1
|
Sun Z, Zang Q, Xu C, Zhang X, Kang Z, Yang Y, Li L, Chen J. Discovery of novel Bis-amide analogue ST12 for the treatment of inflammatory bowel diseases (IBD) by inhibiting NLRP3 inflammasome activation. Bioorg Chem 2025; 159:108402. [PMID: 40154236 DOI: 10.1016/j.bioorg.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Herein, we designed and synthesized a series of novel bis-amide small molecule anti-inflammatory agents, among them, compound ST12 showed most potent anti-inflammatory activity. ST12 effectively inhibited the production of nitric oxide (NO) (inhibition rate of 52.67 ± 0.03 % at 10 μM) and downregulated the mRNA levels of proinflammatory cytokines iNOS, IL-6, IL-1β and TNF-α in lipopolysaccharide (LPS) induced RAW264.7 cells. Furthermore, mechanism studies suggest that compound ST12 exerted anti-inflammatory effects by inhibiting the activation of the NLRP3 inflammasome. Importantly, ST12 effectively ameliorated DSS-induced colitis in vivo. Taken together, ST12 is worthy of further investigation as a small molecule anti-inflammatory agent for treatment of inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenghui Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Ma Z, McAninch S, Liu Z, Zhang C, Chen H, He J, Yang W, Panganiban RP, Cong Y, Yochum G, Brasier AR, Pinchuk IV, Tian B, Zhou J. Orally Bioavailable BRD4 BD1 Inhibitor ZL0516 Effectively Suppresses Colonic Inflammation in Animal Models of Inflammatory Bowel Disease. ACS Pharmacol Transl Sci 2025; 8:1152-1167. [PMID: 40242579 PMCID: PMC11997885 DOI: 10.1021/acsptsci.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Inflammatory bowel disease (IBD), a chronic, progressive, and recurrent gastrointestinal inflammatory disorder, poses a significant threat to global health and exerts an adverse effect on the quality of life. Currently, there is a lack of effective therapies for IBD. Developing novel targeted therapies for IBD, particularly orally effective therapeutics, is a vital need for IBD patients. Herein, we first demonstrate that BRD4/NF-κB signaling is aberrantly activated in the colons of human IBD biopsy samples compared to that of normal healthy controls. ZL0516, a potent, selective, and orally bioavailable BRD4 BD1 inhibitor, significantly inhibits the TNFα- and LPS-induced expression of inflammatory cytokines in human colonic epithelial cells (HCECs) and peripheral blood mononuclear cells (PBMCs) with low cytotoxicity. Intriguingly, when administered in a preventive mode, ZL0516 significantly blocks dextran sulfate sodium (DSS)-induced murine colitis. When used in a therapeutic mode, ZL0516 effectively suppresses colonic inflammation in several IBD-relevant animal models: DSS-, oxazolone (OXA)-, and flagellin (Cbir1) T cell-induced chronic murine colitis models of IBD. ZL0516 suppresses IBD inflammatory responses in vitro and in vivo by blocking the activation of the BRD4/NF-κB signaling pathway. Also, we found that RVX208, a selective BRD4 BD2 inhibitor in Phase III clinical development, only displayed marginal effects in these IBD animal models. Collectively, our results demonstrate that specific BRD4 BD1 inhibition is a novel therapeutic strategy for IBD-associated colonic inflammation, and orally effective inhibitor ZL0516 is a promising candidate for the development of a novel therapeutic regimen against IBD.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Steven McAninch
- Department
of Medicine, Penn State Health Milton S.
Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Zhiqing Liu
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Cun Zhang
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jing He
- Department
of Pathology, University of Texas Medical
Branch (UTMB), Galveston, Texas 77555, United States
| | - Wenjing Yang
- Division
of Gastroenterology and Hepatology, Department of Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Ronaldo P. Panganiban
- Department
of Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yingzi Cong
- Division
of Gastroenterology and Hepatology, Department of Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Gregory Yochum
- Division
of Colon and Rectal Surgery, Department of Surgery, and Department
of Biochemistry and Molecular Biology, Penn
State Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Allan R. Brasier
- Institute
for Clinical and Translational Research (ICTR) School of Medicine
and Public Health, 4248 Health Sciences Learning Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Irina V. Pinchuk
- Department
of Medicine, Penn State Health Milton S.
Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Bing Tian
- Department
of Internal Medicine, University of Texas
Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Cai X, Cai J, Fang L, Xu S, Zhu H, Wu S, Chen Y, Fang S. Design, synthesis and molecular modeling of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives as anti-inflammatory agents by inhibition of COX-2/iNOS production and down-regulation of NF-κB/MAPKs in LPS-induced RAW264.7 macrophage cells. Eur J Med Chem 2024; 272:116460. [PMID: 38704943 DOI: 10.1016/j.ejmech.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jianfeng Cai
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ling Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Siqi Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuteng Wu
- Department of Pharmacy, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
4
|
Fang S, Huang X, Cai F, Qiu G, Lin F, Cai X. Design, synthesis and molecular docking of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives that act as iNOS/COX-2 inhibitors with potent anti-inflammatory activity against LPS-induced RAW264.7 macrophage cells. J Steroid Biochem Mol Biol 2024; 240:106478. [PMID: 38430971 DOI: 10.1016/j.jsbmb.2024.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Inflammation, an important biological protective response to tissue damage or microbial invasion, is considered to be an alarming signal for the progress of varied biological complications. Based on the previous reports in the literature that proved the noticeable efficacy of pyrazole and thiazole scaffold as well as nitrogen heterocyclic based compounds against acute and chronic inflammatory disease, a new set of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives were synthesized and evaluated their anti-inflammatory activities in vitro. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against nitric oxide (NO) release in lipopolysaccharide (LPS)-induced RAW 264.7 cells, and the optimal compound 12b [3β-hydroxy-pregn-5-en-17β-yl-5'- (o- chlorophenyl)- 1'-(4''- phenyl -[1'', 3'']- thiazol-2''- yl) - 4',5'-dihydro - 1'H-pyrazol - 3'- yl] exhibited more potent anti-inflammatory activity than the positive control treatment methylprednisolone (MPS), with an IC50 value of 2.59 μM on NO production and low cytotoxicity against RAW 264.7 cells. In further mechanism study, our results showed that compound 12b significantly suppressed the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inhibited the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) through blocking NF-κB p65 nuclear translocation and phosphorylation of IκBα. Compound 12b also attenuated LPS-induced activation of c-Jun amino-terminal kinase (JNK) and p38 phosphorylation in RAW 264.7 cells. Molecular docking study revealed the strong binding affinity of compound 12b to the active site of the COX-2 proteins, which confirmed that compound 12b acted as an anti-inflammatory mediator. These results indicate that steroidal derivatives bearing 4,5-dihydropyrazole thiazole structure might be considered for further research and scaffold optimization in designing anti-inflammatory drugs and compound 12b might be a promising therapeutic anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaodan Huang
- Department of Digestive Medical Oncology, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fen Cai
- Department of Nosocomial Infection Management, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Guodong Qiu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fei Lin
- Department of Pharmacy Intravenous Admixture Services (PIVAS), The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
5
|
Wang Y, Shao Z, Song C, Zhou H, Zhao J, Zong K, Zhou G, Meng D. Clinopodium chinense Kuntze ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by reducing systematic inflammation and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116330. [PMID: 36868438 DOI: 10.1016/j.jep.2023.116330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC), traditional Chinese medicine with anti-inflammatory, anti-diarrheal, and hemostatic activities, has been used to treat dysentery and bleeding diseases for thousands of years, which are similar to the symptoms of ulcerative colitis (UC). AIM OF THE STUDY To obtain a novel treatment for UC, an integrated strategy was developed in this study to investigate the effect and mechanism of CC against UC. MATERIALS AND METHODS The chemical characterization of CC was scanned by UPLC-MS/MS. Network pharmacology analysis was performed to predict the active ingredients and pharmacological mechanisms of CC against UC. Further, the results of network pharmacology were validated using LPS-induced RAW 264.7 cells and DSS-induced UC mice. The production of pro-inflammatory mediators and biochemical parameters was tested using the ELISA kits. The expression of NF-κB, COX-2, and iNOS proteins was evaluated using Western blot analysis. Body weight, disease activity index, colon length, histopathological examination, and metabolomics analysis in colon tissues were carried out to confirm the effect and mechanism of CC. RESULTS Based on the chemical characterization and literature collection, a rich database of ingredients in CC was constructed. Network pharmacology analysis provided five core components as well as revealed that the mechanism of CC against UC was highly related to inflammation, especially the NF-κB signaling pathway. In vitro experiments showed CC could inhibit inflammation by LPS-TLR4-NF-κB-iNOS/COX-2 signaling pathway in RAW264.7 cells. Meanwhile, in vivo experimental results proved that CC significantly alleviated pathological features with increased body weight and colonic length, decreased DAI and oxidative damage, as well as mediated inflammatory factors like NO, PGE2, IL-6, IL-10, and TNF-ɑ. In addition, colon metabolomics analysis revealed CC could restore the abnormal endogenous metabolite levels in UC. 18 screened biomarkers were further enriched in four pathways including Arachidonic acid metabolism, Histidine metabolism, Alanine, aspartate and glutamate metabolism as well as the Pentose phosphate pathway. CONCLUSION This study demonstrates that CC could alleviate UC by reducing systematic inflammation and regulating metabolism, which is beneficial for providing scientific data for the development of UC treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhutao Shao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Ce Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Jiaming Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Kunqi Zong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Guangxin Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
6
|
Djiemeny Ngueta A, Roy J, Poirier D. Chemical synthesis, NMR characterization, and anticancer activity of androstene derivatives with a C17-side chain. Steroids 2022; 186:109064. [PMID: 35714784 DOI: 10.1016/j.steroids.2022.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer remains one of the leading causes of death, worldwide. In addition, the lack of efficacy and selectivity of chemotherapeutic agents for cancer cells is a challenge that needs to be addressed through the development of new drugs. Since aminosteroids are of interest in fighting cancer, our group previously reported antiproliferative activity on several cancer cell lines of two representatives, RM-133 and RM-581. To extend the structure-activity relationship study of aminosteroids, of which RM-133 (androstane) and RM-581 (estrane) are the main candidates, we performed the chemical synthesis and biological evaluation on lung (SHP-77), breast (T-47D) and prostate (DU-145, PC-3 and LAPC-4) cancer cells of four analogues of RM-581. We moved the functionalized side chain from position 2 of the androstane and estrane derivatives to incorporate it into a new chain located at position 17. Chemical synthesis took place in 2 steps from steroidal side-chain carboxylic acids, allowing to obtain 4 steroid derivatives with acceptable yields, which were fully characterized by nuclear magnetic resonance spectroscopy (1H and 13C NMR). After the evaluation of compounds 12-15, lower antiproliferative activities varying from 12 to 54%, 0-33% and 0-63% were observed for SHP-77, DU-145 and PC-3 cell lines, respectively, while higher activities varying from 33 to 62% and 45-84% were observed for T-47D and LAPC-4 cell lines, respectively, when tested at 10 µM. Overall, it was observed that these aminosteroids have a lower cytotoxic activity than that of RM-581 and, that moving the side chain from steroid position C2 to C17 is clearly detrimental for antiproliferative activity. However, this work has enabled us to expand our knowledge of the structural requirements to maintain the anticancer activity of aminosteroid derivatives.
Collapse
Affiliation(s)
- Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Liu J, Yuan L, Ruan Y, Deng B, Yang Z, Ren Y, Li L, Liu T, Zhao H, Mai R, Chen J. Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon Genes with In Vivo Anti-Inflammatory Efficacy. J Med Chem 2022; 65:6593-6611. [PMID: 35452223 DOI: 10.1021/acs.jmedchem.1c01948] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The activation of the cyclic GMP-AMP synthase-stimulator of interferon gene (STING) pathway has been associated with the pathogenesis of many autoimmune and inflammatory disorders, and small molecules targeting STING have emerged as a new therapeutic strategy for the treatment of these diseases. While several STING inhibitors have been identified with potent anti-inflammatory effects, we would like to explore STING degraders based on the proteolysis-targeting chimera (PROTAC) technology as an alternative strategy to target the STING pathway. Thus, we designed and synthesized a series of STING protein degraders based on a small-molecule STING inhibitor (C-170) and pomalidomide (a CRBN ligand). These compounds demonstrated moderate STING-degrading activities. Among them, SP23 achieved the highest degradation potency with a DC50 of 3.2 μM. Importantly, SP23 exerted high anti-inflammatory efficacy in a cisplatin-induced acute kidney injury mouse model by modulating the STING signaling pathway. Taken together, SP23 represents the first PROTAC degrader of STING deserving further investigation as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yong Ruan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zicao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Huiting Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Li L, Yuan S, Lin L, Yang F, Liu T, Xu C, Zhao H, Chen J, Kuang P, Chen T, Liao W, Chen J. Discovery of novel 2-aryl-4-bis-amide imidazoles (ABAI) as anti-inflammatory agents for the treatment of inflammatory bowel diseases (IBD). Bioorg Chem 2022; 120:105619. [DOI: 10.1016/j.bioorg.2022.105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
|
9
|
Zeng Z, Xie Z, Chen G, Sun Y, Zeng X, Liu Z. Anti-inflammatory and gut microbiota modulatory effects of polysaccharides from Fuzhuan brick tea on colitis in mice induced by dextran sulfate sodium. Food Funct 2021; 13:649-663. [PMID: 34932051 DOI: 10.1039/d1fo02702f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, the effects of crude Fuzhuan brick tea polysaccharides (CFBTPS) and their purified fraction (FBTPS-3) on colitis induced by dextran sulfate sodium (DSS) in mice were investigated. Both CFBTPS and FBTPS-3 exhibited intestinal anti-inflammatory activities, including restoring body weight, colon length and solid fecal weight, and decreasing the disease activity index score in mice. Moreover, the expression of lipocalin-2 in colitis could be significantly reduced. The inflammatory cytokines (IL-6, IL-1β, IFN-γ and TNF-α) and lipopolysaccharides in the serum and the expression of inflammation-related mRNA in the colon tissue were decreased. Both CFBTPS and FBTPS-3 could increase tight junction proteins (Occludin, Claudin-1 and ZO-1), promoting the intestinal barrier function. For gut microbiota, DSS treatment resulted in abnormal proliferation of Bifidobacteria, while FBTPS-3 could restore this disorder to a certain extent. In addition, FBPTS-3 promoted the growth of probiotics such as Bacteroides, Parasutterella and Collinsella. Both CFBTPS and FBTPS-3 could attenuate colitis; what's more, FBTPS-3 exhibited a better anti-inflammatory effect than CFBTPS.
Collapse
Affiliation(s)
- Ziqi Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
10
|
Discovery of Novel Pterostilbene Derivatives That Might Treat Sepsis by Attenuating Oxidative Stress and Inflammation through Modulation of MAPKs/NF-κB Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10091333. [PMID: 34572964 PMCID: PMC8470242 DOI: 10.3390/antiox10091333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains one of the most common life-threatening illnesses that is characterized by a systemic inflammatory response syndrome (SIRS) and usually arises following severe trauma and various septic infections. It is still in urgent need of new effective therapeutic agents, and chances are great that some candidates can be identified that can attenuate oxidative stress and inflammatory responses. Pterostilbene, which exerts attractive anti-oxidative and anti-inflammatory activities, is a homologue of natural polyphenolic derivative of resveratrol. Starting from it, we have made several rounds of rational optimizations. Firstly, based on the strategy of pharmacophore combination, indanone moiety was introduced onto the pterostilbene skeleton to generate a novel series of pterostilbene derivatives (PIF_1–PIF_16) which could possess both anti-oxidative and anti-inflammatory activities for sepsis treatment. Then, all target compounds were subjected to their structure–activity relationships (SAR) screening of anti-inflammatory activity in mouse mononuclear macrophage RAW264.7 cell line, and their cytotoxicities were determined after. Finally, an optimal compound, PIF_9, was identified. It decreased the mRNA levels of lipopolysaccharide (LPS)-induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2). We also found that the anti-inflammatory effects might be contributed by its suppression on the nuclear factor-κB (NF-κB) and MAPKs signaling pathway. Moreover, PIF_9 also demonstrated potent anti-oxidative activity in RAW264.7 macrophages and the sepsis mouse model. Not surprisingly, with the benefits mentioned above, it ameliorated LPS-induced sepsis in C57BL/6J mice and reduced multi-organ toxicity. Taken together, PIF_9 was identified as a potential sepsis solution, targeting inflammation and oxidative stress through modulating MAPKs/NF-κB.
Collapse
|