1
|
Wang L, Lei S, Du L, Lai C, Yang W, Qiu L, Cao R. Design, synthesis, molecular docking and ADME of novel phenylalanine derivatives as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2025; 122:130211. [PMID: 40139330 DOI: 10.1016/j.bmcl.2025.130211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Tyrosinase is the key rate-limiting enzyme for melanin synthesis. The accumulation and excessive production of melanin lead to skin pigmentation. Therefore, tyrosinase is the target of tyrosinase inhibitors to control melanin synthesis. Only a few TYR inhibitors have been proven to be effective and safe to treat skin pigmentation. This highlights the importance of developing new tyrosinase inhibitors. Based on the reported tyrosinase inhibitors with phenylalanine structure, a series of novel phenylalanine derivatives were synthesized and investigated as mTYR inhibitors. The results demonstrated that most of these derivatives had more potent mTYR inhibitory activities than positive controls. Compound 3e was found to be the strongest inhibitor with an IC50 value of 4.86 ± 0.026 μM. The Lineweaver-Burk plots of mTYR inhibition kinetics revealed that the selected compounds 2d and 3e were reversible and competitive inhibitors. In addition, molecular docking results of compounds 2d and 3e show they could compete with the substrate for the active center, including mTYR and hTYR. And the ADME prediction of selected derivatives assess the potential druglikeness. These results indicated that this class of compounds could be used as leads for developing new TYR inhibitors.
Collapse
Affiliation(s)
- Longhao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shunshun Lei
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liyun Du
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chengyao Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weijie Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liqin Qiu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Rihui Cao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Li J, Zou W, Li M, Yan Y, Yu Y, Li X, Ma YL. Aloe Vera flowers extracts inhibit melanogenesis via activating PI3K/Akt signaling pathway: Network pharmacology and experimental validation. Fitoterapia 2025; 183:106530. [PMID: 40204054 DOI: 10.1016/j.fitote.2025.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/21/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Aloe vera is a traditional herbal medicine that has been used for thousands of years. However, its flowers are commonly considered useless and discarded. Although, a few recent studies find Aloe vera flowers extracts (AVFE) with ability to inhibit tyrosinase (TYR) activity in vitro, systematic research on AVFE as skin whitening agent against melanogenesis in vitro and in vivo is yet lack. Therefore, the anti-TYR activity and anti-melanogenic effects of AVFEs in vitro B16F10 cell model and in vivo zebrafish embryo model, analysis of all-components of AVFE, network pharmacology and protein expression of melanogenesis-related signaling pathways were well conducted in this study. The results demonstrated that AVFE could significantly reduce cellular TYR activity and melanin content via activating the phosphorylation of p-Akt and p-GSK-3β in PI3K/Akt signaling pathway, followed by reducing the phosphorylation of MITF and then downregulation of TYR, TRP1 and TRP2 expression levels, and finally decreasing TYR, TRP1, TRP2 and melanin syntheses. In addition, 24 components of AVFE were most likely responsible for its skin depigmentation. In conclusion, this study provides a basis for understanding the mechanism of AVFE on skin depigmentation, as well as a potential for applying AVFE as skin whitening agent in cosmetics.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Wei Zou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - MingKun Li
- Perfect (China) Co., Ltd, Zhongshan, Guangdong 528400, China
| | - Yongtao Yan
- Perfect (China) Co., Ltd, Zhongshan, Guangdong 528400, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China.
| | - Xiaomin Li
- Perfect (China) Co., Ltd, Zhongshan, Guangdong 528400, China.
| | - Yan-Long Ma
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China.
| |
Collapse
|
3
|
Zhang Y, Dong S, Nie R, Ling Y, Wu J, Chen K, Gu Y, Yan Z. Physicochemical properties and cosmetic benefits of polysaccharide fractions from Zizania latifolia precipitated by different ethanol concentrations. Int J Biol Macromol 2025; 313:144329. [PMID: 40389001 DOI: 10.1016/j.ijbiomac.2025.144329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/17/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Four polysaccharide fractions (designated as ZLPF-60, ZLPF-70, ZLPF-80, and ZLPF-90), extracted from the swollen culms of Zizania latifolia, were obtained by precipitation with varying ethanol concentrations (60, 70, 80, and 90 %, v/v). Their physicochemical properties and in vitro cosmetic benefits, including antioxidant activity, moisture absorption capacity, moisturizing efficacy, and whitening effect, were investigated. The results demonstrated that, with increasing ethanol concentration, the combined content of uronic acids and sulfates, zeta potential, and average molecular weight (Mw) decreased, while the particle size initially increased and then decreased. These fractions were identified as heteropolysaccharides composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in different proportions. FT-IR analysis confirmed these fractions as naturally sulfate-containing polysaccharides, and SEM revealed their diverse surface morphologies. Moreover, these fractions exhibited scavenging activities against DPPH and hydroxyl radicals, as well as ferric ion-reducing power. Among them, ZLPF-70 showed the strongest activity, followed by ZLPF-60. The moisture absorption properties of these fractions were superior to sodium alginate, and their moisturizing capabilities surpassed glycerol, particularly for ZLPF-60 and ZLPF-70. Notably, ZLPF-60 outperformed ZLPF-70 in inhibiting tyrosinase, especially tyrosinase diphenolase, achieving an inhibitory effect comparable to that of phenylethyl resorcinol. Both ZLPF-60 and ZLPF-70 demonstrated distinct cosmetic benefits. Furthermore, correlation analysis revealed that the negative charge density, Mw, and the high abundance of arabinose and galactose were the primary contributors to the observed cosmetic benefits.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.
| | - Shuaiyi Dong
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Rongnan Nie
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yuchun Ling
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Jiaxin Wu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Kun Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yunzhu Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Zhaowei Yan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
4
|
Ma-In P, Teeravirote K, Mahalapbutr P, Panawan O, Luang S, Silsirivanit A. Soyasaponin-I Attenuates Melanogenesis through Activation of ERK and Suppression of PKA/CREB Signaling Pathways. ACS OMEGA 2025; 10:18056-18061. [PMID: 40352530 PMCID: PMC12059900 DOI: 10.1021/acsomega.5c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Soyasaponin-I (SS-I), a sialyltransferase inhibitor naturally found in soybeans, has antioxidant, anticarcinogenic, and hepatoprotective properties. In this study, we explored the possibility to use SS-I as an antimelanogenic agent for the treatment of skin hyperpigmentation disorders. When melanoma cell lines, MNT-1 and B16F10, were treated with SS-I, significant suppression of both α-2,3 and α-2,6 sialylations was observed by using lectin fluorescence staining with sialic acid-binding lectins-Sambucus nigra agglutinin (SNA) and Maackia amurensis lectin-II (MAL-II). SS-I significantly attenuated the α-MSH-induced melanogenesis of MNT-1 and B16F10 cells without a cytotoxic effect. SS-I could activate ERK and suppress the PKA/CREB signaling pathways of melanoma cells. Moreover, SS-I treatment caused significant downregulation of the expression of melanosome-related proteins; tyrosinase-related protein 1 (TRP1), TRP2, and premelanosome protein (PMEL) and the melanogenic-related transcription factor microphthalmia-associated transcription factor (MITF). Consequently, the expression of tyrosinase-the key enzyme regulating melanin production-was significantly suppressed after SS-I treatment. These results suggest the role of sialylation in melanogenesis and the possibility of using SS-I as an alternative antimelanogenic agent. In conclusion, we have demonstrated the antimelanogenic effect of SS-I, an active compound produced in soybeans. SS-I can be an antimelanogenic agent in cosmetic products for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Prasertsri Ma-In
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Graduate
School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Karuntarat Teeravirote
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Center for
Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orasa Panawan
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Center for
Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanya Luang
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Center for
Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Center for
Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Zhu L, Qiao G, Gao H, Jiang A, Zhang L, Wang X. Enhancing melanoma therapy with hydrogel microneedles. Front Oncol 2025; 15:1590534. [PMID: 40313257 PMCID: PMC12043666 DOI: 10.3389/fonc.2025.1590534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Melanoma is highly invasive and resistant to conventional treatments, accounting for nearly 75% of skin cancer-related deaths globally. Traditional therapies, such as chemotherapy and immunotherapy, often exhibit limited efficacy and are associated with significant side effects due to systemic drug exposure. Microneedles (MNs), as an emerging drug delivery system, offer multiple advantages, including safety, painlessness, minimal invasiveness, and controlled drug release. Among these, hydrogel microneedles (HMNs) stand out due to their extracellular matrix-like structure and swelling-induced continuous hydrogel channels, which enable the direct delivery of therapeutic agents into the tumor microenvironment (TME). This approach enhances drug bioavailability while reducing systemic toxicity, establishing HMNs as a promising platform for melanoma treatment. This review highlights recent advancements in HMNs for melanoma therapy, focusing on their applications in biomarker extraction for early diagnosis and their role in supporting multimodal treatment strategies, such as chemotherapy, immunotherapy, phototherapy, targeted therapy, and combination therapy. Furthermore, the current matrix materials and fabrication techniques for HMNs are discussed. Finally, the limitations of HMNs in melanoma treatment are critically analyzed, and recommendations for future research and development are provided.
Collapse
Affiliation(s)
- Lanqi Zhu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guanlin Qiao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiyang Gao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Aowei Jiang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linan Zhang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaobing Wang
- Department of Plastic and Reconstructive Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Ni X, Luo X, Jiang X, Chen W, Bai R. Small-Molecule Tyrosinase Inhibitors for Treatment of Hyperpigmentation. Molecules 2025; 30:788. [PMID: 40005101 PMCID: PMC11858095 DOI: 10.3390/molecules30040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Increasing attention is being focused on skin health currently, especially the excessive deposition of melanin in the skin. Tyrosinase, the rate-limiting enzyme in melanin biosynthesis, is a crucial enzyme in melanin synthesis. However, existing tyrosinase inhibitors pose some degree of toxicity to humans. Therefore, the development of more efficient and low-toxicity tyrosinase inhibitors is urgently needed. This review briefly depicts the melanin biosynthesis process and the crystal structure and catalytic mechanism of tyrosinase. The latest research progress regarding small-molecule tyrosinase inhibitors is also reviewed. Moreover, the structure-function relationships are analyzed and summarized. This is expected to provide new and more scientific insights to enable researchers to explore safer and more potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Lv Y, Yao C, Han K, Xie D, Xie S, Xu J, Zhao P, Yang X. Investigation of the Inhibitory Activity of β-Arbutin and its Analogues on Tyrosinase Based on Molecular Docking and Enzyme Inhibition Kinetics. Chem Biodivers 2025; 22:e202402040. [PMID: 39374344 DOI: 10.1002/cbdv.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
β-Arbutin, a natural glucoside hydroquinone derivative known for its skin-whitening properties through tyrosinase inhibition in melanin synthesis, may pose potential risks of allergy and carcinogenicity due to the release of hydroquinone during use. This study explores the inhibitory effects of phenyl-β-D-pyranoglucoside (compound 1), 4-methoxyphenyl-β-D-pyranoglucoside (compound 2), 4-hydroxymethylphenyl-β-D-pyranoglucoside (compound 3), and β-arbutin (compound 4) on tyrosinase using enzyme kinetics, molecular docking, and molecular dynamics simulations. Results show compounds 1, 3, and 4 exhibit competitive inhibition, while compound 2 shows mixed inhibition. Docking analysis reveals phenyl rings of all compounds interact with the enzyme's active site, with compound 3 forming a metal bond with copper ions. MD simulations indicate high stability for compounds 2, 3, and 4, with compound 3 showing the lowest RMSD and compact Rg, suggesting stronger binding. Compound 1 is less stable and less inhibitory. These insights are valuable for designing effective tyrosinase inhibitors.
Collapse
Affiliation(s)
- Yuxiu Lv
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming Yunnan, 650224, PR China
| | - Chuanhui Yao
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming Yunnan, 650224, PR China
| | - Kangjia Han
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming Yunnan, 650224, PR China
| | - Dong Xie
- Yunnan Plant Efficacy Joint Research Center, Qujing, Yunnan, 655331, PR China
| | - Sida Xie
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming Yunnan, 650224, PR China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing Jiangsu, 210042, PR China
| | - Ping Zhao
- Key Laboratory of Ministry of Education for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming Yunnan, 650224, PR China
| | - Xiaoqin Yang
- Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming Yunnan, 650224, PR China
| |
Collapse
|
8
|
Yu X, Peng M, Liu X, Shang Y, Wang D, Jin W, Li F. Physicochemical Properties and Biological Activities of Polysaccharides from Panax Notoginseng Separated by Fractional Precipitation. Chem Biodivers 2025; 22:e202402002. [PMID: 39363708 DOI: 10.1002/cbdv.202402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
The dried root of Panax notoginseng is a medicinal and food ingredient. P. notoginseng polysaccharides (PNPs) have physicochemical properties, which have not been fully elucidated. This study aimed to identify a method to separate the PNP fractions and investigate their activities. PNPs were prepared from roots by hot water extraction, deproteinization, and decolorization. PNP20, PNP40, and PNP60 fractions were isolated through stepwise ethanol precipitation at 20 %, 40 %, and 60 % concentrations, respectively. The three polysaccharide fractions were characterized using chromatography, spectroscopy, and thermogravimetric analysis, and their moisture retention, antioxidant, and tyrosinase-inhibition properties were evaluated. Monosaccharide composition analysis showed that the three PNPs contained mannose (Man), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in different molar ratios. HPGPC analysis demonstrated that the polysaccharides precipitated with higher ethanol concentrations had lower molecular weights (Mw). Furthermore, all PNPs had distinct moisturizing and hygroscopic properties and antioxidant activities, with PNP60 showing better antioxidant properties and a competitive mixture of hygroscopic properties and tyrosinase inhibition. The chemical composition and structural characteristics of PNPs could affect their functional attributes. PNP60 has the potential to be a moisturizer and antioxidant and could be used in the development of cosmetic ingredients.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mengli Peng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiaocheng Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
9
|
Njikam J, Joshi A, Njoya EM, Upadhyay K, Ngnameko CR, McGaw LJ, Devkar RV, Njayou FN, Moundipa PF. Bioactive Fractions Isolated from Harungana madagascariensis Lam. and Psorospermum aurantiacum Engl. Regulate Collagen and Melanin Biosynthesis Gene Expression in UVB-irradiated Cells with Additional Anti-inflammatory Potential. Curr Drug Res Rev 2025; 17:113-125. [PMID: 38486384 DOI: 10.2174/0125899775282636240307114735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Harungana madagascariensis (HM) and Psorospermum aurantiacum (PA), used traditionally for skin care, have been reported to upregulate the expression of intracellular antioxidant genes, thereby preventing melanoma and protecting fibroblast cell lines from Ultraviolet B (UVB)-induced intracellular oxidative stress. AIMS This investigation aimed to identify major compounds in bioactive fractions using bioassay- guided fractionation. METHODS The anti-inflammatory effect of fractions was determined by measuring their inhibitory activity on 15-lipoxygenase and nitric oxide (NO) in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Additionally, the anti-aging efficacy of the fractions was determined by assessing the expression of markers for the aging process, i.e., expression of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), procollagen type-1 (COL1A1), and matrix metalloproteinase- 1 (MMP-1) in UVB-induced photoaging in skin cell-lines. Furthermore, UHPLCMS- based identification of the bioactive compounds from the most prominent fraction was also carried out. RESULTS Hexane fraction of HM significantly inhibited (p < 0.05) the 15-lipoxygenase (IC50 = 46.80 μg/mL) and NO production (IC50 = 66.55 μg/mL), whereas hexane fraction of PA was effective (p < 0.05) in inhibiting 15-lipoxygenase activity (IC50 = 27.55 μg/mL). Furthermore, the hexane fraction of HM and methanol fraction of PA were significantly effective (p < 0.05) in reverting the UVB-mediated altered expressions of MMP-1, TYR, TRP-1, and COL1A1. Furthermore, hexane fraction of HM revealed the presence of harunganin and betulinic acid, whereas vismion D, vismin, kenganthranol B, and bianthrone 1a were identified from the methanol fraction of PA. CONCLUSION Overall, the hexane fraction of HM and methanol fraction of PA displayed effective anti-aging activities, with additional anti-inflammatory effects.
Collapse
Affiliation(s)
- Jacqueline Njikam
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO. Box 812 Yaoundé, Cameroon
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, Republic of South Africa
| | - Apeksha Joshi
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Emmanuel M Njoya
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO. Box 812 Yaoundé, Cameroon
- Phytomedicine Program, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa
| | - Kapil Upadhyay
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Corinne R Ngnameko
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, Republic of South Africa
- Laboratory of Pharmacology and Drug Discovery, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, PO. Box 13033, Yaoundé, Cameroon
| | - Lyndy J McGaw
- Phytomedicine Program, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Ranjitsinh V Devkar
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Frederic N Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO. Box 812 Yaoundé, Cameroon
| | - Paul F Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO. Box 812 Yaoundé, Cameroon
| |
Collapse
|
10
|
Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Suttisuwan R, Jatupornpipat M, Pimtong W, Reamtong O, Karnchanatat A. Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos. Sci Rep 2024; 14:30834. [PMID: 39730661 DOI: 10.1038/s41598-024-81495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations. Tyrosinase inhibition activity was detected in all cases, while the hydrolysate drawn from 5.0% w/v neutrase exhibited the best IC50 value and was thus investigated further via ultrafiltration to separate the active fractions. The highest potential for tyrosinase inhibition was recorded for the fractions below 0.65 kDa. Subsequent purification steps via SEC and RP-HPLC led to the identification of the VDGYPAAGY (named VY-9) peptide via LC-Q-TOF-MS/MS in fraction F1-2, known for its non-toxic and hydrophobic characteristics albeit poor water solubility. The synthesized VY-9 peptide demonstrated competitive inhibition, with IC50 values of 0.55 ± 0.03 µM for mono-phenolase and 2.54 ± 0.06 µM for di-phenolase activities, as confirmed by molecular docking analysis revealing dominant hydrogen bond interactions with TYR. Effective concentrations of 0.2-1.6 µM of VY-9 showed negligible cytotoxicity in B16F10 cells. Melanin synthesis suppression was examined via qRT-PCR, and western blot in MITF, TYR, TRP-1, and TRP-2. Cell death in zebrafish embryos was evaluated in vivo using a toxicity assay which revealed no significant influence from VY-9, while anti-melanogenic effects were observed when the concentration was 4 µM, suggesting bee pollen-derived peptides' potential in cosmetic and pharmaceutical depigmentation applications.
Collapse
Affiliation(s)
- Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rutairat Suttisuwan
- Biodiversity and Sustainable Utilization Research Unit, Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nang linchi Road, Sathorn, Bangkok, 10120, Thailand
| | - Marisa Jatupornpipat
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Ali S, Zahra H, Ahmad MU, Rukhma, Ullah N, Sarwar A, Aziz T, Alharbi M, Alasmari AF, Albekairi TH. Maximizing dopa-oxidase activity in Aspergillus oryzae mycelia: insights into production optimization and potential biomedical applications. Int Microbiol 2024:10.1007/s10123-024-00627-2. [PMID: 39730817 DOI: 10.1007/s10123-024-00627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/23/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples. Out of 32 isolated strains, isolates 19 and 27 were selected as they showed higher dopa-oxidase activity. Biomass harvesting was accomplished in a medium containing chloramphenicol as an antibiotic. The mycelia were filtered, washed with cold water, and stored at 4 ºC. A dopa-oxidase assay was performed, and absorbance was measured at a wavelength of 505 nm. Different physical parameters such as medium pH (6), temperature (30 ºC), and inoculum size (1.5% v/v) were optimized after the results of the assay. Other parameters like nitrogen requirements, biomass level (2 mg/ml), L-tyrosine (3.75 mg/ml), and L-ascorbic acid (8.75 mg/ml) concentrations were evaluated by reaction procedure. Certain micro and macronutrients and stabilizers, including Rochelle salt (20 µM), glycerol (25 µM), orthophosphoric acid (15 µM), and ethanol (20 µM), can also increase dopa-oxidase activity. In the last stage, the time of incubation (48 h) was optimized for maximum dopa-oxidase activity as well as L-dopaquinone production. Hence, from the results of the present study, it was observed that the activity of dopa-oxidase could be increased in the reaction mixture by the addition of various substances. They enhanced the dopa-oxidase activity up to 34.18 and 29.02 U/ml for isolates 19 and 27, respectively. In the future, dopa-oxidase can be used to produce stable L-dopaquinone from L-phenylalanine, which will provide clinical applications.
Collapse
Affiliation(s)
- Sikander Ali
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University, 54000, Lahore, Pakistan.
| | - Hijab Zahra
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University, 54000, Lahore, Pakistan
| | - M Usman Ahmad
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University, 54000, Lahore, Pakistan
| | - Rukhma
- Department of Biotechnology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University, 54000, Lahore, Pakistan
| | - Najeeb Ullah
- Food and Biotechnology Research Center, PCSIR Laboratories Complex Lahore, Lahore, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Center, PCSIR Laboratories Complex Lahore, Lahore, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Department of Agriculture, Food Hygiene and Quality, University of Ioannina, 47100, Arta, Greece.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Masuri S, Era B, Pintus F, Floris S, Meloni F, Pettinau F, Podda E, Cabiddu MG, Fais A, Pivetta T. Design, Synthesis, Structural Insights, Tyrosinase Inhibition, and Sun Protection Factor of New Thiosemicarbazone Derivatives. Molecules 2024; 29:5629. [PMID: 39683787 DOI: 10.3390/molecules29235629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Tyrosinase, a key protein in the biosynthesis of melanin pigments, is crucial in determining skin pigmentation. Inhibiting tyrosinase activity is a promising approach for treating conditions related to excessive pigmentation. For the synthesis of more potent tyrosinase inhibitors, we combined two approaches, para-substitution and lipophilicity, to enhance the inhibitory properties of (E)-2-(4-hydroxybenzylidene)hydrazine-1-carbotiamide, whose enzyme inhibitory properties have been previously demonstrated. The newly synthesized compounds showed potent inhibition activity against tyrosinase in the micromolar concentration range. The synthesised compounds were up to 41 times more effective than kojic acid. In addition to this biological activity, all molecules were evaluated for their sun protection factor to determine their photoprotective effects. All the compounds showed higher efficacy than reference compounds, used as sunscreens in photoprotective preparations. All compounds were noncytotoxic at the concentration required to inhibit tyrosinase activity. With the aim of defining the potential binding modes and the kind of interactions between the studied molecules and the catalytic site of mushroom tyrosinase, molecular docking simulations were also performed.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Meloni
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesca Pettinau
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Enrico Podda
- Centre for Research University Services (CeSAR), University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
13
|
Fazel R, Hassani B, Zare F, Jokar Darzi H, Khoshneviszadeh M, Poustforoosh A, Behrouz M, Sabet R, Sadeghpour H. Design, synthesis, in silico ADME, DFT, molecular dynamics simulation, anti-tyrosinase, and antioxidant activity of some of the 3-hydroxypyridin-4-one hybrids in combination with acylhydrazone derivatives. J Biomol Struct Dyn 2024; 42:9518-9528. [PMID: 37674457 DOI: 10.1080/07391102.2023.2252087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme in synthesizing melanin. Melanin is responsible for changing the color of fruits and vegetables and protecting against skin photo-carcinogenesis. Herein, some of the hybrids of 3-hydroxypyridine-4-one and acylhydrazones were designed and synthesized to study the anti-tyrosinase and antioxidant activities. The diphenolase activity of mushroom tyrosinase using L-DOPA assayed the inhibitory effects, and the antioxidant activity was assessed using DPPH free radical. The synthesized derivatives were confirmed using 1H-NMR, 13C-NMR, IR, and Mass spectroscopy. Among analogs, compound 5h bearing furan ring with IC50=8.94 μM was more potent than kojic acid (IC50=16.68 μM). The pharmacokinetic profile of the compounds showed that the tested compounds had suitable oral bioavailability and drug-likeness properties. The molecular docking studies showed that compound 5h was located in the tyrosinase-binding site. Also, the molecular dynamics simulation was performed on compound 5h, proving the obtained molecular docking results. At the B3LYP/6-31 + G** level of theory, the reactivity descriptors for 5 g and 5h were investigated using DFT calculations. Also, IR frequency was calculated to verify DFT results with experimental data. The electrostatic potential energy of the surface and the HOMO and LUMO molecular orbitals were also studied. It agrees with experimental results that the 5h is a soft molecule and ready for chemical reaction with other interacting molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habibollah Jokar Darzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Azimi F, Mahdavi M, Khoshneviszadeh M, Shafiee F, Azimi M, Hassanzadeh F, Haji Ashrafee F. Kinetic studies, molecular docking, and antioxidant activity of novel 1,3-diphenyl pyrazole-thiosemicarbazone with anti-tyrosinase and anti-melanogenesis properties. Bioorg Chem 2024; 152:107722. [PMID: 39213796 DOI: 10.1016/j.bioorg.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | - Mahin Azimi
- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farshid Hassanzadeh
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | | |
Collapse
|
15
|
Azimi M, Najafi Z, Bahmani A, Chehardoli G, Iraji A. Synthesis and biological assessment of novel 4H-chromene-3-carbonitrile derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:187. [PMID: 39342248 PMCID: PMC11439338 DOI: 10.1186/s13065-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Excessive activity of the tyrosinase enzyme during melanogenesis results in hyperpigmentation in the skin. To address this issue, there is a need to develop effective tyrosinase inhibitors as a treatment for hyperpigmentation. In this study, we synthesized some novel 4H-chromene-3-carbonitrile compounds (6a-o) and assessed their inhibitory activities against tyrosinase, comparing them with kojic acid, which is known as a positive control. Compound 6f emerged as the most effective inhibitor, with an IC50 of 35.38 ± 2.12 µM. Kinetic studies of 6f exhibited competitive inhibition, with Ki = 16.15 µM. Molecular docking studies highlighted the importance of π-π stacking and hydrogen bonding interactions within the binding site. Molecular dynamics simulations showed that the R-enantiomer 6f exhibited superior binding stability compared to the S-enantiomer, with a lower standard deviation of RMSD and more persistent interactions with the key active site residues. These findings underscore the potential of the R-enantiomer of compound 6f as a potent tyrosinase inhibitor and provide insights for developing effective treatments for hyperpigmentation and related skin conditions.
Collapse
Affiliation(s)
- Mohammad Azimi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asrin Bahmani
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S, Darbandi T, Ghanavati R. Application of microbial enzymes in medicine and industry: current status and future perspectives. Future Microbiol 2024; 19:1419-1437. [PMID: 39269849 PMCID: PMC11552484 DOI: 10.1080/17460913.2024.2398337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jafari
- Department of Medical Microbiology & Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
17
|
Wu Q, Fang W, Liu H, Liu Z, Xu X. Rosa × damascena Herrm. essential oil: anti-tyrosinase activity and phytochemical composition. Front Pharmacol 2024; 15:1451452. [PMID: 39323629 PMCID: PMC11422205 DOI: 10.3389/fphar.2024.1451452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Tyrosinase is a key enzyme in melanin synthesis, and its natural inhibitors are receiving increasing attention. Rosa × damascena Herrm. essential oil (RDEO), as important functional metabolites, was widely known due to its biological activities. But its tyrosinase inhibitory activity has not been detailed investigated. Therefore, in this paper, RDEO was comprehensively investigated the tyrosinase inhibitory, followed by the phytochemical composition analysis. Activity screening results showed that RDEO exhibited effective anti-tyrosinase activity and was a reversible and mixed-type inhibitor. CD assay results revealed that RDEO could affect the conformation of tyrosinase to reduce the activity. In B16F10 cells, RDEO (25-100 μg/mL) could inhibit intracellular tyrosinase activity and decrease melanin content. Finally, GC-MS analysis of RDEO found that citronellol (21.22%), geraniol (14.1%), eicosane (11.03%), heneicosane (6.65%) and 1-nonadecene (5.16%) were its main phytochemical compositions. This study provided data support for Rosa × damascena Herrm. essential oil as one potential natural tyrosinase inhibitor and its applications in cosmetics and medicine.
Collapse
Affiliation(s)
- Qiuyan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wanting Fang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Hao Liu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuetao Xu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
18
|
Batool Z, Ullah S, Khan A, Siddique F, Nadeem S, Alshammari A, Albekairi NA, Talib R, Al-Harrasi A, Shafiq Z. Design, synthesis, and in vitro and in silico study of 1-benzyl-indole hybrid thiosemicarbazones as competitive tyrosinase inhibitors. RSC Adv 2024; 14:28524-28542. [PMID: 39247501 PMCID: PMC11378339 DOI: 10.1039/d4ra05015k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Developing new anti-tyrosinase drugs seems crucial for the medical and industrial fields since irregular melanin synthesis is linked to the resurgence of several skin conditions, including melanoma, and the browning of fruits and vegetables. A novel series of N-1 and C-3 substituted indole-based thiosemicarbazones 5(a-r) are synthesized and further analyzed for their inhibition potential against tyrosinase enzyme through in vitro assays. The synthesized compounds displayed very good to moderate inhibition with half maximal inhibitory concentration in the range of 12.40 ± 0.26 μM to 47.24 ± 1.27 μM. Among all the derivatives 5k displayed the highest inhibitory activity. According to SAR analysis, the derivatives with 4-substitution at the benzyl or phenyl ring of the thiosemicarbazones exhibited better inhibitory potential against tyrosinase. In silico analysis (including ADMET prediction and molecular docking) was conducted and compared with the standard drug (kojic acid). These findings may help the hunt for new melanogenesis inhibitors that the food and cosmetics industries may find valuable.
Collapse
Affiliation(s)
- Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Sumaira Nadeem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan-60800 Pakistan
- Department of Pharmacy, The Women University Multan 60000 Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post bezBox 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post bezBox 2455 Riyadh 11451 Saudi Arabia
| | - Rimsha Talib
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| |
Collapse
|
19
|
Li X, Chen L, Wang H, Li Y, Wu H, Guo F. Germacrone, isolated from Curcuma wenyujin, inhibits melanin synthesis through the regulation of the MAPK signaling pathway. J Nat Med 2024; 78:863-875. [PMID: 38809333 DOI: 10.1007/s11418-024-01818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Abnormal melanin synthesis causes hyperpigmentation disorders, such as chloasma, freckles, and melanoma, which are highly multiple and prevalent. There were few reports on the anti-melanogenic effect of Curcuma wenyujin Y.H. Chen et C. Ling, and the bioactive compound has not been elucidated as well. The study aims to investigate the anti-melanogenic effect of C. wenyujin, and identify the bioactive compound, and further explore its underlying mechanism. Our results showed that the Petroleum ether fraction extracted from C. wenyujin rhizome had a significant anti-melanogenic effect, and germacrone isolated from it was confirmed as the major bioactive compound. To our data, germacrone significantly inhibited tyrosinase (TYR) activity, reduced melanosome synthesis, reduced dendrites formation of B16F10 cells, and melanosome transport to keratinocytes. Moreover, germacrone effectively decreased the hyperpigmentation in zebrafish and the skin of guinea pigs in vivo. Western-blot analysis showed that germacrone down-regulated the expression of TYR, TRP-1, TRP-2, Rab27a, Cdc42, and MITF proteins via the activation of the MAPK signaling pathway. Taken together, germacrone is an effective bioactive compound for melanogenesis inhibition. Our studies suggest that germacrone may be considered a potential candidate for skin whitening.
Collapse
Affiliation(s)
- Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
20
|
Afzal M, Mehmood R, Mughal EU, Naeem N, Ashraf Z, Nazir Y, Shalaby FM, El-Sayed Abd El Hady A, Sadiq A. Elucidating bis-pyrimidines as new and efficient mushroom tyrosinase inhibitors: synthesis, SAR, kinetics and computational studies. RSC Adv 2024; 14:22769-22780. [PMID: 39035128 PMCID: PMC11258615 DOI: 10.1039/d4ra04652h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
In this study, a series of novel bis-pyrimidine derivatives (1P-8P) were designed, synthesized, characterized, and investigated for their in vitro inhibitory activity against mushroom tyrosinase, an enzyme critical in melanin biosynthesis and implicated in various hyperpigmentation disorders. To the best of our knowledge, the bispyrimidine scaffold has been evaluated for the first time for its tyrosinase inhibitory activity. Their inhibitory activities were assessed, revealing inhibition with IC50 values in the micromolar range. Additionally, this series of compounds were found to inhibit tyrosinase activity in a mixed-type manner, with IC50 values ranging from 12.36 ± 1.24 to 86.67 ± 3.08 μM. To further elucidate the binding interactions, molecular docking simulations were performed, identifying key residues in the active site responsible for binding affinity. Furthermore, molecular dynamics (MD) simulations were conducted to assess the dynamic behavior, stability, and binding affinity of the most potent inhibitor, compound 6P. Quantitative Structure-Activity Relationship (QSAR) models were developed to correlate the structural features of the bis-pyrimidines with their inhibitory activity, providing insights into the structure-activity relationships (SAR) that govern their potency. The experimental and theoretical findings demonstrated excellent agreement. These findings pave the way for the development of novel bis-pyrimidine-based therapeutic agents for treating hyperpigmentation and related conditions.
Collapse
Affiliation(s)
- Manazza Afzal
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| | - Rabia Mehmood
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Rawalpindi Women University Rawalpindi-46300 Pakistan
| | - Yasir Nazir
- Department of Chemistry, University of Sialkot Sialkot-51300 Pakistan
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department Abha Kingdom of Saudi Arabia
| | - Amal El-Sayed Abd El Hady
- Department of Biology, Faculty of Science, Majmaah University Al Majma'ah 15341 Kingdom of Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| |
Collapse
|
21
|
Kim HJ, Jung HJ, Kim YE, Jeong D, Park HS, Park HS, Kang D, Park Y, Chun P, Chung HY, Moon HR. Investigation of the Efficacy of Benzylidene-3-methyl-2-thioxothiazolidin-4-one Analogs with Antioxidant Activities on the Inhibition of Mushroom and Mammal Tyrosinases. Molecules 2024; 29:2887. [PMID: 38930952 PMCID: PMC11206987 DOI: 10.3390/molecules29122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Based on the fact that substances with a β-phenyl-α,β-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1-8 were prepared as potential tyrosinase inhibitors. Four analogs (1-3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| | - Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| | - Young Eun Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| | - Daeun Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| | - Hyeon Seo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (D.K.); (Y.P.)
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (D.K.); (Y.P.)
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Gyeongnam, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.K.); (H.J.J.); (Y.E.K.); (D.J.); (H.S.P.); (H.S.P.)
| |
Collapse
|
22
|
Liang F. Inhibition mechanism investigation of quercetagetin as a potential tyrosinase inhibitor. Front Chem 2024; 12:1411801. [PMID: 38894729 PMCID: PMC11184945 DOI: 10.3389/fchem.2024.1411801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Tyrosinase is one important rate limiting enzyme in melanin synthesis, directly affecting the melanin synthesis. Quercetagetin is one active ingredient from marigold. Thence, the inhibition effects of quercetagetin against tyrosinase were investigated. The results showed quercetagetin could inhibit tyrosinase activity with IC50 value of 0.19 ± 0.01 mM and the inhibition type was a reversible mixed-type. Results of fluorescence quenching showed quercetagetin could quench tyrosinase fluorescence in static process. CD and 3D fluorescence results showed the interaction of quercetagetin to tyrosinase could change tyrosinase conformation to inhibit activity. Moreover, docking revealed details of quercetagetin's interactions with tyrosinase.
Collapse
Affiliation(s)
- Faliang Liang
- Pharmacy Department, Jiang Men Maternity and Child Healthcare Hospital, Jiangmen, China
| |
Collapse
|
23
|
Cai H, Chen W, Jiang J, Wen H, Luo X, Li J, Lu L, Zhao R, Ni X, Sun Y, Wang J, Li Z, Ju B, Jiang X, Bai R. Artificial Intelligence-Assisted Optimization of Antipigmentation Tyrosinase Inhibitors: De Novo Molecular Generation Based on a Low Activity Lead Compound. J Med Chem 2024; 67:7260-7275. [PMID: 38651218 DOI: 10.1021/acs.jmedchem.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Artificial intelligence (AI) de novo molecular generation is a highly promising strategy in the drug discovery, with deep reinforcement learning (RL) models emerging as powerful tools. This study introduces a fragment-by-fragment growth RL forward molecular generation and optimization strategy based on a low activity lead compound. This process integrates fragment growth-based reaction templates, while target docking and drug-likeness prediction were simultaneously performed. This comprehensive approach considers molecular similarity, internal diversity, synthesizability, and effectiveness, thereby enhancing the quality and efficiency of molecular generation. Finally, a series of tyrosinase inhibitors were generated and synthesized. Most compounds exhibited more improved activity than lead, with an optimal candidate compound surpassing the effects of kojic acid and demonstrating significant antipigmentation activity in a zebrafish model. Furthermore, metabolic stability studies indicated susceptibility to hepatic metabolism. The proposed AI structural optimization strategies will play a promising role in accelerating the drug discovery and improving traditional efficiency.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing Jiang
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jiahui Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhen Li
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Bin Ju
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
24
|
García Molina P, Saura-Sanmartin A, Berna J, Teruel JA, Muñoz Muñoz JL, Rodríguez López JN, García Cánovas F, García Molina F. Considerations about the inhibition of monophenolase and diphenolase activities of tyrosinase. Characterization of the inhibitor concentration which generates 50 % of inhibition, type and inhibition constants. A review. Int J Biol Macromol 2024; 267:131513. [PMID: 38608979 DOI: 10.1016/j.ijbiomac.2024.131513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Tyrosinase is a copper oxidase enzyme which catalyzes the first two steps in the melanogenesis pathway, L-tyrosine to L-dopa conversion and, then, to o-dopaquinone and dopachrome. Hypopigmentation and, above all, hyperpigmentation issues can be originated depending on their activity. This enzyme also promotes the browning of fruits and vegetables. Therefore, control of their activity by regulators is research topic of great relevance. In this work, we consider the use of inhibitors of monophenolase and diphenolase activities of the enzyme in order to accomplish such control. An experimental design and data analysis which allow the accurate calculation of the degree of inhibition of monophenolase activity (iM) and diphenolase activity (iD) are proposed. The IC50 values (amount of inhibitor that causes 50 % inhibition at a fixed substrate concentration) can be calculated for the two activities and from the values of IC50M (monophenolase) and IC50D(diphenolase). Additionally, the strength and type of inhibition can be deduced from these values. The data analysis from these IC50D values allows to obtain the values of [Formula: see text] or [Formula: see text] , or and [Formula: see text] from the values of IC50M. In all cases, the values of the different must satisfy their relationship with IC50M and IC50D.
Collapse
Affiliation(s)
- Pablo García Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, E-30100 Espinardo, Murcia, Spain.
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, E-30100 Espinardo, Murcia, Spain
| | - Jose Antonio Teruel
- Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Muñoz Muñoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Jose Neptuno Rodríguez López
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco García Cánovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco García Molina
- Department of Anatomía Patológica, Hospital General Universitario Reina Sofía, Av. Intendente Jorge Palacios, 1, 30003 Murcia, Spain.
| |
Collapse
|
25
|
Cho H, Yang J, Kang JY, Kim KE. Inhibitory Effects of Fermented Sprouted Oat Extracts on Oxidative Stress and Melanin Overproduction. Antioxidants (Basel) 2024; 13:544. [PMID: 38790649 PMCID: PMC11117960 DOI: 10.3390/antiox13050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments.
Collapse
Affiliation(s)
- Hyeijin Cho
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
26
|
Guo J, Gao J, Guo Y, Bai L, Ho CT, Bai N. Characterization, multivariate analysis and bioactivity evaluation of coumarins in the bark of Fraxinus mandshurica. Fitoterapia 2024; 174:105865. [PMID: 38382892 DOI: 10.1016/j.fitote.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The bark of Fraxinus mandshurica is a traditional folk herb used to clear heat and dry dampness. To investigate the differences in coumarins content in the bark of F. mandshurica, 24 batches of samples from four origins were collected and analyzed. Eight coumarins were obtained by traditional natural product extraction, isolation and identification techniques and quantified by high performance liquid chromatography-photodiode array (HPLC-DAD). The quantitative results showed that the overall content of compound 30 (Fraxinol) was higher at 100.23 mg/g, while the overall content of compound 23 (Cichoriin) was lower, which may be related to environmental factors in different regions. The method validation showed that the linear range of the eight standards was between 10 and 2500 μg/mL with correlation coefficient (R2) values >0.9991; the relative standard deviation (RSD, %) values of intra-day precision were between 0.35 and 1.38, while the RSD values of inter-day precision were between 0. 29-1.78; the RSD (%) values for the reproducibility experiments ranged from 0.29 to 1.87, while the RSD (%) values for the stability experiments ranged from 0.22 to 2.33; the spiked recovery of the samples ranged from 98.65 to 101.34%, and the RSD (%) values ranged from 0.22 to 1.96. The method validation results showed that the instrument used for the analysis had good precision, the reproducibility and stability of the samples were good, and the accuracy of the experimental method was high. In addition, a total of 54 chemical components were identified from F. mandshurica bark by ultra performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS). Based on this, fingerprinting, heatmap and multivariate analysis, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were established for 24 batches of samples, and four marker compounds that could be used to distinguish different origins of F. mandshurica were screened. To further investigate the bioactivities of the eight coumarins, in vitro enzyme activity inhibition studies were performed, and the results showed that they all exhibited different degrees of inhibition of acetylcholinesterase, tyrosinase and α-glucosidase, thus having potential applications in the treatment of Alzheimer's disease, blemish whitening and anti-diabetes, and becoming a new source of natural enzyme activity inhibitors. This study established an identification and evaluation method applicable to plants of different origins, which provides a strong reference for quality control, origin evaluation and clinical application of traditional medicinal plants.
Collapse
Affiliation(s)
- Jianjin Guo
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China; College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Jing Gao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Lu Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
27
|
Wang J, Patel P, Mineroff J, Jagdeo J. The potential cutaneous benefits of edible bird's nest. Arch Dermatol Res 2024; 316:91. [PMID: 38400925 DOI: 10.1007/s00403-024-02824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
Edible bird's nest (EBN) is composed of the solidified saliva of swiftlet birds. EBN has been extremely popular in Asian culture for centuries. They are often consumed as a delicacy in the form of bird's nest soup and are believed to have numerous skin benefits. In light of EBN's growing popularity and significant cultural importance, we aim provide a comprehensive review of EBN's potential dermatologic benefits and role in photoaging, anti-inflammation, wound healing, skin barrier enhancement, and skin whitening. While in vitro, in vivo, and preliminary clinical trial results are promising, there is a need for future human clinical research to further validate these findings and establish EBN's efficacy and safety for dermatologic applications.
Collapse
Affiliation(s)
- Jennifer Wang
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA
| | - Paras Patel
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA
| | - Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA.
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA.
| |
Collapse
|
28
|
Najafi Z, Zandi Haramabadi M, Chehardoli G, Ebadi A, Iraji A. Design, synthesis, and molecular dynamics simulation studies of some novel kojic acid fused 2-amino-3-cyano-4H-pyran derivatives as tyrosinase inhibitors. BMC Chem 2024; 18:41. [PMID: 38388934 PMCID: PMC10885651 DOI: 10.1186/s13065-024-01134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
A novel series of kojic acid fused 2-amino-3-cyano-4H-pyran derivatives were synthesized via a multicomponent reaction involving kojic acid, benzyloxy benzaldehyde, and malonitrile as tyrosinase inhibitors. Subsequently, the structures of the compounds were characterized using FT-IR, 1H-, and 13C-NMR spectroscopic analyses. The designed compounds fall into three series: (1) 4-benzyloxy-phenyl kojopyran 6a-e, (2) 3-benzyloxy- phenyl kojopyran derivatives 6f-j, and (3) 4-benzyloxy-3-methoxy-phenyl kojopyran derivative 6 k-o. The assessment of tyrosinase inhibition activity was conducted using L-Dopa as the substrate. Among synthesized compounds, 2-amino-4-(4-((4-fluorobenzyl)oxy)phenyl)-6-(hydroxymethyl)-8-oxo-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile (6b) demonstrated the highest antityrosinase activity with a competitive inhibition pattern (IC50 = 7.69 ± 1.99 μM) as compared to the control agent kojic acid (IC50 = 23.64 ± 2.56 µM). Since compound 6b was synthesized as a racemic mixture, in silico studies were performed for both R and S enantiomers. The R- enantiomer showed critical interactions compared with the S-enantiomer. Specifically, it established hydrogen bonds and hydrophobic interactions with crucial and highly conserved amino acids within the enzyme's binding site in the target protein. Moreover, the molecular dynamics simulations revealed that compound 6b demonstrated significant interactions with essential residues of the binding site, resulting in a stable complex throughout the entire simulation run. The drug-like and ADMET properties predictions showed an acceptable profile for compound 6b. Thus, it can serve as a drug candidate to develop more potent antityrosinase agents due to its low toxicity and its high inhibition activity.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Zandi Haramabadi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Khraisat LMAF, Sabuncuoğlu S, Girgin G, Unsal Tan O. Synthesis and Tyrosinase Inhibitory Activity of Novel Benzimidazole/Thiazolidin-4-one Hybrid Derivatives. Chem Biodivers 2024; 21:e202301489. [PMID: 38149789 DOI: 10.1002/cbdv.202301489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
In this study, novel 3-(phenylamino)thiazolidin-4-one 2 a-d and 3-(phenyl)thiazolidin-4-one 3 a-g derivatives which are having benzimidazole moiety were synthesized and their tyrosinase inhibitory activity were investigated. The structures of the target compounds were elucidated using 1 H/13 C-NMR, IR and MS. The structure of 2 b was also characterized using HSQC NMR technique. Among the target compounds, 3 b-g demonstrated stronger tyrosinase inhibitory activity (IC50 values for 3 b-g ranged from 80.93 to 119.20 μM), compared to the positive control kojic acid (IC50 : 125.08 μM). With IC50 value of 80.93 μM, 5-(2-(4-(1H-benzimidazol-1-yl)phenyl)-4-oxothiazolidin-3-yl)-2-methylbenzenesulfonamide 3 g was found to be the most active derivative of the series. Molecular docking studies were conducted to elucidate the binding interactions between compounds and tyrosinase. The MTT assay studies used to determine the cytotoxicity of 3 b-g showed that 3 c, 3 d, 3 f and 3 g were not cytotoxic in the range of 0-200 μM. Considering its tyrosinase inhibitory activity and cytotoxic effect, 3 g exhibits promising potential for further research and development as a novel tyrosinase inhibitor.
Collapse
Affiliation(s)
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Gözde Girgin
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
30
|
Bagheri A, Moradi S, Iraji A, Mahdavi M. Structure-based development of 3,5-dihydroxybenzoyl-hydrazineylidene as tyrosinase inhibitor; in vitro and in silico study. Sci Rep 2024; 14:1540. [PMID: 38233558 PMCID: PMC10794188 DOI: 10.1038/s41598-024-52022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.
Collapse
Affiliation(s)
- Azzam Bagheri
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Shahram Moradi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Silva RMGD, Do Nascimento Pereira I, Camargo Zibordi L, Pereira Rosatto PA, Oliveira Granero F, Malaguti Figueiredo CC, Leopoldo Constantino CJ, da Silva Martin C, Eloizo Job A, Nicolau-Junior N, Pereira Silva L. Cytotoxic, antioxidant, and antiglycation activities, and tyrosinase inhibition using silver nanoparticles synthesized by leaf extract of Solanum aculeatissimum Jacq. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:57-76. [PMID: 37929327 DOI: 10.1080/15287394.2023.2275691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The present study aimed to determine the biological properties of an extract of Solanum aculeatissimum aqueous extract (SaCE) alone as well as silver nanoparticles (AgNPs) generated by green synthesis utilizing S. aculeatissimum aqueous extract (SaCE). These synthesized SaCE AgNPs were characterized using UV-VIS spectrophotometry, scanning transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zeta potential (ZP), dynamic light scattering (DLS). Determination of total polyphenols, flavonoids, saponins content was conducted. In addition, high performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify constituents in this extract. Antioxidant activity was determined by DPPH radical scavenging and ferric ion reducing power (FRAP) methods. Antiglycation activity was demonstrated through relative mobility in electrophoresis (RME) and determination of free amino groups. The inhibitory activity on tyrosinase was also examined. Molecular docking analyses were performed to assess the molecular interactions with DNA and tyrosinase. The antitumor activity SaCE was also measured. Phytochemical analysis of SaCE and AgNPs showed presence polyphenols (1000.41 and 293.37 mg gallic acid equivalent/g), flavonoids (954.87 and 479.87 mg rutin equivalent/g), saponins (37.89 and 23.01% total saponins), in particular steroidal saponins (aculeatiside A and B). Both SaCE and AgNPs exhibited significant antioxidant (respectively, 73.97%, 56.27% in DPPH test, 874.67 and 837.67 μM Trolox Equivalent/g in FRAP test) and antiglycation activities (72.81 and 67.98% free amino groups, results observed in RME). SaCE and AgNPs presented 33.2, 36.1% inhibitory activity on tyrosinase, respectively. In silico assay demonstrated interaction between steroidal saponins, DNA or tyrosinase. SaCE exhibited antitumor action against various human tumor cells. Data demonstrated that extracts SaCE alone and AgNPs synthesized from SaCE presented biological properties of interest for application in new therapeutic formulations in medicine.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Isabelly Do Nascimento Pereira
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Laura Camargo Zibordi
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Pedro Augusto Pereira Rosatto
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | | | | | - Carlos José Leopoldo Constantino
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Cibely da Silva Martin
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Aldo Eloizo Job
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Nilson Nicolau-Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
32
|
Choudhary Y, Atia-Tul-Wahab, Zafar H, Siddiqui S, Khan M, Khan KM, Asseri AH, Choudhary MI, Atta-Ur-Rahman. Biochemical and In Silico Studies on Triazole Derivatives as Tyrosinase Inhibitors: Potential Treatment of Hyperpigmentation Related Skin Disorders. Med Chem 2024; 20:397-413. [PMID: 38425108 DOI: 10.2174/0115734064271581231219111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Tyrosinase is a versatile, glycosylated copper-containing oxidase enzyme that mainly catalyzes the biosynthesis of melanin in mammals. Its overexpression leads to the formation of excess melanin, resulting in hyperpigmentary skin disorders, such as dark spots, melasma, freckles, etc. Therefore, inhibition of tyrosinase is a therapeutic approach for the treatment of hyperpigmentation. METHODS The current study focused on evaluating tyrosinase inhibitory activities of triazole derivatives 1-20, bearing different substituents on the phenyl ring. 17 derivatives have shown a potent tyrosinase inhibition with IC50 values between 1.6 to 13 μM, as compared to the standard drug, i.e., kojic acid (IC50 = 24.1 ± 0.5 μM). Particularly, compounds 11 and 15 displayed 12 times more potent inhibitory effects than the kojic acid. RESULTS The structure-activity relationship revealed that substituting halogens at the C-4 position of the benzene ring renders remarkable anti-tyrosinase activities. Compounds 1-3 and 8 showed a competitive type of inhibition, while compounds 5, 11, and 15 showed a non-competitive mode of inhibition. Next, we performed molecular docking analyses to study the binding modes and interactions between the ligands (inhibitors) and the active site of the tyrosinase enzyme (receptor). Besides this, we have assessed the toxicity profile of inhibitors on the BJ human fibroblast cell line. CONCLUSION The majority of the newly identified tyrosinase inhibitors were found to be noncytotoxic. The results presented herein form the basis of further studies on triazole derivatives as potential drug leads against tyrosinase-related diseases.
Collapse
Affiliation(s)
- Yusra Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Salman Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Majid Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Khalid M Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam-31441, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
- KAU-Oxford Artificial Intelligence in Precision Medicine Centre, Jeddah-21589, Saudi Arabia
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Atta-Ur-Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
33
|
Zengin Kurt B, Altundağ Ö, Tokgöz MN, Öztürk Civelek D, Tuncay FO, Cakmak U, Kolcuoğlu Y, Akdemir A, Sönmez F. Synthesis of flurbiprofen thiadiazole urea derivatives and assessment of biological activities and molecular docking studies. Chem Biol Drug Des 2023; 102:1458-1468. [PMID: 37653693 DOI: 10.1111/cbdd.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Totally 15 novel flurbiprofen urea derivatives were synthesized bearing the thiadiazole ring. Their inhibition effects on tyrosinase were determined. 3c was found to be the strongest inhibitor with the IC50 value of 68.0 μM against tyrosinase. The enzyme inhibition types of the synthesized compounds were determined by examining the kinetic parameters. The inhibition type of 3c was determined as uncompetitive and the Ki value was calculated as 36.3 μM. Moreover, their cytotoxic effects on hepatocellular carcinoma (HepG2), colorectal carcinoma (HT-29), and melanoma (B16F10) cell lines were evaluated. According to the cytotoxicity results, 3l (IC50 = 14.11 μM) showed the highest cytotoxicity on the HT-29 cells, while 3o (IC50 = 4.22 μM) exhibited the strongest cytotoxic effect on HepG2 cell lines. Also, 3j (IC50 = 7.55 μM strongly affected B16F10. The effects of synthesized compounds on the healthy cell line were evaluated on the CCD-986Sk cell line. Molecular modelling studies have indicated the potential binding interactions of the uncompetitive inhibitor 3c with the enzyme-substrate complex.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Özlem Altundağ
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Merve Nur Tokgöz
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Dilek Öztürk Civelek
- Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Fulya Oz Tuncay
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Ummuhan Cakmak
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Yakup Kolcuoğlu
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Istanbul, Türkiye
| | - Fatih Sönmez
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Türkiye
| |
Collapse
|
34
|
Lu L, Hu C, Min X, Liu Z, Xu X, Gan L. In Vitro and In Vivo Biological Evaluation of Indole-thiazolidine-2,4-dione Derivatives as Tyrosinase Inhibitors. Molecules 2023; 28:7470. [PMID: 38005192 PMCID: PMC10673563 DOI: 10.3390/molecules28227470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Tyrosinase is an important rate-limiting enzyme in melanin biosynthesis. To find potential tyrosinase inhibitors with anti-melanogenic activity, a series of indole-thiazolidine-2,4-dione derivatives 5a~5z were synthesized by incorporating indole with thiazolidine-2,4-dione into one compound and assayed for their biological activities. All compounds displayed tyrosinase inhibitory activities and 5w had the highest anti-tyrosinase inhibitory activity with an IC50 value of 11.2 μM. Inhibition kinetics revealed 5w as a mixed-type tyrosinase inhibitor. Fluorescence quenching results indicated that 5w quenched tyrosinase fluorescence in a static process. CD spectra and 3D fluorescence spectra results suggested that the binding of 5w with tyrosinase could change the conformation and microenvironment of tyrosinase. Molecular docking also represented the binding between 5w and tyrosinase. Moreover, 5w could inhibit tyrosinase activity and melanogenesis both in B16F10 cells and the zebrafish model. Therefore, compound 5w could serve as a tyrosinase inhibitor with anti-melanogenic activity.
Collapse
Affiliation(s)
- Li Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Chunmei Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Xiaofeng Min
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| | - Lishe Gan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (L.L.); (C.H.); (X.M.)
| |
Collapse
|
35
|
Mermer A, Demirci S. Recent advances in triazoles as tyrosinase inhibitors. Eur J Med Chem 2023; 259:115655. [PMID: 37482020 DOI: 10.1016/j.ejmech.2023.115655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, İstanbul, Turkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Turkiye.
| | - Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkiye
| |
Collapse
|
36
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
37
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
38
|
Veerichetty V, Saravanabavan I. Molecular docking Study of Nuciferine as a Tyrosinase Inhibitor and Its Therapeutic Potential for Hyperpigmentation. Genomics Inform 2023; 21:e43. [PMID: 37813639 PMCID: PMC10584639 DOI: 10.5808/gi.23054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 10/11/2023] Open
Abstract
Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favored over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Nuciferine demonstrated a binding energy of -7.0 kcal/mol and a Ki of 5 µM, both of which were comparatively higher than the corresponding values of kojic acid, which showed -5.3 kcal/mol and 122 µM respectively. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.
Collapse
Affiliation(s)
- Veerabhuvaneshwari Veerichetty
- Department of Biotechnology, Kumaraguru College of Technology affiliated with Anna University, Coimbatore, Tamil Nadu 641006, India
| | - Iswaryalakshmi Saravanabavan
- Department of Biotechnology, Kumaraguru College of Technology affiliated with Anna University, Coimbatore, Tamil Nadu 641006, India
| |
Collapse
|
39
|
Zengin G, Mostafa NM, Abdelkhalek YM, Eldahshan OA. Antioxidant and Enzyme Inhibitory Activities of Rhoifolin Flavonoid: In Vitro and in Silico Studies. Chem Biodivers 2023; 20:e202300117. [PMID: 37498319 DOI: 10.1002/cbdv.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Rhoifolin (apigenin-7-O-β-neohesperidoside) belongs to the class of flavonoids and was reported to exhibit anti-inflammatory, cytotoxic, antidiabetic, hepatoprotective, and cardioprotective activities. The current study presents the in-vitro evaluation of the antioxidative effects of rhoifolin by many assays, namely DPPH, CUPRAC, ABTS, phosphomolybdenum, and FRAP. Enzyme inhibitory potential was also evaluated for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase enzymes. While results revealed weak antioxidant activities for rhoifolin, the compound demonstrated some promising enzyme inhibitory effects against BChE (4.03 mg GALAE/g) and tyrosinase (7.44 mg KAE/g) but was not active on AChE. Regarding anti-diabetic enzymes, the compound was active on amylase but did not show any inhibition effect on glucosidase. In-silico molecular docking study was performed for rhoifolin on the active site of NADPH oxidase, BChE, and amylase enzymes to verify the observed enzyme inhibitory effect. Good binding affinities were observed for rhoifolin on all the docked enzymes, revealing numerous hydrogen bonds, carbon-hydrogen, van der Waals interactions. This is the first study to evaluate the enzyme inhibition potential of rhoifolin. We concluded that the increase in the degree of glycosylation might decrease the antioxidant abilities of flavonoids and that rhoifolin had moderate enzyme inhibition abilities to be investigated in future studies.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, 42130, Turkey
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
40
|
Li J, Min X, Zheng X, Wang S, Xu X, Peng J. Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid-Eugenol Esters. Molecules 2023; 28:5969. [PMID: 37630220 PMCID: PMC10460039 DOI: 10.3390/molecules28165969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Tyrosinase plays crucial roles in mediating the production of melanin pigment; thus, its inhibitors could be useful in preventing melanin-related diseases. To find potential tyrosinase inhibitors, a series of cinnamic acid-eugenol esters (c1~c29) was synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, HRMS, and FT-IR, respectively. The biological evaluation results showed that all compounds c1~c29 exhibited definite tyrosinase inhibitory activity; especially, compound c27 was the strongest tyrosinase inhibitor (IC50: 3.07 ± 0.26 μM), being ~4.6-fold stronger than the positive control, kojic acid (IC50: 14.15 ± 0.46 μM). Inhibition kinetic studies validated compound c27 as a reversible mixed-type inhibitor against tyrosinase. Three-dimensional fluorescence and circular dichroism (CD) spectra results indicated that compound c27 could change the conformation and secondary structure of tyrosinase. Fluorescence-quenching results showed that compound c27 quenched tyrosinase fluorescence in the static manner with one binding site. Molecular docking results also revealed the binding interactions between compound c27 and tyrosinase. Therefore, cinnamic acid-eugenol esters, especially c27, could be used as lead compounds to find potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jianping Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Xiaofeng Min
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Shaohua Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| | - Jinbao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (X.Z.)
| |
Collapse
|
41
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
42
|
Djafarou S, Mermer A, Barut B, Yılmaz GT, Amine Khodja I, Boulebd H. Synthesis and evaluation of the antioxidant and anti-tyrosinase activities of thiazolyl hydrazone derivatives and their application in the anti-browning of fresh-cut potato. Food Chem 2023; 414:135745. [PMID: 36821926 DOI: 10.1016/j.foodchem.2023.135745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Tyrosinase is a key enzyme in the biosynthesis of melanin, which is responsible for the browning of foods as well as many skin disorders. In order to develop new anti-browning agents with dual antioxidant and anti-tyrosinase capacities, a series of 30 thiazolyl hydrazone derivatives were synthesized. Among the molecules prepared, 6 and 30 were found to be the most potent tyrosinase inhibitors with IC50 values comparable to that of kojic acid. Interestingly, 6 also has the highest radical scavenging activity among the prepared molecules. The inhibition kinetics study indicated that 6 is a non-competitive inhibitor while 30 inhibits tyrosinase competitively. The anti-browning assay of fresh-cut potato slices revealed that 6 and 30 are potent anti-browning agents with a capacity as high as kojic acid. The mechanisms of free radical scavenging and tyrosinase inhibition have been fully investigated in silico using computational kinetics, molecular docking, and molecular dynamics simulations.
Collapse
Affiliation(s)
- Selsabil Djafarou
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1, Constantine 25000, Algeria
| | - Arif Mermer
- Experimental Mecidine Application and Research Center, University of Health Sciences, İstanbul, Türkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Türkiye.
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Imene Amine Khodja
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1, Constantine 25000, Algeria
| | - Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1, Constantine 25000, Algeria.
| |
Collapse
|
43
|
Zargaham MK, Ahmed M, Akhtar N, Ashraf Z, Abdel-Maksoud MA, Aufy M, Nadeem H. Synthesis, In Silico Studies, and Antioxidant and Tyrosinase Inhibitory Potential of 2-(Substituted Phenyl) Thiazolidine-4-Carboxamide Derivatives. Pharmaceuticals (Basel) 2023; 16:835. [PMID: 37375782 DOI: 10.3390/ph16060835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Heterocyclic nuclei have shown a wide variety of biological activities, highlighting their importance in drug discovery. Derivatives of 2,4-subsituted thiazolidine have a structural similarity with the substrates of tyrosinase enzymes. Hence, they can be used as an inhibitor to compete against tyrosine in the biosynthesis of melanin. This study is focused on design, synthesis, biological activities, and in silico studies of thiazolidine derivatives substituted at positions 2 and 4. The synthesized compounds were evaluated to determine the antioxidant activity and tyrosine inhibitory potential using mushroom tyrosinase. The most potent tyrosinase enzyme inhibitor was compound 3c having IC50 value 16.5 ± 0.37 µM, whereas compound 3d showed maximum antioxidant activity in a DPPH free radical scavenging assay (IC50 = 18.17 µg/mL). Molecular docking studies were conducted using mushroom tyrosinase (PDB ID: 2Y9X) to analyze binding affinities and binding interactions of the protein-ligand complex. Docking results indicated that hydrogen bonds and hydrophobic interactions were mainly involved in the ligand and protein complex. The highest binding affinity was found to be -8.4 Kcal/mol. These results suggest that thiazolidine-4-carboxamide derivatives could serve as lead molecules for development of novel potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Muhammad Kazim Zargaham
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 04405, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44310, Pakistan
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 04405, Pakistan
| |
Collapse
|
44
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
45
|
Al-Rooqi M, Sadiq A, Obaid RJ, Ashraf Z, Nazir Y, Jassas RS, Naeem N, Alsharif MA, Shah SWA, Moussa Z, Mughal EU, Farghaly AR, Ahmed SA. Evaluation of 2,3-Dihydro-1,5-benzothiazepine Derivatives as Potential Tyrosinase Inhibitors: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:17195-17208. [PMID: 37214694 PMCID: PMC10193543 DOI: 10.1021/acsomega.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Benzothiazepines are pharmacologically active compounds, frequently utilized as a precursor for acquiring versatile molecules with several bioactivities including anti-inflammatory, anti-human immunodeficiency virus (anti-HIV), analgesic, antitumor, antimicrobial, and antitubercular. In this study, the 2,4-diphenyl-2,3-dihydro-1,5-benzothiazepine scaffold was selected for their in vitro, docking, and druglikeness studies to evaluate their inhibitory potential against mushroom tyrosinase. All synthesized analogues, 1-14, exhibited moderate to good IC50 values ranging from 1.21 to 70.65 μM. The synthesized benzothiazepine derivatives were potent tyrosinase inhibitors, which outperformed the reference kojic acid (IC50 = 16.69 μM). The kinetic analysis revealed that compound 2 (2-(3,4-dimethoxyphenyl)-4-(p-tolyl)-2,3-dihydrobenzo[b][1,4]thiazepine) was a mixed-type tyrosinase inhibitor with a Ki value of 1.01 μM. Molecular modeling studies against tyrosinase protein (PDB ID: 2Y9X) were conducted to recognize the binding modes of these analogues. The utilization of molecular dynamic (MD) simulations enabled the assessment of the protein-ligand complex's dynamic behavior, stability, and binding affinity for the compounds. These simulations ultimately led to the identification of compound 2 as a potential inhibitor of tyrosinase. Additionally, a druglikeness study was conducted, which supported the promising potential of the new analogues as novel antityrosinase agents. The in silico studies were consistent with the in vitro results, showing that these ligands had good binding scores against tyrosinase and interacted with the core residues of the target protein. Gaussian 09 was used for the geometry optimization of all complexes.
Collapse
Affiliation(s)
- Munirah
M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zaman Ashraf
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Rabab S. Jassas
- Department
of Chemistry, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Meshari A. Alsharif
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Wadud Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ziad Moussa
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Abdel-Rahman Farghaly
- Department
of Chemistry, College of Science, Jazan
University, Jazan 114, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
46
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
47
|
Peng Z, Wang G, Wang JJ, Zhao Y. Anti-browning and antibacterial dual functions of novel hydroxypyranone-thiosemicarbazone derivatives as shrimp preservative agents: Synthesis, bio-evaluation, mechanism, and application. Food Chem 2023; 419:136106. [PMID: 37030204 DOI: 10.1016/j.foodchem.2023.136106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
To develop new shrimp preservative agents with dual functions of anti-browning and antibacterial, thirteen hydroxypyranone-thiosemicarbazone derivatives were prepared according to molecular hybridization. Thereinto, compound 7j (IC50 = 1.99 ± 0.19 μM) shown the strongest anti-tyrosinase activity and was about twenty-three folds stronger than kojic acid (45.73 ± 4.03 μM). The anti-tyrosinase mechanism of 7j was illustrated through enzyme kinetic, copper ion chelating ability, fluorescence quenching, ultraviolet spectrum, AFM analysis, and molecular docking study. On the other hand, antibacterial assay and time-kill kinetics analysis confirmed that 7j also had good antibacterial activity against V. parahaemolyticus (MIC = 0.13 mM). PI uptake test, SDS-PAGE, and fluorescence spectrometry analysis proved that 7j can affect the bacterial cell membrane. Finally, the shrimp preservation and safety study indicated that 7j has dual effects of inhibiting bacterial growth and preventing enzyme browning, and can be applied to the preservation of fresh shrimp.
Collapse
Affiliation(s)
- Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 55004, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
48
|
Nunes JA, de Araújo RSA, da Silva FN, Cytarska J, Łączkowski KZ, Cardoso SH, Mendonça-Júnior FJB, da Silva-Júnior EF. Coumarin-Based Compounds as Inhibitors of Tyrosinase/Tyrosine Hydroxylase: Synthesis, Kinetic Studies, and In Silico Approaches. Int J Mol Sci 2023; 24:5216. [PMID: 36982292 PMCID: PMC10048804 DOI: 10.3390/ijms24065216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Cancer represents the main cause of morbidity and mortality worldwide, constituting a serious health problem. In this context, melanoma represents the most aggressive and fatal type of skin cancer, with death rates increasing every year. Scientific efforts have been addressed to the development of inhibitors targeting the tyrosinase enzyme as potential anti-melanoma agents due to the importance of this enzyme in melanogenesis biosynthesis. Coumarin-based compounds have shown potential activity as anti-melanoma agents and tyrosinase inhibitors. In this study, coumarin-based derivatives were designed, synthesized, and experimentally evaluated upon tyrosinase. Compound FN-19, a coumarin-thiosemicarbazone analog, exhibited potent anti-tyrosinase activity, with an IC50 value of 42.16 ± 5.16 µM, being more active than ascorbic acid and kojic acid, both reference inhibitors. The kinetic study showed that FN-19 acts as a mixed inhibitor. Still, for this compound, molecular dynamics (MD) simulations were performed to determine the stability of the complex with tyrosinase, generating RMSD, RMSF, and interaction plots. Additionally, docking studies were performed to elucidate the binding pose at the tyrosinase, suggesting that the hydroxyl group of coumarin derivative performs coordinate bonds (bidentate) with the copper(II) ions at distances ranging from 2.09 to 2.61 Å. Then, MM/PBSA calculations revealed that van der Waals interactions are the most relevant intermolecular forces for complex stabilization. Furthermore, it was observed that FN-19 has a binding energy (ΔEMM) value similar to tropolone, a tyrosinase inhibitor. Therefore, the data obtained in this study will be useful for designing and developing novel coumarin-based analogs targeting the tyrosinase enzyme.
Collapse
Affiliation(s)
- Jéssica Alves Nunes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, AC Simões Campus, Lourival Melo Mota Avenue, s/n, Maceió 57072-970, Alagoas, Brazil (E.F.d.S.-J.)
| | - Rodrigo Santos Aquino de Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58429-500, Paraíba, Brazil
| | - Fabrícia Nunes da Silva
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Alagoas, Brazil
| | - Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Alagoas, Brazil
| | | | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, AC Simões Campus, Lourival Melo Mota Avenue, s/n, Maceió 57072-970, Alagoas, Brazil (E.F.d.S.-J.)
| |
Collapse
|
49
|
Shojazadeh T, Zolghadr L, JafarKhani S, Gharaghani S, Farasat A, Piri H, Gheibi N. Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme. J Biomol Struct Dyn 2023; 41:1378-1387. [PMID: 34974821 DOI: 10.1080/07391102.2021.2020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperpigmentation is a disorder caused by increased melanin deposition and changes in skin pigmentation. Inhibition of tyrosinase activity contributes to the control of food browning and skin pigmentation diseases. The effects of arachidonic acid (AA) on tyrosinase activity were examined using different spectroscopy methods including UV-VIS spectrophotometry, fluorescence spectroscopy, circular dichroism (CD) differential scanning calorimetry, and molecular dynamics (MD) simulations. Based on the kinetic results, arachidonic acid showed mixed-type of inhibition with Ki = 4.7 µM. Fluorescence and CD studies showed changes of secondary and tertiary structures of enzyme and a reduction of α-helix* amino acids after its incubation with different concentrations of AA, which is also confirmed by DSSP analysis. In addition, differential scanning calorimetry (DSC) studies showed a decrease in thermodynamic stability of enzyme from Tm = 338.65k for sole enzyme after incubation with AA in comparison with complex enzyme with Tm= 334.26k, ΔH =7.52 kJ/mol, and ΔS = 0.15 kJ/mol k. Based on the theoretical methods, it was found that the interaction between enzyme and AA follows an electrostatic manner with ΔG = -8.314 kJ/mol and ΔH = -12.9 kJ/mol. The MD results showed the lowest flexibility in the complex amino acids and minimal fluctuations in AA interaction with tyrosinase in Residue 240 to 260 and 66 to 80. Thus, AA inhibitory and structural and thermodynamic instability of tyrosinase supported advantages of this fatty acid for prevention of medical hyperpigmentation. Therefore, it is a good candidate for cosmetic applications. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Shojazadeh
- Department of Clinical Biochemistry and Genetic, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University Qazvin, Qazvin, Iran
| | - Saeed JafarKhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
50
|
Lee J, Jeong Y, Jin Jung H, Ullah S, Ko J, Young Kim G, Yoon D, Hong S, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H. Anti-tyrosinase flavone derivatives and their anti-melanogenic activities: Importance of the β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg Chem 2023; 135:106504. [PMID: 37015153 DOI: 10.1016/j.bioorg.2023.106504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Flavone derivatives were designed and synthesized based on the hypothesis that flavones containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold have potential anti-tyrosinase activity. Flavones 1a and 1e inhibited mushroom tyrosinase more potently than kojic acid, and 1e inhibited monophenolase and diphenolase 61- and 28-fold more than kojic acid, respectively. Kinetic studies on mushroom tyrosinase indicated that 1a and 1e competitively inhibit monophenolase and diphenolase, and docking results supported these results. In an in vitro assay using B16F10 murine cells, 1a and 1e inhibited melanin production more potently than kojic acid, and this was attributed to the inhibition of tyrosinase. Furthermore, 1a and 1e strongly scavenged DPPH and ABTS radicals and ROS, which suggested that their antioxidant properties were at least partly responsible for their anti-melanogenic effects. Moreover, flavone 1a also inhibited the gene expressions of the melanogenesis-related genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Our findings that flavone derivatives (i) directly inhibit tyrosinase, (ii) act as antioxidants, and (iii) inhibit the expressions of melanogenesis-related genes suggest their potential use as natural melanogenesis inhibitors. Furthermore, the study confirms that the PUSC scaffold confers anti-tyrosinase activity.
Collapse
|