1
|
Xu J, Wu M, Duan B, Ni Y, Wang A. The Analgesic Effect of a Transdermal Lappaconitine Patch Combined With Ibuprofen Suspension for Children After Adenoidectomy and Tonsillectomy: A Randomized Clinical Trial. J Perianesth Nurs 2025; 40:126-133. [PMID: 38980239 DOI: 10.1016/j.jopan.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE To study the analgesic effects and side effects of a transdermal lappaconitine (TLA) patch, ibuprofen suspension (IS), and TLA combined with IS (TLACIS) after adenoidectomy and tonsillectomy. DESIGN Prospective, randomized clinical trial. METHODS The patients were randomized into three groups defined by different analgesic drug regimens: the TLA group, the IS group, and the TLACIS group. Pain scores at 2, 12, and 24 hours after surgery and adverse-event reports within the first postoperative week were collected. RESULTS Ultimately, this study included 102 cases in the TLA group, 101 cases in the IS group, and 101 cases in the TLACIS group. At 2 hours after surgery, the pain scores of the TLA and the TLACIS groups were both significantly lower than that of the IS group (all P < .05). At 12 and 24 hours after surgery, the pain score of the TLACIS group was significantly lower than those of the TLA and IS groups (all P < .05); furthermore, the pain score of the IS group was significantly lower than that of the TLA group (P < .05). Within 1 week after the operation, there was no significant difference in the incidence of adverse events. CONCLUSIONS The addition of a TLA patch can speed the onset of analgesia. In terms of analgesic effects, IS alone is more advantageous than TLA alone, while the combination of TLA and IS has the best analgesic effect. No significant differences were found in the incidence of adverse events among the three regimens.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Nursing, Children's Hospital of Fudan University, Shanghai, China
| | - Min Wu
- Department of Nursing, Children's Hospital of Fudan University, Shanghai, China
| | - Bo Duan
- Department of Nursing, Children's Hospital of Fudan University, Shanghai, China
| | - Yihua Ni
- Department of Nursing, Children's Hospital of Fudan University, Shanghai, China
| | - Anken Wang
- Department of Nursing, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Xing F, Su HY, Zhong HY, Li YZ, Zhang YY, Chen L, Zhou XL. Synthesis and biological evaluation of lappaconitine analogues as potential anti-neuroinflammatory agents by side chain modification and scaffold hopping strategy. Bioorg Med Chem 2025; 117:118012. [PMID: 39608210 DOI: 10.1016/j.bmc.2024.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Neuroinflammation mediated by microglia is widely recognized as a key pathophysiological mechanism in neurodegenerative diseases. Lappaconitine (LA) is a natural C18-diterpenoid alkaloid isolated from Aconitum sinomontanum Nakai, and previous study showed that LA and its derivatives inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells. However, the anti-neuroinflammatory effects of LA and its derivatives on microglia are still not clear. Here, LA analogues were designed and synthesized, and the anti-neuroinflammatory activity of the synthesized compounds was screened using LPS-induced overexpression of NO in BV-2 microglia. The screening results showed that compound 10 displayed the highest ability to inhibit NO production (IC50 = 9.98 ± 1.6 µM). Mechanistic investigations revealed that compound 10 attenuated LPS-activated neuroinflammation through suppression of TLR4/MyD88/NF-κB pathway in BV-2 microglia. Acute toxicity assays showed that compound 10 (LD50 = 508.1 mg/kg) was safer relative to LA (LD50 = 30.6 mg/kg). Collectively, our findings show that compound 10 could have potential as anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Feng Xing
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong-Yi Su
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - He-Yang Zhong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Zhu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yin-Yong Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China; School of Life Science and Engineering, Yibin Institute of Southwest Jiaotong University, Yibin 644000, China.
| |
Collapse
|
3
|
Xiao Y, Chang Y, Liu YY, Li TT, Qu WR, Yuan C, Chen L, Huang S, Zhou XL. Biologically active franchetine-type diterpenoid alkaloids: Isolation, synthesis, anti-inflammatory, agalgesic activities, and molecular docking. Bioorg Chem 2024; 153:107834. [PMID: 39332071 DOI: 10.1016/j.bioorg.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
In this study, four franchetine-type diterpenoid alkaloids (1-4) were isolated from Aconitum sinoaxillare, and fourteen diverse franchetine analogs (5-18) were synthesized. Compounds 1, 2, 7 and 16 exhibited stronger inhibitory effects on NO production when compared to celecoxib. Among them, compound 1 had the best inhibitory effect on iNOS and COX-2 inflammatory proteins. The in vitro studies displayed that the anti-inflammatory effect of the most active compound 1 was ascribed to the inhibition of the TLR4-MyD88/NF-κB/MAPKs signalling pathway. Consequently, this led to a inhibition in the expression of inflammatory factors or mediators including NO, ROS, TNF-α, IL-6, IL-1β, iNOS, and COX-2. Additionally, compound 1 had low toxicity (LD50 > 20 mg/kg) in mice, and it had notable analgesic effects on acetic acid-induced visceral pain (ED50 = 2.15 ± 0.07 mg/kg). Moreover, compound 1 exhibited a distinct reduction in the NaV1.7 and NaV1.8 channel currents during both resting and half-inactivated states at 50 μM. The present study enriches the pharmacological activities of franchetine derivatives and provides valuable insights for the development of novel anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Ye Chang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yu-Yan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China
| | - Ting-Ting Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Wen-Rong Qu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Cheng Yuan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| |
Collapse
|
4
|
Wu J, Lai X, Zhang Y, Li Y, Huang S, Chen L, Zhou X. Design, synthesis, evaluation, pharmacophore modeling, and 3D-QSAR of lappaconitine analogs as potential analgesic agents. Arch Pharm (Weinheim) 2024:e2400528. [PMID: 39295457 DOI: 10.1002/ardp.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Alleviating pain is crucial for patients with various diseases. This study aimed to enhance the analgesic properties of lappaconitine, a natural drug, through structural modifications. Specifically, carbamate analgesic active fragments were innovatively introduced at multiple sites on the benzene ring of lappaconitine. A total of 53 lappaconitine analogs were synthesized and evaluated. Compounds 5a, 5c, 5e, 6, and 15j addressed the narrow therapeutic window of lappaconitine, enhancing drug safety. Notably, carbamate analogs exhibited significantly enhanced analgesic activity, with compounds 5a and 5c having ED50 values of 1.2 and 1.6 mg/kg, respectively, indicating higher potency than lappaconitine (3.5 mg/kg). A metabolic analysis of compound 5e was conducted in mice, revealing its primary metabolic processes and metabolites, and providing preliminary exploration for the druggability. Given the multiple analgesic targets of lappaconitine, its analgesic mechanism remains inconclusive. This study, for the first time, analyzed the pharmacological activity characteristics of the lappaconitine analogs using a pharmacophore model and established a three-dimensional quantitative structure-activity relationship (3D-QSAR) to elucidate the quantitative relationship between the structures of the synthesized compounds and their analgesic activities. These findings provide valuable guidance for future structural modification and optimization of analgesic drugs.
Collapse
Affiliation(s)
- Jingchuan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaohong Lai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yinyong Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yuzhu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Tang Q, Lu Y, Song J, He Z, Xu JB, Tan J, Gao F, Li X. Light-promoted stereoselective late-stage difunctionalization and anti-tumor activity of oridonin. Fitoterapia 2024; 177:106131. [PMID: 39067489 DOI: 10.1016/j.fitote.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The late-stage difunctionalization of diterpene oridonin by light-promoted direct oxyamination with various O-benzoylhydroxylamines was carried out to afford C16α-N-C17-OBz-oridonin derivatives (1-25) for the first time. Though as a radical reaction, it features high stereoselectivity to only produce C16α-N-C17-OBz-oridonins. The in vitro antiproliferative activity of these C16α-N-C17-OBz-oridonins against the human breast cancer cell lines (MCF-7) was evaluated by MTT assay, showing that most of the synthesized compounds possessed moderate anticancer activity against MCF-7 cell lines superior or similar to the parent compound oridonin. The derivative 25 with a N-methyl-N-(naphthalen-1-ylmethyl) substitution showed better cytotoxicity against MCF-7 cells (IC50 value of 11.75 μM) than oridonin (IC50 value of 17.95 μM).
Collapse
Affiliation(s)
- Qianhui Tang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Yougan Lu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Junying Song
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Zhengyang He
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Jin-Bu Xu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Jiao Tan
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, No.82, University Town Central Road, Chongqing 401331, PR China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Xiaohuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China.
| |
Collapse
|
6
|
Moon CS, Kang HM, Nam Y, Lim J, Kim J, Lee TH, Lee J, Chang MS, Lee JY. Structural Modification and Characteristics of Lappaconitine Alkaloid for the Discovery of Bioactive Components by Hypervalent Iodine Reagent. Org Lett 2024; 26:6535-6539. [PMID: 39087787 DOI: 10.1021/acs.orglett.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Lappaconitine, a diterpene alkaloid isolated from Aconitum sinomontanum Nakai, exhibits a wide range of biological activities, making it a promising candidate for the development of novel derivatives with therapeutic potential. In our research, we executed a two-step transformation via oxidative cleavage of lappaconitine's vicinal diol using the hypervalent iodine reagent PhI(OAc)2, followed by strong alkaline hydrolysis. This approach yielded four new unanticipated compounds, whose structures were identified by spectroscopic methods and/or X-ray crystallography. Thus, we proposed plausible reaction mechanisms for their formations and particularly investigated the remarkable diastereoselectivity for the formation of single stereoisomer 8 observed during the alkaline hydrolysis step. Among them, compound 8 (code name: QG3030) demonstrated both enhanced osteogenic differentiation of human mesenchymal stem cells and significant osteogenic effect in an ovariectomized rat model with no acute oral toxicity.
Collapse
Affiliation(s)
- Chang Sang Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heung Mo Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunchan Nam
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiwoong Lim
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jiewan Kim
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Tae-Hee Lee
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Junho Lee
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Mun Seog Chang
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Zhang W, Mi S, He X, Cui J, Zhi K, Zhang J. Advancements in Non-Addictive Analgesic Diterpenoid Alkaloid Lappaconitine: A Review. Int J Mol Sci 2024; 25:8255. [PMID: 39125825 PMCID: PMC11311510 DOI: 10.3390/ijms25158255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The perennial herb Aconitum sinomontanum Nakai (Ranunculaceae) has been utilized as a traditional oriental medicine in China for numerous years. The principal pharmacological constituent of A. sinomontanum, lappaconitine (LA), exhibits analgesic, anti-inflammatory, anti-tumor, anti-arrhythmic, and anti-epileptic activities. Due to its potent efficacy and non-addictive nature, LA is widely utilized in the management of cancer pain and postoperative analgesia. This review encompasses the research advancements pertaining to LA including extraction methods, separation techniques, pharmacological properties, chemical modifications, and clinical applications. Additionally, it offers insights into the potential applications and current challenges associated with LA to facilitate future research endeavors.
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (S.M.); (X.H.); (J.C.); (K.Z.)
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
| | - Shujuan Mi
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (S.M.); (X.H.); (J.C.); (K.Z.)
| | - Xinxin He
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (S.M.); (X.H.); (J.C.); (K.Z.)
| | - Jiajia Cui
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (S.M.); (X.H.); (J.C.); (K.Z.)
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
| | - Kangkang Zhi
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (S.M.); (X.H.); (J.C.); (K.Z.)
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (S.M.); (X.H.); (J.C.); (K.Z.)
- Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
8
|
Li HQ, Xu JY, Wu SS, Jin L. Molecular Insights into Water-Chloride and Water-Water Interactions in the Supramolecular Architecture of Aconine Hydrochloride Dihydrate. ACS OMEGA 2024; 9:11925-11941. [PMID: 38496984 PMCID: PMC10938397 DOI: 10.1021/acsomega.3c09696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Despite the previous preparation of aconine hydrochloride monohydrate (AHM), accurate determination of the crystal's composition was hindered by severely disordered water molecules within the crystal. In this study, we successfully prepared a new dihydrate form of the aconine hydrochloride [C25H42NO9+Cl-·2(H2O), aconine hydrochloride dihydrate (AHD)] and accurately refined all water molecules within the AHD crystal. Our objective is to elucidate both water-chloride and water-water interactions in the AHD crystal. The crystal structure of AHD was determined at 136 K using X-ray diffraction and a multipolar atom model was constructed by transferring charge-density parameters to explore the topological features of key short contacts. By comparing the crystal structures of dihydrate and monohydrate forms, we have observed that both AHD and AHM exhibit identical aconine cations, except for variations in the number of water molecules present. In the AHD crystal, chloride anions and water molecules serve as pivotal connecting hubs to establish three-dimensional hydrogen bonding networks and one-dimensional hydrogen bonding chain; both water-chloride and water-water interactions assemble supramolecular architectures. The crystal packing of AHD exhibits a complete reversal in the stacking order compared to AHM, thereby emphasizing distinct disparities between them. Hirshfeld surface analysis reveals that H···Cl- and H···O contacts play a significant role in constructing the hydrogen bonding network and chain within these supramolecular architectures. Furthermore, topological analysis and electrostatic interaction energy confirm that both water-chloride and water-water interactions stabilize supramolecular architectures through electrostatic attraction facilitated by H···Cl- and H···O contacts. Importantly, these findings are strongly supported by the existing literature evidence. Consequently, navigating these water-chloride and water-water interactions is imperative for ensuring storage and safe processing of this pharmaceutical compound.
Collapse
Affiliation(s)
- Han-Qing Li
- State
Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
- Mongolian
Medicine Laboratory, International Mongolian
Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic of China
| | - Jia-Yin Xu
- Mongolian
Pharmaceutical Preparation Center, International
Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
| | - Shan-Shan Wu
- State
Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
| | - Liang Jin
- State
Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
| |
Collapse
|
9
|
Xiao Y, Han M, Chen Y, Li YZ, Zhang YY, Chen L, Huang S, Zhou XL. In vitro and in vivo biological evaluation of Lappaconitine derivatives as potential anti-inflammatory agents. Chem Biodivers 2024; 21:e202301761. [PMID: 38117633 DOI: 10.1002/cbdv.202301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/22/2023]
Abstract
Natural products and their derivatives are a precious treasure in the pursuit of potent anti-inflammatory drugs. In this work, we measured the toxicity of 78 LA derivatives at 20 μM using MTT, then we evaluated the NO release of compounds without obvious toxicity in LPS-induced RAW.264.7 by Griess reagent, we identified three compounds, namely compounds 6, 19, 70, which exhibited promising anti-inflammatory potential. These compounds exhibited IC50 values of 10.34±2.05 μM, 18.18±4.80 μM and 15.66±0.88 μM. In addition, through ELISA kits, compounds 6, 19, 70 significantly reduce the production of inflammatory factors (TNF-α, IL-6, IL-1β). Real-time PCR and western blot analysis showed that compounds 6, 19, 70 inhibited the mRNA and protein expression of iNOS and COX-2. Notably, compound 6 exhibited the most potent inhibitory activity. In vitro, it inhibits LPS-induced phosphorylation of NF-κB p65, IκBα, ERK1/2, JNK, and p38 MAPKs in RAW264.7 cells. In vivo, compound 6 potently inhibits the secretion of inflammatory mediators and neutrophil activation in ALI mice. Our findings suggest that compound 6 may be a potential anti-inflammatory drug.
Collapse
Affiliation(s)
- Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Meng Han
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Ying Chen
- Sichuan Provincial Administration of Traditional Chinese Medicine, 610017, Chengdu, Sichuan, People's Republic of China
| | - Yu-Zhu Li
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Yin-Yong Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Cheremnykh KP, Bryzgalov AO, Baev DS, Borisov SA, Sotnikova YS, Savelyev VA, Tolstikova TG, Sagdullaev SS, Shults EE. Synthesis, Pharmacological Evaluation, and Molecular Modeling of Lappaconitine-1,5-Benzodiazepine Hybrids. Molecules 2023; 28:4234. [PMID: 37241973 PMCID: PMC10223824 DOI: 10.3390/molecules28104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, have long interested scientists due to their medicinal uses and infamous toxicity which has limited the clinical application of the native compound. Alkaloid lappaconitine extracted from various Aconitum and Delphinium species has displayed extensive bioactivities and active ongoing research to reduce its adverse effects. A convenient route to construct hybrid molecules containing diterpenoid alkaloid lappaconitine and 3H-1,5-benzodiazepine fragments was proposed. The key stage involved the formation of 5'-alkynone-lappaconitines in situ by acyl Sonogashira coupling of 5'-ethynyllappaconitine, followed by cyclocondensation with o-phenylenediamine. New hybrid compounds showed low toxicity and outstanding analgesic activity in experimental pain models, which depended on the nature of the substituent in the benzodiazepine nucleus. An analogous dependence was also shown for the antiarrhythmic activity in the epinephrine arrhythmia test in vivo. Studies on the isolated atrium have shown that the mechanism of action of the new compounds is included the blockade of beta-adrenergic receptors and potassium channels. Molecular docking analysis was conducted to determine the binding potential of target molecules with the voltage-gated sodium channel NaV1.5. All obtained results provide a basis for future rational modifications of lappaconitine, reducing side effects, while retaining its therapeutic effects.
Collapse
Affiliation(s)
- Kirill P. Cheremnykh
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Arkadiy O. Bryzgalov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Sergey A. Borisov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Yulia S. Sotnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Victor A. Savelyev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Shamansur S. Sagdullaev
- S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan;
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| |
Collapse
|
11
|
He H, Chen R, Wang Z, Qing L, Zhang Y, Liu Y, Pan W, Fang H, Zhang S. Design of Orally-bioavailable Tetra-cyclic phthalazine SOS1 inhibitors with high selectivity against EGFR. Bioorg Chem 2023; 136:106536. [PMID: 37054529 DOI: 10.1016/j.bioorg.2023.106536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many deadliest cancers. Son of sevenless homolog 1 (SOS1) is a crucial regulator of KRAS to modulate KRAS from inactive to active states. We previously discovered tetra-cyclic quinazolines as an improved scaffold for inhibiting SOS1-KRAS interaction. In this work, we report the design of tetra-cyclic phthalazine derivatives for selectively inhibiting SOS1 against EGFR. The lead compound 6c displayed remarkable activity to inhibit the proliferation of KRAS(G12C)-mutant pancreas cells. 6c showed a favorable pharmacokinetic profile in vivo, with a bioavailability of 65.8% and exhibited potent tumor suppression in pancreas tumor xenograft models. These intriguing results suggested that 6c has the potential to be developed as a drug candidate for KRAS-driven tumors.
Collapse
Affiliation(s)
- Huan He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, PR China
| | - Ruiqi Chen
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ziwei Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Luolong Qing
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China.
| | - Huaxiang Fang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Silong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, PR China.
| |
Collapse
|
12
|
Ji J, Chen J, Qin S, Li W, Zhao J, Li G, Song H, Liu XY, Qin Y. Total Synthesis of Vilmoraconitine. J Am Chem Soc 2023; 145:3903-3908. [PMID: 36779887 DOI: 10.1021/jacs.3c00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Vilmoraconitine belongs to one of the most complex skeleton types in the C19-diterpenoid alkaloids, which architecturally features an unprecedented heptacyclic core possessing a rigid cyclopropane unit. Here, we report the first total synthesis of vilmoraconitine relying on strategic use of efficient ring-forming reactions. Key steps include an oxidative dearomatization-induced Diels-Alder cycloaddition, a hydrodealkenylative fragmentation/Mannich sequence, and an intramolecular Diels-Alder cycloaddition.
Collapse
Affiliation(s)
- Jiujian Ji
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Sixun Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanye Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guozhao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|