1
|
Chen W, Ma J, Cong M, Pang X, Lin X, Liao S, Yang B, Zhou X, Wang J, Liu Y. Isoechinulin-Type Diketopiperazines with Anti-monocyte Adhesion Activities from a Sponge-Associated Aspergillus sp. JOURNAL OF NATURAL PRODUCTS 2025; 88:1143-1152. [PMID: 40274538 DOI: 10.1021/acs.jnatprod.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Seven new isoechinulin-type diketopiperazines (DKPs), asperfatsines A-G (1-7), along with five known analogues (8-12), were isolated from cultures of a sponge-associated Aspergillus sp. SCSIO41034. The structural elucidations, including the determination of absolute configurations, were accomplished by comprehensive analyses utilizing NMR spectroscopy, HRESIMS, gas chromatography-mass spectrometry (GC-MS), Marfey's method, Mo2(OAc)4-induced circular dichroism, modified Mosher's method, and electronic circular dichroism (ECD) calculations. Asperfatsines A-C represent the first three cases of isoechinulin-type DKPs possessing three distinct long-chain fatty acid moieties. Pretreatment with 1, 3, 4, and 8 in tumor necrosis factor α (TNF-α)-stimulated human umbilical vein endothelial cells led to a reduction in the adhesion of THP-1 monocytes. Compound 4 downregulates the gene expression of cell adhesion molecules in a dose-dependent manner. These findings suggest that isoechinulin-type DKPs represent promising candidates with core molecular frameworks that may serve as a foundation for developing antivascular inflammation therapies.
Collapse
Affiliation(s)
- Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jianheng Ma
- University of Illinois, Urbana-Champaign, Chicago and Springfield, 601 E John Street, Champaign 61820-5711, Illinois United States
| | - Mengjing Cong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
Xu F, Xiong Z, Qin W, Yao W, Wang Z. Asymmetric synthesis of quinolinone-based polycyclic indoles through [1,3]-rearrangement/cyclization reaction. Chem Commun (Camb) 2025. [PMID: 40356587 DOI: 10.1039/d5cc00612k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
We have developed an enantioselective [1,3]-rearrangement/cyclization reaction that provides efficient access to quinolinone-based polycyclic indole derivatives. This catalytic system exhibits broad substrate scope, enabling the stereocontrolled synthesis of two valuable scaffolds: 3,4-dihydroquinolin-2-ones and cyclopenta[b]indoles with excellent stereoselectivity (>40 examples, 83-99% ee, >19 : 1 dr). Notably, the obtained products demonstrate promising anticancer activity.
Collapse
Affiliation(s)
- Fuxing Xu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Wenling Qin
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
3
|
Chen C, Yang X, Wang J, Kong W, Chen J, Tang X. N-Iodosuccinimide-Promoted Synthesis of Indolo[3,2- c]quinolizines via Cascade Intramolecular C-N Bond Formation/Aromatization with 3-(1 H-Indol-3-yl)-2-(pyridin-2-yl)propanoates. J Org Chem 2025; 90:5398-5406. [PMID: 40211452 DOI: 10.1021/acs.joc.4c03039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
An NIS-promoted cascade of intramolecular C-N bond formation/aromatization with 3-(1H-indol-3-yl)-2-(pyridin-2-yl)propanoates is described for synthesizing a polycyclic indole skeleton, indolo[3,2-c]quinolizine, as well as 1,9-dihydropyrazolo[4',3':5,6]pyrido[2,3-b]indole. The advantages of this protocol include accessible starting materials, mild conditions, simple operation, and good yields. Indolo[3,2-c]quinolizines exhibited good fluorescence properties and effective staining for live cells, targeting lysosomes and mitochondria. Additionally, the products showed significant antiproliferative activity against tumor cells in the MTT assay.
Collapse
Affiliation(s)
- Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xixiang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Weiya Kong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
4
|
Dhameliya TM, Vekariya DD, Bhatt PR, Kachroo T, Virani KD, Patel KR, Bhatt S, Dholakia SP. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Mol Divers 2025; 29:871-897. [PMID: 38709459 DOI: 10.1007/s11030-024-10842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
- Present Address: Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Drashtiben D Vekariya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Pooja R Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Tarun Kachroo
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Kumkum D Virani
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Khushi R Patel
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Sandip P Dholakia
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| |
Collapse
|
5
|
Meng Q, Ke X, Xu J. Direct Synthesis of 2-Functionalized 3-Nitroindoles from Diazo(nitro)acetanilides. J Org Chem 2025; 90:1186-1195. [PMID: 39772641 DOI: 10.1021/acs.joc.4c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
2-Hydroxyl/acetoxy-3-nitroindoles are directly and efficiently prepared in good to excellent yields from diazo(nitro)acetanilides under the catalysis of Cu(MeCN)4PF6 in DCM through an intramolecular aromatic C-H insertion or followed by acetylation. 2-Hydroxyl-3-nitroindoles can be further transformed to 3-halo-3-nitroindolin-2-ones and 3-alkanamidoindolin-2-ones readily. All of them are important synthetic building blocks for construction of indole derivatives.
Collapse
Affiliation(s)
- Qingchun Meng
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuan Ke
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
6
|
Prakash H, Chahal S, Sindhu J, Tyagi P, Sharma D, Guin M, Srivastava N, Singh K. Diastereomeric pure pyrazolyl-indolyl dihydrofurans: Unveiling isomeric selectivity in antibacterial action via in vitro and in silico insights. Bioorg Med Chem Lett 2024; 114:130005. [PMID: 39454968 DOI: 10.1016/j.bmcl.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Developing pure diastereoisomeric molecular hybrids for the selective inhibition of bacterial growth opened new avenues for combating the ever-increasing microbial resistance. Considering this, a series of diastereoisomeric pure pyrazolyl-dihydrofurans (7a-7y) were synthesized and characterized using NMR, LCMS, and X-ray crystallography. DFT based method was used to explore the configurational stability of cis over trans isomeric form. Considering 7a and 8a as representative isomeric forms with same structural framework, the difference in their bio-efficacy against bacterial and fungal strains was assessed using serial dilution method. The relatively high inhibition of bacterial growth by the cis isomeric form (7a) (MIC = 1.562 µg/mL), amoxicillin (MIC = 3.125 µg/mL) inspired us to broaden the substrate scope for synthesizing a series of pure diastereoisomeric cis forms as selective anti-bacterial agents. However, both the isomers displayed antifungal activity less than the standard drug (Fluconazole) employed in the study. All the reactions proceeded smoothly and yielded a diverse array of dihydrofuran derivatives. The developed synthetics were found to be non-cytotoxic against mouse fibroblast cells and didn't affect the seed germination of Brassica nigra seeds when treated at 1 mg/mL concentration. The experimentally determined in vitro results were further validated using in silico molecular docking and dynamics studies.
Collapse
Affiliation(s)
- Hari Prakash
- Jubilant Biosys Ltd., Knowledge Park-II, Greater Noida 201310, Uttar Pradesh, India; Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
| | - Sandhya Chahal
- Department of Chemistry, Chaudhary Ranbir Singh University, Jind, Haryana 126102, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Prateek Tyagi
- Department of Chemistry, Zakir Husain Delhi College, New Delhi, Delhi 110002, India
| | - Deepansh Sharma
- Department of Life Sciences, J.C. Bose University, Science and Technology, YMCA, Faridabad 126001, India
| | - Mridula Guin
- Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
| | - Noopur Srivastava
- Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India.
| | - Kuldeep Singh
- Jubilant Biosys Ltd., Knowledge Park-II, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
7
|
Almeida Júnior ASD, Freitas Viana Leal MM, Marques DSC, Silva ALD, Souza Bezerra RD, Siqueira de Souza YF, Mendonça Silveira ME, Santos FA, Alves LC, de Lima Aires A, Cruz Filho IJD, do Carmo Alves de Lima M. Therapeutic potential of hydantoin and thiohydantoin compounds against Schistosoma mansoni: An integrated in vitro, DNA, ultrastructural, and ADMET in silico approach. Mol Biochem Parasitol 2024; 260:111646. [PMID: 38950658 DOI: 10.1016/j.molbiopara.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
The study aimed to conduct in vitro biological assessments of hydantoin and thiohydantoin compounds against mature Schistosoma mansoni worms, evaluate their cytotoxic effects and predict their pharmacokinetic parameters using computational methods. The compounds showed low in vitro cytotoxicity and were not considered hemolytic. Antiparasitic activity against adult S. mansoni worms was tested with all compounds at concentrations ranging from 200 to 6.25 μM. Compounds SC01, SC02, and SC03 exhibited low activity. Compounds SC04, SC05, SC06 and SC07 caused 100 % mortality within 24 h of incubation at a concentration of 100 and 200 μM. Thiohydantoin SC04 exhibited the highest activity, resulting in 100 % mortality after 24 h of incubation at a concentration of 50 μM and IC50 of 28 µM. In the ultrastructural analysis (SEM), the compound SC04 (200 µM) induced integumentary changes, formation of integumentary blisters, and destruction of tubercles and spicules. Therefore, the SC04 compound shows promise as an antiparasitic against S. mansoni.
Collapse
Affiliation(s)
- Antônio Sérgio de Almeida Júnior
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Mayse Manuele Freitas Viana Leal
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil.
| | - Anekécia Lauro da Silva
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Rafael de Souza Bezerra
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Yandra Flaviana Siqueira de Souza
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Maria Eduardade Mendonça Silveira
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Fábio Ab Santos
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - Luiz Carlos Alves
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - André de Lima Aires
- Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| |
Collapse
|
8
|
Chau GC, Lim JE, Moon K, Kim IS, Um SH. The stimulatory effect of HI 129, a novel indole derivative, on glucose-induced insulin secretion. Biochem Pharmacol 2024; 230:116558. [PMID: 39326678 DOI: 10.1016/j.bcp.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Indole derivatives exhibit a broad spectrum of beneficial effects, encompassing anti-inflammatory, antiviral, antimalarial, anti-diabetic, antioxidant, anti-hepatitis, and antidepressant properties. Here, we describe the potentiation of insulin secretion in pancreatic islets and INS-1 cells through methyl 2-(2-ethoxy-1-hydroxy-2-oxoethyl)-1-(pyrimidine-2-yl)-1H-indole-3-carboxylate (HI 129), a novel indole derivative. Treatment with HI 129 led to notably decreased ADP/ATP ratios in pancreatic islets and INS-1 cells compared to those in the vehicle-treated controls, indicating a shift in cellular ATP production. Moreover, the augmentation of insulin secretion by HI 129 was closely correlated with its ability to enhance the mitochondrial membrane potential and respiration, partly by reducing the phosphorylation levels of AMP-activated protein kinase (AMPK). Mechanistically, HI 129 enhanced the association between AMPK and β-arrestin-1, critical molecules for glucose-induced insulin secretion. Furthermore, β-arrestin-1 depletion attenuated the effect of HI 129 on glucose-induced insulin secretion, suggesting that HI 129 potentiates insulin secretion via β-arrestin-1/AMPK signaling. These results collectively underscore the potential of HI 129 in enhancing insulin secretion as a novel candidate for improving glucose homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Gia Cac Chau
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Ji Eun Lim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Sung Hee Um
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea; Biomedical Institute Convergence at Sungkyunkwan University, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
9
|
Chen RY, Ding LJ, Liu YJ, Shi JJ, Yu J, Li CY, Lu JF, Yang GJ, Chen J. Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer. Mar Drugs 2024; 22:459. [PMID: 39452867 PMCID: PMC11509616 DOI: 10.3390/md22100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Li-Jian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| |
Collapse
|
10
|
Wang Z, Liu C, Huang J, Huang L, Feng H. Palladium-Catalyzed Regioselective Monofluoroallylation of Indoles with gem-Difluorocyclopropanes. Org Lett 2024; 26:6905-6909. [PMID: 39088798 DOI: 10.1021/acs.orglett.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
We present a palladium-catalyzed ring-opening reaction that induces indoles to cross-couple with gem-difluorocyclopropanes. The reaction proceeds through a domino process of C-C bond activation and C-F bond elimination, followed by C-C(sp2) coupling to produce various 2-fluoroallylindoles. This method is characterized by its high functional group tolerance, good yields and high regioselectivity, under base-free conditions. The synthetic utility of the products is illustrated by the functionalization of the NH and C2 positions of the indole scaffold.
Collapse
Affiliation(s)
- Zhenjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
11
|
Khasanah U, Nurrahmah QI, Amalia T, Putri ZN, Imrokatul Mufidah, Napik R, Lyrawati D, Pratita Ihsan BR, Febrianti ME. Oral acute toxicity study and in vivo antimalarial activity of Strychnos lucida R. Br. tablet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118200. [PMID: 38621467 DOI: 10.1016/j.jep.2024.118200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria eradication has been a major goal of the Indonesian government since 2020. Medicinal plants, such as Strychnos lucida R. Br., are empirically used to treat malaria through traditional preparation methods. However, the safety and efficacy of these plants have not yet been confirmed. Therefore, further investigations are necessary to confirm the safety and efficacy of S. lucida as an antimalarial agent. AIMS OF THE STUDY To quantify the concentration of brucine in the S. lucida extract, determine the acute oral toxicity of the standardized extract, and evaluate the in vivo antimalarial potency of S. lucida tablet (SLT). MATERIALS AND METHODS Acute oral toxicity of S.lucida extract was determined using the Organization for Economic Co-operation and Development 420 procedure, and the analytical method for brucine quantification was validated using high-performance liquid chromatography. In addition, antimalarial activity was determined using the Peter's four-day suppressive method. RESULTS Acute toxicity analysis revealed S. lucida as a low-toxicity compound with a cut-off median lethal dose of 2000-5000 mg/kg body weight [BW], which was supported by the hematological and biochemical profiles of the kidneys, liver, and pancreas (p > 0.05). Extract standardization revealed that S. lucida contained 3.91 ± 0.074% w/w brucine, adhering to the limit specified in the Indonesian Herbal Pharmacopeia. Antimalarial test revealed that SLT inhibited the growth of Plasmodium berghei by 27.74-45.27%. Moreover, SLT improved the hemoglobin and hematocrit levels. White blood cell and lymphocyte counts were lower in the SLT-treated group than in the K (+) group (p < 0.05). CONCLUSION Histopathological and biochemical evaluations revealed that S. lucida extract was safe at a dose of 2000 mg/kg BW with low toxicity. SLT inhibited Plasmodium growth and improved the hemoglobin, hematocrit, and red blood cell profiles. Additionally, SLT reduced the lymphocyte and WBC counts and increased the monocyte and thrombocyte counts as part of the immune system response against Plasmodium infection.
Collapse
Affiliation(s)
- Uswatun Khasanah
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Queen Intan Nurrahmah
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Thia Amalia
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Zada Nabila Putri
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Imrokatul Mufidah
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Roisatun Napik
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Diana Lyrawati
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | | | - Maya Eka Febrianti
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| |
Collapse
|
12
|
Wang XL, Yang Y, Jiang Y. In(OTf) 3-catalyzed formal (4 + 3) cycloaddition reactions of 3-benzylideneindoline-2-thiones with 2-indolylmethanols. Org Biomol Chem 2024; 22:5902-5906. [PMID: 38980693 DOI: 10.1039/d4ob00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report the In(OTf)3-catalyzed formal (4 + 3) cycloaddition of 3-benzylideneindoline-2-thiones with 2-indolylmethanols. This reaction not only broadens the synthetic utility of 3-benzylideneindoline-2-thiones as scarce indole-based sulfur-containing four-atom building blocks, but also provides a rapid and facile access to synthesize diindole-annulated tetrahydrothiepines.
Collapse
Affiliation(s)
- Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
13
|
Hassan SM, Farid A, Panda SS, Bekheit MS, Dinkins H, Fayad W, Girgis AS. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals (Basel) 2024; 17:922. [PMID: 39065774 PMCID: PMC11280311 DOI: 10.3390/ph17070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer remains a formidable global health challenge, with current treatment modalities such as chemotherapy, radiotherapy, surgery, and targeted therapy often hindered by low efficacy and adverse side effects. The indole scaffold, a prominent heterocyclic structure, has emerged as a promising candidate in the fight against cancer. This review consolidates recent advancements in developing natural and synthetic indolyl analogs, highlighting their antiproliferative activities against various cancer types over the past five years. These analogs are categorized based on their efficacy against common cancer types, supported by biochemical assays demonstrating their antiproliferative properties. In this review, emphasis is placed on elucidating the mechanisms of action of these compounds. Given the limitations of conventional cancer therapies, developing targeted therapeutics with enhanced selectivity and reduced side effects remains a critical focus in oncological research.
Collapse
Affiliation(s)
- Sara M. Hassan
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Holden Dinkins
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| |
Collapse
|
14
|
Grosso C, Alves C, Sase TJ, Alves NG, Cardoso AL, Lemos A, Pinho e Melo TMVD. Selective Synthesis of 3-(1 H-Tetrazol-5-yl)-indoles from 2 H-Azirines and Arynes. ACS OMEGA 2024; 9:29282-29289. [PMID: 39005823 PMCID: PMC11238228 DOI: 10.1021/acsomega.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 07/16/2024]
Abstract
A new selective synthetic approach to indole derivatives bearing a tetrazole moiety has been developed. Arynes, generated in situ from o-(trimethylsilyl)aryl triflates and KF, reacted smoothly with 2-(2-benzyl-2H-tetrazol-5-yl)-2H-azirines to give 3-(2-benzyl-2H-tetrazol-5-yl)-indole derivatives with high selectivity. Deprotection of the tetrazole moiety gave 3-(1H-tetrazol-5-yl)-indole derivatives.
Collapse
Affiliation(s)
- Carla Grosso
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Cláudia Alves
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Terver J. Sase
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Nuno G. Alves
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Ana L. Cardoso
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Américo Lemos
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
- FCT,
University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| | - Teresa M. V. D. Pinho e Melo
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
15
|
De Salvo A, Mancuso R, Wu XF. Carbonylative synthesis and functionalization of indoles. Beilstein J Org Chem 2024; 20:973-1000. [PMID: 38711593 PMCID: PMC11070973 DOI: 10.3762/bjoc.20.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.
Collapse
Affiliation(s)
- Alex De Salvo
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Liaoning, China
| |
Collapse
|
16
|
Saxena A, Majee S, Ray D, Saha B. Inhibition of cancer cells by Quinoline-Based compounds: A review with mechanistic insights. Bioorg Med Chem 2024; 103:117681. [PMID: 38492541 DOI: 10.1016/j.bmc.2024.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
This article includes a thorough examination of the inhibitory potential of quinoline-based drugs on cancer cells, as well as an explanation of their modes of action. Quinoline derivatives, due to their various chemical structures and biological activity, have emerged as interesting candidates in the search for new anticancer drugs. The review paper delves into the numerous effects of quinoline-based chemicals in cancer progression, including apoptosis induction, cell cycle modification, and interference with tumor-growth signaling pathways. Mechanistic insights on quinoline derivative interactions with biological targets enlightens their therapeutic potential. However, obstacles such as poor bioavailability, possible off-target effects, and resistance mechanisms make it difficult to get these molecules from benchside to bedside. Addressing these difficulties might be critical for realizing the full therapeutic potential of quinoline-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh
| | - Suman Majee
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh.
| |
Collapse
|
17
|
Yin YM, Sun ZY, Wang DW, Xi Z. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14471-14482. [PMID: 37775473 DOI: 10.1021/acs.jafc.3c03646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Succinate dehydrogenase (SDH) is an attractive target for developing green fungicides to manage agricultural pathogens in modern agriculture research. Herein, in this work, we report the discovery of benzothiazolylpyrazole-4-carboxamides I-III as potent SDH inhibitors using active fragment exchange and link approach. The results of the fungicidal activity assays showed that some of the synthesized compounds exhibited excellent inhibition against the tested fungi. Systematic structure-activity relationship studies led to the discovery of compound Ip, N-(1-((4,6-difluorobenzo[d]thiazol-2-yl)thio)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide, which showed higher fungicidal activity against Fusarium graminearum Schw (EC50 = 0.93 μg/mL) than the commercial fungicides thifluzamide (EC50 > 50 μg/mL) and boscalid (EC50 > 50 μg/mL). The molecular simulation studies suggested that hydrophobic interactions were the primary driving forces between ligands and SDH. Promisingly, we found that Ip could stimulate the growth of wheat seedlings and Arabidopsis thaliana and increase the biomass of the treated plants. Preliminary studies on the plant growth promoter mechanism of Ip indicated that it could increase nitrate reductase activity in planta, that, in turn, stimulates the growth of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zong-Yue Sun
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
18
|
Girgis AS, Panda SS, Kariuki BM, Bekheit MS, Barghash RF, Aboshouk DR. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023; 28:6603. [PMID: 37764378 PMCID: PMC10537473 DOI: 10.3390/molecules28186603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; (B.M.K.)
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| |
Collapse
|
19
|
da Silva G, Luz AFS, Duarte D, Fontinha D, Silva VLM, Almeida Paz FA, Madureira AM, Simões S, Prudêncio M, Nogueira F, Silva AMS, Moreira R. Facile Access to Structurally Diverse Antimalarial Indoles Using a One-Pot A 3 Coupling and Domino Cyclization Approach. ChemMedChem 2023; 18:e202300264. [PMID: 37392377 DOI: 10.1002/cmdc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
A multistep and diversity-oriented synthetic route aiming at the A3 coupling/domino cyclization of o-ethynyl anilines, aldehydes and s-amines is described. The preparation of the corresponding precursors included a series of transformations, such as haloperoxidation and Sonogashira cross-coupling reactions, amine protection, desilylation and amine reduction. Some products of the multicomponent reaction underwent further detosylation and Suzuki coupling. The resulting library of structurally diverse compounds was evaluated against blood and liver stage malaria parasites, which revealed a promising lead with sub-micromolar activity against intra-erythrocytic forms of Plasmodium falciparum. The results from this hit-to-lead optimization are hereby reported for the first time.
Collapse
Affiliation(s)
- Gustavo da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - André F S Luz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Denise Duarte
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry & CICECO -, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Fátima Nogueira
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| |
Collapse
|
20
|
Li J, Lai Z, Zhang W, Zeng L, Cui S. Modular assembly of indole alkaloids enabled by multicomponent reaction. Nat Commun 2023; 14:4806. [PMID: 37558669 PMCID: PMC10412628 DOI: 10.1038/s41467-023-40598-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Indole alkaloids are one of the largest alkaloid classes, proving valuable structural moiety in pharmaceuticals. Although methods for the synthesis of indole alkaloids are constantly explored, the direct single-step synthesis of these chemical entities with broad structural diversity remains a formidable challenge. Herein, we report a modular assembly of tetrahydrocarboline type of indole alkaloids from simple building blocks in a single step while showing broad compatibility with medicinally relevant functionality. In this protocol, the 2-alkylated or 3-alkylated indoles, formaldehyde, and amine hydrochlorides could undergo a one-pot reaction to deliver γ-tetrahydrocarbolines or β-tetrahydrocarbolines directly. A wide scope of these readily available starting materials is applicable in this process, and numerous structural divergent tetrahydrocarbolines could be achieved rapidly. The control reaction and deuterium-labelling reaction are conducted to probe the mechanism. And mechanistically, this multicomponent reaction relies on a multiple alkylamination cascade wherein an unusual C(sp3)-C(sp3) connection was involved in this process. This method could render rapid access to pharmaceutically interesting compounds, greatly enlarge the indole alkaloid library and accelerate the lead compound optimization thus facilitating drug discovery.
Collapse
Affiliation(s)
- Jiaming Li
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiwei Zhang
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linwei Zeng
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Liu T, Yao X, Zhang R, Wu T, Liu Z, Li D, Dong Q. Design, Synthesis and Biological Evaluation of Novel Indole-piperazine Derivatives as Antibacterial Agents. Bioorg Med Chem Lett 2023; 89:129320. [PMID: 37156392 DOI: 10.1016/j.bmcl.2023.129320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Herein, a series of novel indole-piperazine derivatives were synthesized. Bioassay results showed the title compounds exhibited moderate to good bacteriostatic efficacy against the test Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Among theses compounds, three remarkable compounds 8f, 9a, and 9h exhibited superior in vitro antibacterial profiles for anti- S. aureus and anti-MRSA to that of gentamicin. Hit compound 9a manifested a rapid bactericidal kinetic effect on MRSA,with no resistance observed after 19 days of sequential passaging. And 8 µg/mL of compound 9a displayed considerable post antibacterial effects to that of ciprofloxacin at the concentration of 2 µg/mL. Cytotoxic and ADMET studies indicated, to some extent, compounds 8f, 9a, and 9h were up to the standard for antibacterial drugs. These results suggest that indole/piperazine derivatives based on the title compounds can serve as a new scaffold for antimicrobial development.
Collapse
Affiliation(s)
- Ting Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Xiaofang Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Rongrong Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Tianling Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Chunxiao D, Ma F, Wu W, Li S, Yang J, Chen Z, Lian S, Qu Y. Metagenomic analysis reveals indole signaling effect on microbial community in sequencing batch reactors: Quorum sensing inhibition and antibiotic resistance enrichment. ENVIRONMENTAL RESEARCH 2023; 229:115897. [PMID: 37054839 DOI: 10.1016/j.envres.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Indole is an essential signal molecule in microbial studies. However, its ecological role in biological wastewater treatments remains enigmatic. This study explores the links between indole and complex microbial communities using sequencing batch reactors exposed to 0, 15, and 150 mg/L indole concentrations. A concentration of 150 mg/L indole enriched indole degrader Burkholderiales, while pathogens, such as Giardia, Plasmodium, and Besnoitia were inhibited at 15 mg/L indole concentration. At the same time, indole reduced the abundance of predicted genes in the "signaling transduction mechanisms" pathway via the Non-supervised Orthologous Groups distributions analysis. Indole significantly decreased the concentration of homoserine lactones, especially C14-HSL. Furthermore, the quorum-sensing signaling acceptors containing LuxR, the dCACHE domain, and RpfC showed negative distributions with indole and indole oxygenase genes. Signaling acceptors' potential origins were mainly Burkholderiales, Actinobacteria, and Xanthomonadales. Meanwhile, concentrated indole (150 mg/L) increased the total abundance of antibiotic resistance genes by 3.52 folds, especially on aminoglycoside, multidrug, tetracycline, and sulfonamide. Based on Spearman's correlation analysis, the homoserine lactone degradation genes which were significantly impacted by indole negatively correlated with the antibiotic resistance gene abundance. This study brings new insights into the effect of indole signaling on in biological wastewater treatment plants.
Collapse
Affiliation(s)
- Dai Chunxiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuzhen Li
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
23
|
Abaev VT, Aksenov NA, Aksenov DA, Aleksandrova EV, Akulova AS, Kurenkov IA, Leontiev AV, Aksenov AV. One-Pot Synthesis of Polynuclear Indole Derivatives by Friedel–Crafts Alkylation of γ-Hydroxybutyrolactams. Molecules 2023; 28:molecules28073162. [PMID: 37049924 PMCID: PMC10095734 DOI: 10.3390/molecules28073162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The Friedel–Crafts reaction of novel 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones was used for low cost, one-pot preparation of polycyclic indole derivatives structurally similar to Ergot alkaloids.
Collapse
Affiliation(s)
- Vladimir T. Abaev
- Department of Chemistry, Biology and Biotechnology, North-Ossetian State University Named after K. L. Khetagurov, 46 Vatutin St., Vladikavkaz 362025, Russia
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Elena V. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alesia S. Akulova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Igor A. Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| |
Collapse
|
24
|
Ye GJ, Cai CY, Dong XD, Wu ZX, Teng QX, Wang JQ, Chen ZS, Wang B. Design, synthesis, and biological evaluation of phenylurea indole derivatives as ABCG2 inhibitors. Bioorg Chem 2023; 135:106481. [PMID: 36966672 DOI: 10.1016/j.bioorg.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Three series of phenylurea indole derivatives were synthesized with potent inhibitory activities on ABCG2 with simple and efficient synthetic routes. Among these compounds, four phenylurea indole derivatives 3c-3f with extended π system were discovered as the most potent ABCG2 inhibitors, while these compounds showed no inhibition on ABCB1. Compounds 3c and 3f were selected for further investigation to explore the mechanisms of action on reversing ABCG2-mediated multidrug resistance (MDR). The results revealed that compounds 3c and 3f increased the accumulation of mitoxantrone (MX) in ABCG2-overexpressing cells, but they did not alter the expression level or localization of ABCG2 in cells. In addition, both 3c and 3f significantly stimulated the ATP hydrolysis of ABCG2 transporter indicating that they can be competitive substrates of ABCG2 transporter, and thereby increase the accumulation of mitoxantrone in ABCG2-overexpressing H460/MX20 cells. Both 3c and 3f was docked into the drug-binding site of the human ABCG2 transporter protein (PDB 6FFC) with high affinities. This study showed that extending the π system of phenylurea indole derivatives enhanced their inhibitory activities on ABCG2, which may provide a clue for the further research to discover more potent ABCG2 inhibitors.
Collapse
Affiliation(s)
- Gao-Jie Ye
- School of Chemistry, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, PR China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States.
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Yu M, Jin T, Wang X, Li H, Ji D, Yao J, Zeng H, Shi S, Xu K, Zhang L. Regioselective intramolecular cyclization of o-alkynyl arylamines with the in situ formation of ArXCl to construct poly-functionalized 3-selenylindoles. RSC Adv 2023; 13:6210-6216. [PMID: 36825294 PMCID: PMC9941895 DOI: 10.1039/d3ra00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
In this article, a practical and metal-free method for the synthesis of poly-functionalized 3-selenyl/sulfenyl/telluriumindoles from o-alkynyl arylamines has been achieved. In this protocol, the in situ formation of selenenyl chloride, sulfenyl chloride or tellurenyl chloride is considered as the key intermediate and the 3-selenyl/sulfenyl/telluriumindoles can be obtained in good to excellent yields. Furthermore, the product 2-phenyl-3-(phenylselanyl)-1-tosyl-1H-indole can be selectively oxidized to compounds 2-phenyl-3-(phenylseleninyl)-1-tosyl-1H-indole and 2-phenyl-3-(phenylselenonyl)-1-tosyl-1H-indole in good yields.
Collapse
Affiliation(s)
- Minhui Yu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | | | - Haohu Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Senlei Shi
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| |
Collapse
|
26
|
Synthesis and Biological Evaluation of Sclareolide-Indole Conjugates and Their Derivatives. Molecules 2023; 28:molecules28041737. [PMID: 36838727 PMCID: PMC9961340 DOI: 10.3390/molecules28041737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Sclareolide is a sesquiterpene lactone isolated from various plant sources in tons every year and is commercially used as a flavor ingredient in the cosmetic and food industries. Antitumor and antiviral activities of sclareolide have been previously reported. However, biological studies of sclareolide synthetic analogous are few. In view of these, we developed a robust synthetic method that allows the assembly of 36 novel sclareolide-indole conjugates and their derivatives. The synthetic method was based on TiCl4-promoted nucleophilic substitution of sclareolide-derived hemiacetal 4, while electron-rich aryles including indoles, polyphenol ethers, and pyrazolo [1,5-a]pyridine were good substrates. The stereochemistry of the final products was confirmed by single-crystal X-ray diffraction analysis, while the antiproliferative activities of selected final products were tested in K562 and MV4-11 cancer cell lines. Cytometric flow analysis shows that lead compounds 8k- and 10-induced robust apoptosis in MV4-11 cancer cells, while they exhibited weak impact on cell cycle progression. Taken together, our study suggests that sclareolide could be a good template and substrate for the synthesis of novel antiproliferative compounds.
Collapse
|
27
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Straightforward Access to Pyrazine‐(2,3)‐diones through Sequential Three‐Component Reaction. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| |
Collapse
|
28
|
Suliphuldevara Mathada B, Gunavanthrao Yernale N, Basha JN. The Multi‐Pharmacological Targeted Role of Indole and its Derivatives: A review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Jeelan N. Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru- 560043 Karnataka India
| |
Collapse
|
29
|
Biologically Oriented Hybrids of Indole and Hydantoin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020602. [PMID: 36677661 PMCID: PMC9866919 DOI: 10.3390/molecules28020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Indoles and hydantoins are important heterocycles scaffolds which present in numerous bioactive compounds which possess various biological activities. Moreover, they are essential building blocks in organic synthesis, particularly for the preparation of important hybrid molecules. The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C-C bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L). Their effect on drought resistance at very low concentrations (4 × 10-5 M) was evaluated. The study highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity than the indole-auxin analogues.
Collapse
|
30
|
Wang Z, Zhang Z, Li Z. Switchable Synthesis of 2-Methylene-3-aminoindolines and 2-Methyl-3-aminoindoles Using Calcium Carbide as a Solid Alkyne Source. Org Lett 2022; 24:8067-8071. [DOI: 10.1021/acs.orglett.2c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zeshuai Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
31
|
Synthesis of Novel Indole Schiff Base Compounds and Their Antifungal Activities. Molecules 2022; 27:molecules27206858. [PMID: 36296452 PMCID: PMC9609699 DOI: 10.3390/molecules27206858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A series of novel indole Schiff base derivatives (2a–2t) containing a 1,3,4-thiadiazole scaffold modified with a thioether group were synthesized, and their structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HR-MS. In addition, the antifungal activity of synthesized indole derivatives was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum (F. oxysporum), Fusariummoniliforme (F.moniliforme), Curvularia lunata (C. lunata), and Phytophthora parasitica var. nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the synthesized indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%, 89%, and 76.5% at a concentration of 500 μg/mL against F. graminearum, F. oxysporum, F.moniliforme, and P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition rates of 81.9% and 83.7% at a concentration of 500 μg/mL against C. lunata. In addition, compound 2j has been recognized as a potential compound for further investigation in the field of fungicides.
Collapse
|
32
|
Jiang H, Li K, Zeng M, Tan C, Chen Z, Yin G. Pd(II)/Lewis Acid Catalyzed Intramolecular Annulation of Indolecarboxamides with Dioxygen through Dual C-H Activation. J Org Chem 2022; 87:13919-13934. [PMID: 36205496 DOI: 10.1021/acs.joc.2c01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal ion catalyzed intramolecular dual C-H activation to construct polycyclic heteroarene skeletons is merited for its step and atom-economic advantages in organic synthesis. However, in most cases, stoichiometric oxidants, elevated temperature, and other harsh conditions were commonly faced for this reaction, which apparently block the synthetic applications. Herein, we report a Pd(II)/LA (LA: Lewis acid) catalyzed intramolecular dual C-H activation to construct indoloquinolinone derivatives under mild conditions with dioxygen as the sole oxidant. It was found that adding LA such as Sc3+ to Pd(OAc)2 sharply improved its catalytic efficiency, whereas Pd(OAc)2 alone was very sluggish. The activity improvement was attributed to the linkage of the Sc3+ cation to the Pd(II) species through a diacetate bridge that significantly enhanced the electrophilic properties of Pd(II) for dual C-H activation.
Collapse
Affiliation(s)
- Hongwu Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kaiwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Miao Zeng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
33
|
Kaur P, Sharma P, Kumar V, Sahal D, Kumar R. Chitosan-supported FeCl3 catalyzed multicomponent synthesis of tetrahydroisoquinoline-indole hybrids with promising activity against chloroquine resistant Plasmodium falciparum. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Diao H, Liu L, Wang J, Lin Y, Zhao X, Zeng H, Shi S, Gao W, Yang L, Du G, Zhang L. Cupric Halide‐Promoted Stereoselective Intramolecular cis‐Addition to Construct (Z)‐Chloro(Bromo)benzo[c,d]indoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hanying Diao
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Li Liu
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Jin Wang
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Yanfei Lin
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Xiangyuan Zhao
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Heyang Zeng
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Senlei Shi
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Wei Gao
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Long Yang
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Guanben Du
- Southwest Forestry University Yunnan Key Laboratory of Wood Adhesive and Glued Products CHINA
| | - Lianpeng Zhang
- Jiaxing University Chemistry Jiahang Road 138 314001 Jiaxing CHINA
| |
Collapse
|
35
|
Kundal S, Rana G, Kar A, Jana U. The synthesis of indole-3-carbinols (I3C) and their application to access unsymmetrical bis(3-indolyl)methanes (BIMs) bearing a quaternary sp 3-carbon. Org Biomol Chem 2022; 20:5234-5238. [PMID: 35713472 DOI: 10.1039/d2ob00502f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, the novel synthesis of tert-indole-3-carbinols is reported through the DDQ-mediated oxidation of the allylic C-H bond/aromatization/hydroxylation at the indolyl carbon using water as the hydroxyl source. The reaction is highly efficient and high yielding and it works under mild reaction conditions. Furthermore, the synthetic value of such indole-based tert-carbinols is explored through their use as excellent electrophilic methylene surrogates to develop medicinally important unsymmetrical bis(3-indolyl)methanes containing an all carbon quaternary center.
Collapse
Affiliation(s)
- Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
36
|
Mantellini F, Mari G, De Crescentini L, Favi G, Mancinelli M, Santeusanio S. Easy access to indole‐based bi‐sulfurylate‐heterocyclic scaffolds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabio Mantellini
- Università degli Studi di Urbino "Carlo Bo'" Dipartimento di Scienze Biomolecolari Via I Maggetti 24 61029 Urbino ITALY
| | - Giacomo Mari
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo dipartimento di scienze biomolecolari ITALY
| | - Lucia De Crescentini
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo Dipartimento di Scienze Biomolecolari ITALY
| | - Gianfranco Favi
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo Dipartimento di Scienze Biomolecolari ITALY
| | - Michele Mancinelli
- Alma Mater Studiorum Universita di Bologna: Universita degli Studi di Bologna Department of Industrial Chemistry “Toso Montanari” ITALY
| | - Stefania Santeusanio
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo Dipartimento di Scienze Biomolecolari ITALY
| |
Collapse
|
37
|
4-Dimethylaminopyridine-catalyzed [3 + 3] spiroannulation reactions of isatin-derived Morita-Baylis-Hillman carbonates with indoline-2-thiones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
39
|
Goggiamani A, Iazzetti A, Arcadi A, Calcaterra A, Chiarini M, Fabrizi G, Fochetti A, Marrone F, Marsicano V, Serraiocco A. Synthesis of Indole/Benzofuran-Containing Diarylmethanes through Palladium-Catalyzed Reaction of Indolylmethyl or Benzofuranylmethyl Acetates with Boronic Acids. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe palladium-catalyzed synthesis of indole/benzofuran-containing diarylmethanes starting from indolylmethyl or benzofuranylmethyl acetates with boronic acids has been investigated. The success of the reaction is influenced by the choice of precatalyst: with indolylmethyl acetates the reaction works well with [Pd(η3-C3H5)Cl]2/XPhos while with benzofuranylmethyl acetates Pd2(dba)3/XPhos is more efficient. The good to high yields and the simplicity of the experimental procedure make this protocol a versatile synthetic tool for the preparation of 2- and 3-substituted indoles and 2-benzo[b]furans. The methodology can be advantageously extended to the preparation of a key precursor of Zafirlukast.
Collapse
Affiliation(s)
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore
| | - Antonio Arcadi
- Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli studi di L’ Aquila
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi di L’ Aquila
| | - Andrea Calcaterra
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Marco Chiarini
- Università degli Studi di Teramo, Facoltà di Bioscienze e tecnologie agro-alimentari e ambientali
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Andrea Fochetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| | - Vincenzo Marsicano
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi di L’ Aquila
| | - Andrea Serraiocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma
| |
Collapse
|
40
|
Jiang Y, Su L, Liao Y, Shen Y, Gao H, Zhang Y, Wang R, Mao Z. Synthesis and antifungal evaluation of phenol-derived bis(indolyl)methanes combined with FLC against Candida albicans. Bioorg Med Chem Lett 2022; 58:128525. [PMID: 34998904 DOI: 10.1016/j.bmcl.2022.128525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/25/2022]
Abstract
With the widespread use of azole antifungals in the clinic, the drug resistance has been emerging continuously. In this work, we focus on boron trifluoride etherate catalyzed condensation of indole and salicylaldehydes to form bis(indolyl)methanes (BIMs) in high yields, and in vitro antifungal activity against Candida albicans were evaluated. The results showed that most phenol-derived BIMs combined with fluconazole (FLC) exhibited good antifungal activity against sensitive and drug-resistant C. albicans. Further mechanism study demonstrated that BI-10 combined with FLC could inhibit hyphal growth, result in ROS accumulation, and decrease mitochondrial membrane potential (MMP) as well as altering membrane permeability.
Collapse
Affiliation(s)
- Yuan Jiang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Liuqing Su
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yichuan Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yunhong Shen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Hui Gao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
41
|
Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010319. [PMID: 35011552 PMCID: PMC8746838 DOI: 10.3390/molecules27010319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/06/2023]
Abstract
Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.
Collapse
|
42
|
Nisha, Singh S, Sharma N, Chandra R. The indole nucleus as a selective COX-2 inhibitor and anti-inflammatory agent (2011–2022). Org Chem Front 2022. [DOI: 10.1039/d2qo00534d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anti-inflammatory bioactivity of diversely substituted indole derivatives, mainly N-1 and C-3 substituted indoles.
Collapse
Affiliation(s)
- Nisha
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Snigdha Singh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India
- Institute of Nanomedical Science (INMS), University of Delhi, Delhi-110007, India
| |
Collapse
|
43
|
Wang M, Zhang J, Wang H, Ma B, Dai HX. Construction of Aza-spiro[4,5]indole Scaffolds via Rhodium-Catalyzed Regioselective C(4)—H Activation of Indole ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Sivanandan ST, Chauhan D, Namboothiri I. One‐pot regio‐ and diastereoselective synthesis of tetrahydro‐α‐carbolines via cascade reactions of iminoindolines with Morita‐Baylis‐Hillman bromides of nitroalkenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
46
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
47
|
Kumar V, Sachdeva C, Waidha K, Sharma S, Ray D, Kumar Kaushik N, Saha B. In Vitro and In Silico Anti‐plasmodial Evaluation of Newly Synthesized β‐Carboline Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vipin Kumar
- Amity Institute of Click Chemistry Research and Studies Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Cheryl Sachdeva
- Amity Institute of Virology and Immunology Institution Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Kamran Waidha
- Amity Institute of Biotechnology Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Sunil Sharma
- Chemical Engineering Department National Tsing Hua University Hsinchu Taiwan 30013
| | - Devalina Ray
- Amity Institute of Biotechnology Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology Institution Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Biswajit Saha
- Amity Institute of Biotechnology Amity University Sector 125 Noida 201313, Uttar Pradesh India
| |
Collapse
|
48
|
Zorrilla JG, Rial C, Cabrera D, Molinillo JMG, Varela RM, Macías FA. Pharmacological Activities of Aminophenoxazinones. Molecules 2021; 26:3453. [PMID: 34200139 PMCID: PMC8201375 DOI: 10.3390/molecules26113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
Aminophenoxazinones are degradation products resulting from the metabolism of different plant species, which comprise a family of natural products well known for their pharmacological activities. This review provides an overview of the pharmacological properties and applications proved by these compounds and their structural derivatives during 2000-2021. The bibliography was selected according to our purpose from the references obtained in a SciFinder database search for the Phx-3 structure (the base molecule of the aminophenoxazinones). Compounds Phx-1 and Phx-3 are among the most studied, especially as anticancer drugs for the treatment of gastric and colon cancer, glioblastoma and melanoma, among others types of relevant cancers. The main information available in the literature about their mechanisms is also described. Similarly, antibacterial, antifungal, antiviral and antiparasitic activities are presented, including species related directly or indirectly to significant diseases. Therefore, we present diverse compounds based on aminophenoxazinones with high potential as drugs, considering their levels of activity and few adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain; (J.G.Z.); (C.R.); (D.C.); (J.M.G.M.); (R.M.V.)
| |
Collapse
|