PMID: 39793624 DOI: 10.1016/j.jad.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This study aims to analyze the distribution of adverse events (AEs) related to Lecanemab in real-world settings based on FAERS database data. METHODS Using the FAERS database, AE data related to Lecanemab was collected from Q3 2023 to Q2 2024. Signal mining was conducted using frequency and Bayesian methods to identify positive signals associated with Lecanemab. RESULTS A total of 8,284,874 AE reports were collected, with 894 related to Lecanemab. Signal mining identified 22 SOCs, involving 46 PTs. Nervous system disorders had the highest report count, with Amyloid-Related Imaging Abnormalities (ARIA) being the most prominent AE, with high report numbers and signal strength, manifesting as brain edema, microhemorrhages, and iron deposits in the brain. Additionally, infusion-related reactions were common, including headache, chills, and fever. The study also revealed some new potential AEs, such as anger, cognitive disorder, disorientation, and abnormal dreams. Although these psychiatric symptoms had a lower report count, their high signal strength suggests that Lecanemab may impact patients' mental states. Rare but severe AEs, such as encephalitis, pancreatic carcinoma, and subdural hematoma, had low report numbers but high signal strength, highlighting potential risks for these severe events, especially in high-risk patients with relevant medical histories. CONCLUSION This study unveils certain potential risks associated with Lecanemab in real-world applications. Further clinical studies are needed to validate these findings and provide guidance for safe medication practices.
Collapse
Affiliation(s)
- Zhaohui Li
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Jun Gu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Haohao Zhu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| |
Collapse
|
22
|
de Souza AA, Goularte KCM, Piccoli RC, Custódio SV, de Mello JE, Victor MG, Domingues WB, de Souza LP, Dos Santos Gonçalves L, Campos VF, Cunico W, Oses JP, Stefanello FM, de Aguiar MSS, Spanevello RM. 3-(3-(diethylamino)propyl)-2-(4-(methylthio)phenyl)thiazolidin-4-one Attenuates Scopolamine-induced Cognitive Impairment in Rats: Insights Into Neuroprotective Effects. Mol Neurobiol 2025:10.1007/s12035-025-04887-5. [PMID: 40164887 DOI: 10.1007/s12035-025-04887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's Disease (AD) is characterized by memory decline, dysregulation in cholinergic and purinergic signaling, neuroinflammation, and oxidative stress. Current treatments are limited, highlighting the need for new compounds to prevent or delay AD progression. Thiazolidinones have emerged as promising candidates due to their antioxidant, anti-inflammatory, and anticholinesterase properties. The aim of this study was to evaluate the effects of 3-(3-(diethylamino)propyl)-2-(4-(methylthio)phenyl)thiazolidin-4-one (DS27) in a rat model of scopolamine-induced memory deficits. Male rats were divided into groups: I - Control, II - Scopolamine (SCO) (1 mg/kg), III - SCO and DS27 (5 mg/kg), IV - SCO and DS27 (10 mg/kg), V - SCO and donepezil (5 mg/kg). The animals were treated orally with DS27 or donepezil for seven days. On the 8th day, they underwent the open field test and inhibitory avoidance training, followed by intraperitoneal administration SCO. Twenty-four hours later, an inhibitory avoidance test was conducted. Acetylcholinesterase (AChE) activity, oxidative stress, and inflammatory and purinergic parameters were analyzed in the cerebral cortex, hippocampus, cerebrospinal fluid, serum, lymphocytes, and liver. DS27 prevented memory deficits, alterations in AChE activity, and oxidative damage induced by SCO in brain structures. Additionally, DS27 prevented SCO-induced decrease in IL-10 levels, and increase in IL-6, and TNF-α expression in the cerebral cortex, and normalized ATP and ADP hydrolysis in cerebrospinal fluid and lymphocytes. DS27 did not induce oxidative stress in the liver or alter serum biochemical parameters. These findings suggest that DS27 has significant neuroprotective properties and could be a promising alternative for treating neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Anita Avila de Souza
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Kelen Cristiane Machado Goularte
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Raphaela Cassol Piccoli
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Solange Vega Custódio
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Julia Eisenhardt de Mello
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Melinda Gomes Victor
- Graduate Program in Biochemistry and Bioprospecting - Laboratory of Chemistry Applied to Bioactive - Center the Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - William Borges Domingues
- Graduate Program in Biotechnology - Laboratory of Structural Genomics - Technological Development Center, Federal University of Pelotas, Capão Do Leão Campus, S/N, Pelotas-RS, RS, CEP 96010‑900, Brazil
| | - Lucas Petitemberte de Souza
- Graduate Program in Biotechnology - Laboratory of Structural Genomics - Technological Development Center, Federal University of Pelotas, Capão Do Leão Campus, S/N, Pelotas-RS, RS, CEP 96010‑900, Brazil
| | - Laís Dos Santos Gonçalves
- Graduate Program in Biotechnology - Laboratory of Structural Genomics - Technological Development Center, Federal University of Pelotas, Capão Do Leão Campus, S/N, Pelotas-RS, RS, CEP 96010‑900, Brazil
| | - Vinicius Farias Campos
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
- Graduate Program in Biotechnology - Laboratory of Structural Genomics - Technological Development Center, Federal University of Pelotas, Capão Do Leão Campus, S/N, Pelotas-RS, RS, CEP 96010‑900, Brazil
| | - Wilson Cunico
- Graduate Program in Biochemistry and Bioprospecting - Laboratory of Chemistry Applied to Bioactive - Center the Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Jean Pierre Oses
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Francieli Moro Stefanello
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Department of Clinical Medicine, Faculty of Medicine - Laboratory of Neuroscience and Behavior - Drug Research and Development Center, Federal University of Ceará, Fortaleza-CE, CEP 60020-181, Brazil
| | - Roselia Maria Spanevello
- Graduate Program in Biochemistry and Bioprospection - Laboratory of Neurochemistry, Inflammation, and Cancer - Center the Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Capão Do Leão Campus S/N, Pelotas-RS, CEP 96010‑900, Brazil.
| |
Collapse
|
23
|
Kara S, Polat S, Akillioglu K, Saker D, Evli Ce AT, Sencar L, Aydın UF, Polat S. Effects of TGF-β1 on Aβ-40 and α- β- γ secretase expression in hippocampus and prefrontal cortex in experimental Alzheimer's disease. Behav Brain Res 2025; 482:115432. [PMID: 39828086 DOI: 10.1016/j.bbr.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease is a chronic complex neurodegenerative disease characterized with amyloid plaques and loss of neurons. TGF-β1 is important growth factor, plays critical roles in cell metabolism, tissue homeostasis, neuronal development, and synaptic plasticity. In this study, we aimed to examine the effect of TGF-β1 on the regulation of α, β, and γ-secretase enzymes, Aβ-40 accumulation, apoptosis, and neuronal damage in an experimental Scopolamine-induced AD-like model. The subjects were divided into 5 groups such as control, sham, TGF-β1 control, Scopolamin group, TGF-β1 treatment groups.Then all groups were divided into 2 subgroups according to 28th-56th days. Except for Morris water maze (MWM) test, hippocampus and prefrontal cortex tissues were taken for light-electron microscopic, immunohistochemical, and biochemical examinations. It was observed that learning and memory abilities, which decreased in the MWM test of the Scopolamine group, increased in the treatment groups. In addition, α-secretase expression decreased in the Scopolamin group, while it increased in the TGF-β1 treatment group. It was determined that Aβ-40 and caspase-3 immunoreactivity, β and γ-secretase enzyme levels increased in the Scopolamin group and decreased in TGF-β1 treatment group. Cellular degenerations were relatively decreased in TGF-β1 treatment group. It was thought that TGF-β1 might have a therapeutic effect on Alzheimer's disease by increasing memory performance and preventing Aβ-40 accumulation in the AD-like model induced by Scopolamine and also, may be effective preventing neuronal damage by down-regulating caspase-3 expression. When all the findings evaluated together, it was concluded that TGF-β1 could be evaluated as a therapeutic agent in Alzheimer's disease.
Collapse
Affiliation(s)
- Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey.
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Kübra Akillioglu
- Department of Physiology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Ahmet Turan Evli Ce
- Department of Neurology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Ummuhan Fulden Aydın
- Department of Biochemistry, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| |
Collapse
|
24
|
Ghosh P, Singh R, Chatterjee C, Kumar A, Singh SK. Computational screening of coumarin derivatives as inhibitors of the NACHT domain of NLRP3 inflammasome for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2025; 43:2187-2203. [PMID: 38116751 DOI: 10.1080/07391102.2023.2294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR), leucine-rich-repeat (LRR), and pyrin domain containing 3 (NLRP3) is one of the key players in neuroinflammation, which is a major pathological hallmark of Alzheimer's Disease (AD). Activated NLRP3 causes release of pro-inflammatory molecules that aggravate neurodegeneration. Thus, pharmacologically inhibiting the NLRP3 inflammasome has the potential to alleviate the inflammatory injury to the neurons. Coumarin is a multifunctional nucleus with potent anti-inflammatory properties and can be utilized to develop novel drugs for the treatment and management of AD. In the present study, we have explored the NLRP3-inhibitory activities of a library of coumarin derivatives through a computational drug discovery approach. Drug-like, PAINS free, and potentially BBB permeable compounds were screened out and subjected to molecular docking and in silico ADMET studies, resulting in three virtual hits, i.e. MolPort-050-872-358, MolPort-050-884-068, and MolPort-051-135-630. The hits exhibited better NLRP3-binding affinity than MCC950, a selective inhibitor of NLRP3. Further, molecular dynamics (MD) simulations, post-MD simulation analyses, and binding free energy calculations of the hits established their potential as promising virtual leads with a common coumarin scaffold for the inhibition of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Chayanika Chatterjee
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
25
|
Yang X, Wang J, Jia X, Yang Y, Fang Y, Ying X, Li H, Zhang M, Wei J, Pan Y. Microglial polarization in Alzheimer's disease: Mechanisms, implications, and therapeutic opportunities. J Alzheimers Dis 2025; 104:3-13. [PMID: 39894910 DOI: 10.1177/13872877241313223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, neurofibrillary tangles, and chronic neuroinflammation. Microglial cells, the resident immune cells in the central nervous system, play a crucial role in the pathogenesis of AD. Microglia can undergo polarization, shifting between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes in response to different stimuli. Dysregulation of microglial polarization towards the pro-inflammatory phenotype leads to the release of inflammatory cytokines, oxidative stress, and synaptic dysfunction. These processes contribute to neuronal damage and cognitive decline in AD. However, several challenges remain in this field. The complex molecular mechanisms governing microglial polarization in AD need to be further elucidated. In this review, we discuss the mechanisms underlying microglial polarization in AD and its implications in disease progression.
Collapse
Affiliation(s)
- Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Wang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, PR China
| | - Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hong Li
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
26
|
Zeng Y, Liu B, Zhou L, Zeng W, Tian X, Jiang J, Dai D. Safety issues of Donepezil combined with Memantine in Alzheimer's disease population: real-world pharmacovigilance. Expert Opin Drug Saf 2025:1-11. [PMID: 39950934 DOI: 10.1080/14740338.2025.2467180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. The combination of Donepezil and Memantine is the only FDA-approved therapy for AD, but its adverse drug reactions (ADRs) lack systematic analysis. This study carried out drug combination analysis for AD population to provide evidence support for clinical safety of drug use. RESEARCH DESIGN AND METHODS Using FAERS database reports (January 2004-January 2024) with Donepezil and Memantine as primary suspected drugs, four disproportionality analysis methods - ROR, PRR, BCPNN, and EBGM - were applied to identify positive ADR signals. Subgroup analyses were conducted by age and gender. RESULTS A total of 712 reports were analyzed (54.6% female, 55.1% aged 65-85). Across the AD population, 42 ADRs were identified, including hypertensive crisis, hyperglycemia, hyperosmolar nonketotic syndrome, proteinuria, and hydronephrosis, many of which were newly reported. Subgroup analysis revealed prostate hypertrophy, acute kidney injury, and cerebral infarction in males, while females experienced more severe cardiovascular events, such as complete AV block and ventricular extrasystole. Additional ADRs included hyperkalemia, sinus bradycardia, and extrapyramidal disorders. CONCLUSIONS Despite partial consistency of combined ADRs for Donepezil and Memantine with instructions, new ADR signals emerged, with significant differences in AD subgroups.
Collapse
Affiliation(s)
- Yi Zeng
- Shunde District Integrated Traditional Chinese and Western Medicine Hospital, Foshan, China
- Shunde District Junan Hospital, Foshan, China
| | - Bingshuo Liu
- The Fifth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisi Zhou
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenling Zeng
- The Second Clinical School, Nanchang University, Nanchang, China
| | - Xiaona Tian
- Department of Medical Oncology, Zhongshan City People's Hospital, Zhongshan, China
| | - Jiazhen Jiang
- The first Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Dai
- The first Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Puranik N, Song M. Therapeutic Role of Heterocyclic Compounds in Neurodegenerative Diseases: Insights from Alzheimer's and Parkinson's Diseases. Neurol Int 2025; 17:26. [PMID: 39997657 PMCID: PMC11858632 DOI: 10.3390/neurolint17020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's and Parkinson's are the most common neurodegenerative diseases (NDDs). The development of aberrant protein aggregates and the progressive and permanent loss of neurons are the major characteristic features of these disorders. Although the precise mechanisms causing Alzheimer's disease (AD) and Parkinson's disease (PD) are still unknown, there is a wealth of evidence suggesting that misfolded proteins, accumulation of misfolded proteins, dysfunction of neuroreceptors and mitochondria, dysregulation of enzymes, and the release of neurotransmitters significantly influence the pathophysiology of these diseases. There is no effective protective medicine or therapy available even with the availability of numerous medications. There is an urgent need to create new and powerful bioactive compounds since the number of people with NDDs is rising globally. Heterocyclic compounds have consistently played a pivotal role in drug discovery due to their exceptional pharmaceutical properties. Many clinically approved drugs, such as galantamine hydrobromide, donepezil hydrochloride, memantine hydrochloride, and opicapone, feature heterocyclic cores. As these heterocyclic compounds have exceptional therapeutic potential, heterocycles are an intriguing research topic for the development of new effective therapeutic drugs for PD and AD. This review aims to provide current insights into the development and potential use of heterocyclic compounds targeting diverse therapeutic targets to manage and potentially treat patients with AD and PD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
28
|
Zhu Y, Wang A, Zhou Y, Yuan S, Ji Y, Hu W, Alzheimer’s disease Neuroimaging Initiative. Altered spatiotemporal consistency and their genetic mechanisms in mild cognitive impairment: a combined neuroimaging and transcriptome study. Cereb Cortex 2025; 35:bhaf045. [PMID: 40037416 PMCID: PMC11879177 DOI: 10.1093/cercor/bhaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
The Four-dimensional (spatiotemporal) Consistency of local Neural Activities (FOCA) metric was utilized to assess spontaneous whole-brain activity. Despite its application, the genetic underpinnings of FOCA alterations in Alzheimer's Disease (AD)-related Mild Cognitive Impairment (MCI) remain largely unexplored. To elucidate these changes, we analyzed group FOCA differences in 41 MCI patients and 46 controls from the Alzheimer's Disease Neuroimaging Initiative database. Integrating the Allen Human Brain Atlas, we performed transcriptome-neuroimaging spatial association analyses to pinpoint genes correlating with MCI-related FOCA changes. We observed heightened FOCA in the frontal-parietal system and diminished FOCA in the temporal lobe and medium cingulate gyrus among MCI patients. These FOCA alterations were spatially linked to the expression of 384 genes, which were enriched in crucial molecular functions, biological processes, and cellular components of the cerebral cortex, as well as related pathways. These genes were specifically expressed in brain tissue and corticothalamic neurons, particularly during late cortical development. They also connected to various behavioral domains. Furthermore, these genes could form a protein-protein interaction network, supported by 34 hub genes. Our results suggest that local spatiotemporal consistency of spontaneous brain activity in MCI may stem from the complex interplay of a broad spectrum of genes with diverse functional features.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei, Anhui 230001, China
| | - Anmo Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei, Anhui 230001, China
| | - Yuyu Zhou
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei, Anhui 230001, China
| | - Shuya Yuan
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei, Anhui 230001, China
| | - Yang Ji
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei, Anhui 230001, China
- Department of Electronic Engineering and Information Science, School of Information Science and Technology, University of Science and Technology of China, No. 443, Huangshan Road, Shushan District, Hefei, Anhui 230022, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei, Anhui 230001, China
| | | |
Collapse
|
29
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
30
|
Komal K, Ghosh R, Sil D, Sharma R, Kumar S, Pandey P, Kumar M. Advancements in nose-to-brain drug targeting for Alzheimer's disease: a review of nanocarriers and clinical insights. Inflammopharmacology 2025; 33:605-626. [PMID: 39776027 DOI: 10.1007/s10787-024-01636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease that describes cognitive decline and memory loss resulting in disability in movement, memory, speech etc. Which first affects the hippocampal and entorhinal cortex regions of brain. Pathogenesis of AD depends on Amyloid-β, hyper-phosphorylation of tau protein, mitochondrial dysfunction, cholinergic hypothesis and oxidative stress. In comparison with males, females are more prone to AD due to reduced estrogen level. Some of the FDA-approved drugs and their conventional formulations available in the market are discussed in this review. Nose-to-brain delivery system provides the target specific drug delivery via olfactory and trigeminal nerve (active and passive drug targeting strategies) and bypassing the Blood Brain Barrier. Mucoadhesive agents and permeation enhancers are mostly utilized to enhance the retention time and bioavailability of the drugs. Liposomes, niosomes, cubosomes, solid lipid nanoparticles, nanoemulsions, micelles, and many more nanocarriers for nose-to-brain delivery of drugs are also described thoroughly in this review. It also covers the clinical trials and patents for nose-to-brain delivery. In this article, we investigate the nose-to-brain pathways for AD treatment strategies.
Collapse
Affiliation(s)
- Kumari Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Debayan Sil
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rohit Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Prachi Pandey
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
31
|
Guerguer FZ, Rossafi B, Abchir O, Raouf YS, Albalushi DB, Samadi A, Chtita S. Potential Azo-8-hydroxyquinoline derivatives as multi-target lead candidates for Alzheimer's disease: An in-depth in silico study of monoamine oxidase and cholinesterase inhibitors. PLoS One 2025; 20:e0317261. [PMID: 39883631 PMCID: PMC11781659 DOI: 10.1371/journal.pone.0317261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
Cognitive dysfunction in Alzheimer's disease results from a complex interplay of various pathological processes, including the dysregulation of key enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). This study proposes and designs a series of novel molecules derived from 8-hydroxyquinoline (Azo-8HQ) as potential multi-target lead candidates for treating AD. An exhaustive in silico analysis was conducted, encompassing docking studies, ADMET analysis, density functional theory (DFT) studies, molecular dynamics simulations, and subsequent MM-GBSA calculations to examine the pharmacological potential of these molecules with the specific targets of interest. Out of the 63 Azo-8HQ derivatives analysed, two molecules, 14c and 17c, demonstrated strong affinities for AChE, BuChE, and MAO-B, along with favourable pharmacokinetic profiles and electronic properties. Molecular dynamics simulations confirmed the stability of these molecules within the active sites of the targets, and MM-GBSA calculations revealed low binding energies, indicating robust interactions. These findings identify molecules 14c and 17c as promising multi-target candidates for the treatment of AD, based on an in-depth computational study aimed at minimizing drug development costs and time. Future work will include the synthesis of these molecules followed by in-depth in vitro and in vivo testing to validate their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Fatima Zahra Guerguer
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Bouchra Rossafi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Yasir S. Raouf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dhabya Bakhit Albalushi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
32
|
Guerguer FZ, Bouribab A, Karim EM, Khedraoui M, Amegrissi F, Raouf YS, Samadi A, Chtita S. Moroccan natural products for multitarget-based treatment of Alzheimer's disease: A computational study. PLoS One 2025; 20:e0313411. [PMID: 39820594 PMCID: PMC11737685 DOI: 10.1371/journal.pone.0313411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/24/2024] [Indexed: 01/19/2025] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder that impairs neurocognitive functions. Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase B, Beta-Secretase, and Glycogen Synthase Kinase Beta play central roles in its pathogenesis. Current medications primarily inhibit AChE but fail to halt or reverse disease progression due to the multifactorial nature of Alzheimer's. This underscores the necessity of developing multi-target ligands for effective treatment. This study investigates the potential of phytochemical compounds from Moroccan medicinal plants as multi-target agents against Alzheimer's disease, employing computational approaches. A virtual screening of 386 phytochemical compounds, followed by an assessment of pharmacokinetic properties and ADMET profiles, led to the identification of two promising compounds, naringenin (C23) and hesperetin (C24), derived from Anabasis aretioides. These compounds exhibit favourable pharmacokinetic profiles and strong binding affinities for the five key targets associated with the disease. Density functional theory, molecular dynamics simulations, and MM-GBSA calculations further confirmed their structural stability, with a slight preference for C24, exhibiting superior intermolecular interactions and overall stability. These findings provide a strong basis for further experimental research, including in vitro and in vivo studies, to substantiate their potential efficacy in Alzheimer's disease.
Collapse
Affiliation(s)
- Fatima Zahra Guerguer
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Amal Bouribab
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - El Mehdi Karim
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatiha Amegrissi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Yasir S. Raouf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
33
|
Bai H, Feng XF. Searching for new drugs to treat Alzheimer’s disease dementia through multiple pathways. World J Clin Cases 2025; 13:100833. [DOI: 10.12998/wjcc.v13.i1.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important. This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function, especially the new progress in drug treatment for AD. We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase, N-methyl-D-aspartate glutamate receptor, amyloid protein, tau protein and chronic immune inflammation.
Collapse
Affiliation(s)
- Hua Bai
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun 558099, Guizhou Province, China
- Department of Neurology, Wulong Branch of the People's Hospital Affiliated to Chongqing University, Wulong 408500, Chongqing, China
| | - Xiao-Feng Feng
- Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
34
|
Wu W, Zhao Y, Cheng X, Xie X, Zeng Y, Tao Q, Yang Y, Xiao C, Zhang Z, Pang J, Jin J, He H, Lin Y, Li B, Ma J, Ye X, Lin WJ. Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease. Nat Commun 2025; 16:63. [PMID: 39747869 PMCID: PMC11696061 DOI: 10.1038/s41467-024-55678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation. We further demonstrate the beneficial effects of 40 hertz blue light are mediated through the activation of the vLGN/IGL-Re visual circuit. Notably, concomitant use of anti-Aβ antibody with 40 hertz blue light demonstrates improved soluble Aβ clearance and cognitive performance in 5xFAD mice. These findings offer functional evidence on the therapeutic effects of 40 hertz blue light in Aβ-related pathologies and suggest its potential as a supplementary strategy to augment the efficacy of antibody-based therapy.
Collapse
Affiliation(s)
- Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yubai Zhao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical and Rehabilitation Medicine, Guiyang Healthcare Vocational University, Guizhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Yixiu Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yishuai Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuan Xiao
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Zhan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Jiahui Pang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo He
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Junxian Ma
- Tianfu Xinglong Lake Laboratory, Chengdu, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China.
| |
Collapse
|
35
|
Gai K, Yang M, Chen W, Hu C, Luo X, Smith A, Xu C, Zhang H, Li X, Shi W, Sun W, Lin F, Song Y. Development of Neural Cells and Spontaneous Neural Activities in Engineered Brain-Like Constructs for Transplantation. Adv Healthc Mater 2025; 14:e2401419. [PMID: 39252653 DOI: 10.1002/adhm.202401419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Stem cell transplantation has demonstrated efficacy in treating neurological disorders by generating functional cells and secreting beneficial factors. However, challenges remain for current cell suspension injection therapy, including uncontrollable cell distribution, the potential for tumor formation, and limited ability to treat spatial defects. Therefore, implants with programmable cell development, tailored 3D structure, and functionalized biomaterials have the potential to both control cell distribution and reduce or heal spatial defects. Here, a biomimetic material system comprising gelatin, alginate, and fibrinogen has been developed for neural progenitor cell constructs using 3D printing. The resulting constructs exhibit excellent formability, stability, and developmental functions in vitro, as well as biocompatibility and integration into the hippocampus in vivo. The controllability, reproducibility, and material composition of the constructs show potential for use in personalized stem cell-based therapies for defective neurological disorders, neural development research, disease modeling, and organoid-derived intelligent systems.
Collapse
Affiliation(s)
- Ke Gai
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengliu Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100084, China
| | - Wei Chen
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenyujun Hu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Austin Smith
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Caizhe Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hefeng Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100084, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Bezerra JR, de Souza Nascimento T, Tavares J, de Aguiar MSS, Maia MVV, de Andrade GM. Neuroprotective Effect of Chlorogenic Acid in an Animal Model of Sporadic Alzheimer's Disease Induced by Streptozotocin. Mol Neurobiol 2025; 62:674-692. [PMID: 38898198 DOI: 10.1007/s12035-024-04299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's Disease is a degenerative neurological condition which leads to a decline in memory and cognitive function. Chlorogenic Acid (CGA) presents properties including neuroprotective, antioxidant and anti-inflammatory. The aim of this study was to examine the impact of CGA on cognitive impairments, neuroinflammation and neuronal damage in mice submitted to an experimental model of Sporadic Alzheimer Disease (SAD) induced by intracerebroventricular administration of streptozotocin (ICV-STZ). Male Swiss mice received bilateral ICV-STZ injections (3 mg/Kg) on days 1 and 3. The treatment with CGA (5 mg/Kg, orally) or vehicle (water, orally), was initiated and continued for 26 days, starting 2 h after the second induction procedure. At first, there was no change in serum glucose levels after SAD induction. ICV-STZ induces impairments in aversive, recognition, and spatial memory, while CGA treatment significantly alleviated these memory deficits. Furthermore, locomotor activity, working memory, and anxiety-related activities remained unaffected by the treatments. CGA treatment protects against ICV-STZ-induced increase in the nitrite/nitrate and TBARS levels. ICV-STZ induced a reduction in viable cells, depletion of BDNF, and triggered astrogliosis and microgliosis in the cortex and hippocampus. Treatment with CGA preserves viable cell count in the prefrontal cortex, CA1, and CA3 regions of the hippocampus. Additionally, it prevented BDNF depletion in the prefrontal cortex and hippocampus (CA1, CA3, and DG regions), and mitigated astrogliosis and microgliosis in the prefrontal cortex and hippocampus (CA1, CA3, and DG regions). These findings indicate the neuroprotective effects of CGA, underscoring their potential as therapeutic agents or adjuncts in the treatment of SAD.
Collapse
Affiliation(s)
- Jéssica Rabelo Bezerra
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
- Laboratory of Neuroscience and Behavior, Drug Research and Development Center (NPDM), , Federal University of Ceará, Rua Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Tyciane de Souza Nascimento
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Rua Costa Mendes, Porangabussu, Fortaleza, Ceará, 160860430-140, Brazil
- Laboratory of Neuroscience and Behavior, Drug Research and Development Center (NPDM), , Federal University of Ceará, Rua Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Juliete Tavares
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Rua Costa Mendes, Porangabussu, Fortaleza, Ceará, 160860430-140, Brazil
- Laboratory of Neuroscience and Behavior, Drug Research and Development Center (NPDM), , Federal University of Ceará, Rua Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Rua Costa Mendes, Porangabussu, Fortaleza, Ceará, 160860430-140, Brazil
- Laboratory of Neuroscience and Behavior, Drug Research and Development Center (NPDM), , Federal University of Ceará, Rua Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Maiara Virgínia Viana Maia
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Geanne Matos de Andrade
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil.
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Rua Costa Mendes, Porangabussu, Fortaleza, Ceará, 160860430-140, Brazil.
- Laboratory of Neuroscience and Behavior, Drug Research and Development Center (NPDM), , Federal University of Ceará, Rua Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil.
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE, 60.430-275, Brazil.
| |
Collapse
|
37
|
Alrouji M, Yasmin S, Alshammari MS, Alhumaydhi FA, Sharaf SE, Shahwan M, Shamsi A. Unveiling Cathepsin B inhibition with repurposed drugs for anticancer and anti-Alzheimer's drug discovery. PLoS One 2024; 19:e0316010. [PMID: 39700174 DOI: 10.1371/journal.pone.0316010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of amyloid β (Aβ) peptides and the formation of plaques in the brain, primarily derived from the proteolytic degradation of amyloid precursor protein (APP). Cathepsin B (CatB) is a cysteine protease that plays a pivotal role in this process, making it a potential target for the development of anti-Alzheimer's therapies. Apart from AD, CatB is implicated in various physiological and pathological processes, including cancer. Given the critical role of CatB in these diseases, identifying effective inhibitors is of significant therapeutic interest. In this study, we employed a systematic virtual screening approach using repurposed molecules from the DrugBank database to identify potential CatB inhibitors. Primarily, we focused on binding affinities and selectivity to pinpoint potential hits against CatB. Two repurposed molecules, Lurasidone and Paliperidone, emerged as promising candidates with significant affinity for CatB. These molecules demonstrated favorable drug profiles and exhibited preferential binding to the catalytic pocket of CatB via interacting with functionally significant residues. To further explore the binding mechanism and stability of the CatB-drug complexes, molecular dynamics (MD) simulations were conducted for 500 ns. The results revealed that CatB and Lurasidone, as well as Paliperidone, form stable complexes throughout the simulation. Taken together, the findings suggest that Lurasidone and Paliperidone can act as repurposed CatB inhibitors with potential applications in the development of therapeutics against AD and other CatB-associated diseases after further validation.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed S Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
38
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
39
|
Lee MY, Lee D, Choi D, Kim KS, Kang PM. Targeting Reactive Oxygen Species for Diagnosis of Various Diseases. J Funct Biomater 2024; 15:378. [PMID: 39728178 DOI: 10.3390/jfb15120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings. In this review, we discuss the molecular mechanisms underlying ROS production and explore the methods and materials that could be used to detect ROS overproduction, including iron-based materials, ROS-responsive chemical bond containing polymers, and ROS-responsive molecule containing biomaterials. We also discuss various imaging and imaging techniques that could be used to target and detect ROS overproduction. We discuss the ROS imaging potentials of established clinical imaging methods, such as magnetic resonance imaging (MRI), sonographic imaging, and fluorescence imaging. ROS imaging potentials of other imaging methods, such as photoacoustic imaging (PAI) and Raman imaging (RI) that are currently in preclinical stage are also discussed. Finally, this paper focuses on various diseases that are associated with ROS overproduction, and the current and the future clinical applications of ROS-targeted imaging. While the most widely used clinical condition is cardiovascular diseases, its potential extends into non-cardiovascular clinical conditions, such as neurovascular, neurodegenerative, and other ROS-associated conditions, such as cancers, skin aging, acute kidney injury, and inflammatory arthritis.
Collapse
Affiliation(s)
- Moung Young Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Centers for Research in ICT based Infectious Diseases, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Donguk Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Dayun Choi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Kye S Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Xing C, Chen H, Bi W, Lei T, Hang Z, Du H. Targeting 5-HT Is a Potential Therapeutic Strategy for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13446. [PMID: 39769209 PMCID: PMC11679250 DOI: 10.3390/ijms252413446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
There is increasing interest in the potential therapeutic role of 5-HT (serotonin) in the treatment of neurodegenerative diseases, which are characterized by the progressive degeneration and death of nerve cells. 5-HT is a vital neurotransmitter that plays a central role in regulating mood, cognition, and various physiological processes in the body. Disruptions in the 5-HT system have been linked to several neurological and psychiatric disorders, making it an attractive target for therapeutic intervention. Although the exact causes of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are not fully understood, researchers believe that regulating the 5-HT system could help alleviate symptoms and potentially slow the progression of these diseases. Here, we delve into the potential of harnessing 5-HT as a therapeutic target for the treatment of neurodegenerative diseases. It is important to note that the current clinical drugs targeting 5-HT are still limited in the treatment of these complex diseases. Therefore, further research and clinical trials are needed to evaluate the feasibility and effectiveness of its clinical application.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongyu Chen
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zhongci Hang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
41
|
Asadifard E, Hokmabadi M, Hashemi M, Bereimipour A. Linking gut microbiota dysbiosis to molecular pathways in Alzheimer's disease. Brain Res 2024; 1845:149242. [PMID: 39293678 DOI: 10.1016/j.brainres.2024.149242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and synaptic dysfunction. Emerging evidence suggests a significant relationship between gut microbiota and brain health, mediated through the gut-brain axis. Alterations in gut microbiota composition may influence AD progression by affecting molecular pathways and miRNA interactions. METHODS We retrieved and analyzed microarray data from 34 tissue samples of AD patients and controls (GEO accession number GSE110298). Differentially expressed genes (DEGs) with the GCS score package in R, considering a p-value < 0.05 and logFC<-1 and logFC>1 to isolate significant gene clusters. Enrichment analysis of signaling pathways and gene ontology was conducted using Enrichr, KEGG, Panther, DAVID, and shiny GO databases. Protein-protein interactions were visualized with Networkanalyst and CytoScape. Gut microbiota in 200 CE patients was analyzed using next-generation sequencing (NGS) data from gutMDisorder and GMrepo databases. miRNA interactions were evaluated using miEAA, Targetscan, MienTurnet, and miRnet databases. RESULTS Significant reductions in microbial taxa, including Clostridia (LDA score -4.878208), Firmicutes (LDA score -4.817032), and Faecalibacterium (LDA score -4.40714), were observed in AD patients. Pathway analysis highlighted the involvement of Axon guidance, ErbB, and MAPK signaling pathways in AD. Venn diagram analysis identified 619 intersecting genes in brain and gut tissues, emphasizing pathways such as Axon Guidance and Cell Cycle. miRNA analysis revealed important regulatory miRNAs, including hsa-let-7c, hsa-mir-125b-2, and hsa-mir-145, which target key transcription factors involved in AD pathology. CONCLUSION The study demonstrates significant dysbiosis in the gut microbiota of AD patients and underscores the potential role of gut microbiota in AD progression through altered signaling pathways and miRNA interactions. These findings highlight the need for further research into microbiota-based interventions as potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Elnaz Asadifard
- Medical Genomic Research Center, Tehran Medical Science Islamic Azad University, Tehran, Iran
| | - Mahsa Hokmabadi
- Medical Genomic Research Center, Tehran Medical Science Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
42
|
Konecny J, Misiachna A, Chvojkova M, Kleteckova L, Kolcheva M, Novak M, Prchal L, Ladislav M, Hemelikova K, Netolicky J, Hrabinova M, Kobrlova T, Karasova JZ, Pejchal J, Fibigar J, Vecera Z, Kucera T, Jendelova P, Zahumenska P, Langore E, Doderovic J, Pang YP, Vales K, Korabecny J, Soukup O, Horak M. Dizocilpine derivatives as neuroprotective NMDA receptor antagonists without psychomimetic side effects. Eur J Med Chem 2024; 280:116981. [PMID: 39442339 DOI: 10.1016/j.ejmech.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB). Our pharmacokinetic studies in rats supported this conclusion and confirmed the ability of leading compounds 3l and 6f to penetrate the BBB. Electrophysiological experiments showed that all compounds exhibited different inhibitory activity towards the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B. Of the selected compounds intentionally differing in the inhibitory efficacy, 6f showed high relative inhibition (∼90 % for GluN1/GluN2A), while 3l showed moderate inhibition (∼50 %). An in vivo toxicity study determined that compounds 3l and 6f were safe at 10 mg/kg doses with no adverse effects. Behavioral studies demonstrated that these compounds did not induce hyperlocomotion or impair prepulse inhibition of startle response in rats. Neuroprotective assays using a model of NMDA-induced hippocampal neurodegeneration showed that compound 3l at a concentration of 30 μM significantly reduced hippocampal damage in rats. These results suggest that these novel dibenzo [a,d][7]annulen derivatives are promising candidates for developing NMDA receptor-targeted therapies with minimal psychotomimetic side effects.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martin Novak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Fibigar
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zbynek Vecera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jovana Doderovic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA
| | - Karel Vales
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic.
| |
Collapse
|
43
|
Campos-Prieto L, García-Rey A, Sotelo E, Mallo-Abreu A. Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies. Beilstein J Org Chem 2024; 20:3151-3173. [PMID: 39669443 PMCID: PMC11635293 DOI: 10.3762/bjoc.20.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
The ongoing quest to discover effective treatments for diseases remains a significant challenge for the scientific community. Multicomponent reactions (MCRs) have emerged as powerful tools in accelerating drug discovery, enabling the rapid generation of chemical libraries with high diversity in a time-efficient and environmentally sustainable manner. In this review, we focus on central nervous system (CNS) disorders, particularly Alzheimer's disease, Parkinson's disease, schizophrenia, depression, and epilepsy, where MCRs have contributed to the development of promising ligands in recent years. Rather than providing an exhaustive overview, this review aims to highlight key studies that address major CNS pathologies, relevant drug targets, and various MCR approaches. We have carefully selected representative articles and apologize to the authors whose important contributions may not be included. By concentrating on these pivotal studies, we strive to offer a clear and concise perspective on current research trends and breakthroughs in this field.
Collapse
Affiliation(s)
- Lucía Campos-Prieto
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Aitor García-Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Mallo-Abreu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, E-08028 Barcelona, Spain
| |
Collapse
|
44
|
Yu C, Liu X, Ma B, Xu J, Chen Y, Dai C, Peng H, Zha D. Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2024; 39:2313682. [PMID: 38362862 PMCID: PMC10878344 DOI: 10.1080/14756366.2024.2313682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC50 = 4.68 nM; huBuChE IC50 = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD50 > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bingxiang Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yiquan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chaoxian Dai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
45
|
Jangra J, Bajad NG, Singh R, Kumar A, Singh SK. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer's disease. Mol Divers 2024; 28:4381-4401. [PMID: 38517648 DOI: 10.1007/s11030-024-10821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/03/2024] [Indexed: 03/24/2024]
Abstract
Cathepsin B is a cysteine protease lysosomal enzyme involved in several physiological functions. Overexpression of the enzyme enhances its proteolytic activity and causes the breakdown of amyloid precursor protein (APP) into neurotoxic amyloid β (Aβ), a characteristic hallmark of Alzheimer's disease (AD). Therefore, inhibition of the enzyme is a crucial therapeutic aspect for treating the disease. Combined structure and ligand-based drug design strategies were employed in the current study to identify the novel potential cathepsin B inhibitors. Five different pharmacophore models were developed and used for the screening of the ZINC-15 database. The obtained hits were analyzed for the presence of duplicates, interfering PAINS moieties, and structural similarities based on Tanimoto's coefficient. The molecular docking study was performed to screen hits with better target binding affinity. The top seven hits were selected and were further evaluated based on their predicted ADME properties. The resulting best hits, ZINC827855702, ZINC123282431, and ZINC95386847, were finally subjected to molecular dynamics simulation studies to determine the stability of the protein-ligand complex during the run. ZINC123282431 was obtained as the virtual lead compound for cathepsin B inhibition and may be a promising novel anti-Alzheimer agent.
Collapse
Affiliation(s)
- Jatin Jangra
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
46
|
Zou Y, Gao B, Lu J, Zhang K, Zhai M, Yuan Z, Aschner M, Chen J, Luo W, Wang L, Zhang J. Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons. EXPLORATION (BEIJING, CHINA) 2024; 4:20230154. [PMID: 39713210 PMCID: PMC11655312 DOI: 10.1002/exp.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating systemic disorder that has a detrimental impact on the overall well-being of individuals. Emerging research suggests that long non-coding RNAs play a role in neural development and function. Nevertheless, the precise relationship between lncRNAs and Alzheimer's disease remains uncertain. The authors' recent discoveries have uncovered an unconventional mechanism involving the regulation of synaptic plasticity and the functioning of the hippocampal fragile X mental retardation protein 1 (FMR1)-neurotrophin 3 (NTF3) pathway, which is mediated by cancer susceptibility candidate 15 (CASC15). Subsequently, functional rescue experiments were performed to illustrate the efficient delivery of exosomes harboring a significant amount of 2610307p16Rik transcripts, which is the murine equivalent of human CASC15, to the hippocampal region of mice. This resulted in significant improvements in synaptic morphological plasticity and cognitive function in APP/PS1 mice. Given the pivotal involvement of CASC15 in synaptic plasticity and the distinctive regulatory mechanisms of the CASC15-FMR1-NTF3 axis, CASC15 emerges as a promising biomarker for Alzheimer's disease and may even possess potential as a feasible therapeutic target.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiaqiao Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Keying Zhang
- Department of UrologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Maodeng Zhai
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Ziyan Yuan
- Institute of Medical Information and LibraryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Lei Wang
- Department of Medical Research Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| |
Collapse
|
47
|
Pai V, Singh BN, Singh AK. Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. Macromol Biosci 2024; 24:e2400150. [PMID: 39348168 DOI: 10.1002/mabi.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.
Collapse
Affiliation(s)
- Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
48
|
Chowdhury MR, Karamveer K, Tiwary BK, Nampoothiri NK, Erva RR, Deepa VS. Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment. Metab Brain Dis 2024; 40:8. [PMID: 39556154 DOI: 10.1007/s11011-024-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) poses a longstanding health challenge, prompting a century-long exploration into its etiology and progression. Despite significant advancements in medical science, current AD treatments provide only symptomatic relief, urging a shift towards innovative paradigms. This study, departing from the amyloid hypothesis, integrates Systems Pharmacology, Molecular Docking and Molecular Dynamic Simulations to investigate a polyherbal phytoformulation (US 7,273,626 B2) rooted in Ayurveda for AD, consisting of Bacopa monnieri, Hippophae rhamnoides, and Dioscorea bulbifera (BHD). Diosgenin emerges as a crucial compound, aligning with previous studies, yet recognizing its limitations in explaining BHD's mechanism, this research delves into the intricate network of interactions. Protein-Protein Interaction (PPI) network analysis identifies hub genes (ALOX5, GSK3B, ACHE, SRC, AKT1, EGFR, PIK3R1, ESR1 and APP), suggesting a systems-level modulation of AD. Enrichment analyses unveil 370 AD-associated genes and key terms like "Cellular Response to Chemical Stimulus" and "Regulation of Biological Quality." KEGG pathway analysis underscores BHD's potential in Alzheimer's disease pathway (hsa05010), Endocrine resistance (hsa01522), and PI3K-Akt signaling (hsa04151). Molecular docking, carefully selecting compounds (Kaempferol, Quercetin, Myricetin, Isorhamnetin, Beta-Sitosterol, Stigmasterol, Emodin and Diosgenin) and top modulated targets, validates interactions with high dock scores, providing promising therapeutic avenues. Two core targets, Acetylcholinesterase (AChE) and Estrogen Receptor 1 (ESR1), were identified for further investigation due to their critical roles in Alzheimer's disease. To validate the molecular docking results, Molecular Dynamics (MD) simulations were performed on the AChE complexes with Myricetin, Beta-Sitosterol, and Stigmasterol, as well as the ESR1 complexes with Emodin, Diosgenin, and Beta-Sitosterol. These simulations were then compared to the interactions observed with the marketed drugs Donepezil and Estradiol, which are commonly used in Alzheimer's treatment. The MD simulations provided detailed insights into the stability and behavior of these complexes over time. The findings indicated that Myricetin and Emodin not only maintained stable interactions with AChE and ESR1 but also exhibited greater stability than Donepezil and Estradiol at specific time points and protein regions, as demonstrated by lower RMSD and RMSF values. These results suggest that natural compounds hold promise as potential therapeutic agents in the treatment of Alzheimer's disease, offering new avenues for drug development, while the formulation BHD shows potential as an adjuvant in integrative medicine alongside standard Alzheimer's treatments, effectively targeting related pathways and genes.
Collapse
Affiliation(s)
- Mayank Roy Chowdhury
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | - Karamveer Karamveer
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Navaneeth K Nampoothiri
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh, 534101, India
| | | |
Collapse
|
49
|
Wang H, Liu JH, Yang Y. A novel binary hashing for agricultural scenery classification. Sci Rep 2024; 14:27602. [PMID: 39528553 PMCID: PMC11555225 DOI: 10.1038/s41598-024-77685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
In this research, we present PerceptHashing, a technique designed to categorize million-scale agricultural scenic images by incorporating human gaze shifting paths (GSPs) into a hashing framework. For each agricultural image, we identify visually and semantically significant object patches, such as fields, crops, and water bodies. These patches are linked to form a graphlet, establishing a network of spatially adjacent patches, and a GSP is then extracted using an active learning algorithm. The GSP reflects the distribution of human gaze across different regions of each agricultural scene, typically involving fewer than 12 regions, as validated by cross-validation. We then design a binary hashing framework that effectively leverages the semantics encoded in these GSPs. This framework integrates three key elements: (i) refinement of noisy labels, (ii) incorporation of deep image-level agricultural semantics, and (iii) updates to the adaptive data graph. The resulting hash codes from each GSP are converted into a kernelized visual descriptor for classification. To evaluate the influence of GSPs on agricultural image classification both qualitatively and quantitatively, we conducted an extensive user study comparing GSPs from typical observers with those from Alzheimer's patients. The results demonstrate that: (1) the classification accuracy of 1.22 million agricultural aerial images using our approach is significantly higher than those processed by other methods, and (2) GSPs from 33 Alzheimer's patients differ markedly from those of 37 normal observers, leading to notable differences in classification accuracy ( a c c normal = 0.694 versus a c c patient = 0.322 ).
Collapse
Affiliation(s)
- Han Wang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, Hanan, China
| | - Jun-He Liu
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, Hanan, China.
| | - Yi Yang
- College of Computer Sciences, Beijing Technology and Business University, Beijing, 102488, China
| |
Collapse
|
50
|
Wang J, Wen S, Liu W, Meng X, Jiao Z. Deep joint learning diagnosis of Alzheimer's disease based on multimodal feature fusion. BioData Min 2024; 17:48. [PMID: 39501294 PMCID: PMC11536794 DOI: 10.1186/s13040-024-00395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024] Open
Abstract
Alzheimer's disease (AD) is an advanced and incurable neurodegenerative disease. Genetic variations are intrinsic etiological factors contributing to the abnormal expression of brain function and structure in AD patients. A new multimodal feature fusion called "magnetic resonance imaging (MRI)-p value" was proposed to construct 3D fusion images by introducing genes as a priori knowledge. Moreover, a new deep joint learning diagnostic model was constructed to fully learn images features. One branch trained a residual network (ResNet) to learn the features of local pathological regions. The other branch learned the position information of brain regions with different changes in the different categories of subjects' brains by introducing attention convolution, and then obtained the discriminative probability information from locations via convolution and global average pooling. The feature and position information of the two branches were linearly interacted to acquire the diagnostic basis for classifying the different categories of subjects. The diagnoses of AD and health control (HC), AD and mild cognitive impairment (MCI), HC and MCI were performed with data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The results showed that the proposed method achieved optimal results in AD-related diagnosis. The classification accuracy (ACC) and area under the curve (AUC) of the three experimental groups were 93.44% and 96.67%, 89.06% and 92%, and 84% and 81.84%, respectively. Moreover, a total of six novel genes were found to be significantly associated with AD, namely NTM, MAML2, NAALADL2, FHIT, TMEM132D and PCSK5, which provided new targets for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jingru Wang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, China
| | - Shipeng Wen
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, 213032, China.
- Wangzheng School of Microelectronics, Changzhou University, Changzhou, 213164, China.
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, China.
- Wangzheng School of Microelectronics, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|