1
|
Zhang J, Chen C, Chen X, Liao K, Li F, Song X, Liu C, Su MY, Sun H, Hou T, Tan CSH, Fang L, Rao H. Linker-free PROTACs efficiently induce the degradation of oncoproteins. Nat Commun 2025; 16:4794. [PMID: 40410168 PMCID: PMC12102262 DOI: 10.1038/s41467-025-60107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) present a potentially effective strategy against various diseases via selective proteolysis. How to increase the efficacy of PROTACs remains challenging. Here, we explore the necessity of the linker, which has been deemed as an integral part of heterobifunctional PROTACs. Adopting single amino acid-based degradation signals, we find that the linker is not a required feature of the PROTACs. Notably, the linker-free PROTAC, Pro-BA, exhibits superior efficacy over its linker-bearing counterparts in degrading EML4-ALK and inhibiting lung cancer cell growth, as Pro-BA induces a stronger interaction between the target and the E3 ubiquitin ligase. Pro-BA is a water-soluble, orally administered degrader that significantly inhibits the tumor growth in a xenograft mouse model. The broad applicability of this linker-free PROTAC strategy is further validated through the development of BCR-ABL degrader. Our study introduces a design paradigm for PROTACs, potentially facilitating the advancement of more efficient therapeutic degraders.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Congli Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Xiao Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kefan Liao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fengming Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxiao Song
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chaowei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ming-Yuan Su
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Zhang B, Gao S, Wu T, Ma Y, Fang S, Rong M, Jia W, Zhang S, Hou H, Wang X, Zhang S, Qin C. Rational Design of Dual Degraders by Incorporating Molecular Glue Structural Features into PROTAC Degraders. J Med Chem 2025; 68:10268-10298. [PMID: 40340418 DOI: 10.1021/acs.jmedchem.5c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
PROTAC and molecular glue present a novel therapeutic approach to tackle diseases propelled by the aberrant expression of disease-causing proteins. In this study, we identified a number of AR/AR-V7 and GSPT1 degraders that possess both PROTAC and molecular glue characteristics. The exploration of SAR led to the discovery of BWA-6047 as a potent degrader. BWA-6047 exhibited potent protein degradation in 22Rv1 cells (AR: DC50 = 3.7 nM, Dmax = 90%; AR-V7: DC50 = 3.0 nM, Dmax = 93%; GSPT1: DC50 = 1.2 nM, Dmax = 94%). Mechanism experiments indicate that BWA-6047 functions as both PROTAC and molecular glue to degrade target proteins. Oral administration of BWA-6047 at 20 mpk significantly inhibited LNCaP xenograft tumor growth in mice without obvious toxicity. Dual AR/AR-V7 and GSPT1 degraders represent a class of promising novel mechanism compounds for further extensive evaluations in prostate cancer treatment.
Collapse
Affiliation(s)
- Bowen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shan Gao
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tingting Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yan Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Senbiao Fang
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China
| | - Mengyan Rong
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Wenrui Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Sai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hui Hou
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Siqi Zhang
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Educa-tion, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Ma-rine Science and Technology Center, Qingdao, Shandong 266137, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China
| |
Collapse
|
3
|
Xiong S, Yang J, Yang M, Xiao M, Ha S, Tao W, Ma L, Ji C, Xiang H, Luo G. Discovery of a Highly Potent and Selective Tyrosine Kinase 2 (TYK2) Degrader with In Vivo Therapeutic Efficacy in a Murine Psoriasis Model. J Med Chem 2025; 68:7560-7578. [PMID: 40116635 DOI: 10.1021/acs.jmedchem.5c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Tyrosine kinase 2 (TYK2), a critical scaffolding kinase required for type I interferon, IL-12 and IL-23 cytokine signaling, represents a compelling therapeutic target for various autoimmune diseases. However, existing TYK2 inhibitors only modulate its kinase activity. Here, we report the development of a first series of CRBN-recruiting TYK2 PROTACs based on an allosteric TYK2 inhibitor. Optimization of the potency and metabolic stability identified 15t as an exceptionally potent and selective TYK2 degrader with a DC50 value of 0.42 nM and a Dmax value of 95%, which potently and selectively blocked TYK2-dependent signaling. Importantly, 15t was active in vivo and significantly suppressed TYK2-mediated pathology in a murine psoriasis model without apparent toxicity. Collectively, our study provides a potentially valuable chemical knockdown probe for subtype-selective TYK2 degradation and further understanding TYK2 scaffolding biology, demonstrating the therapeutic potential of TYK2 PROTACs in immuno-inflammatory diseases such as psoriasis.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiaqi Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Maoxu Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Luyu Ma
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chenxuan Ji
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
4
|
Li J, Li L, Hou C, Tian Z, Zhou Y, Zhang J, Ren X, Wang Z, Huang W, Ding K, Zhou F. Discovery of the first potent ROR1 degrader for the treatment of non-small cell lung cancer. Eur J Med Chem 2025; 286:117325. [PMID: 39889450 DOI: 10.1016/j.ejmech.2025.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
ROR1 has been identified as a pseudokinase, functioning as an allosteric regulator in tumor progression. Aberrant overexpression of ROR1 has been observed in various malignancies, highlighting its potential as therapeutic target for cancer therapy. Modulation of ROR1 by proteolysis targeting chimera degrader instead of traditional inhibitor could offer great efficiency in blocking its kinase-independent regulatory function. Here, we report the first potent ROR1 degraders constructed by connecting the E3 ligand to a ROR1 binder. One representative compound 11d exhibited remarkable efficacy in depleting ROR1 protein with a DC50 value of 40.88 nM and Dmax of 93.7 %. Mechanistic investigations illuminated that compound 11d triggers ROR1 protein degradation in a ubiquitin proteasome system (UPS)-dependent manner. Additionally, compound 11d displayed a significantly enhanced ability to inhibit ROR1 signaling, induce apoptosis, and suppress proliferation in lung cell lines compared to the warhead ROR1 binder. These findings underscore the substantial potential of ROR1 degrader for the treatment of non-small cell lung cancer (NSCLC) cells.
Collapse
Affiliation(s)
- Jinlin Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lin Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhaodi Tian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
5
|
Lu Y, Yan Z, Sun J, Wang C, Xu L, Lyu X, Wang X, Lou J, Huang H, Meng L, Zhao Y. Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo. J Med Chem 2025; 68:5616-5640. [PMID: 39804031 DOI: 10.1021/acs.jmedchem.4c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders. Both series yielded potent TEAD degraders, including 19 and 40 (H122), which induced TEAD1 degradation with DC50 < 10 nM. Mechanistic studies demonstrated that the degradation of TEAD1 induced by 40 relied on CRBN binding, TEAD1 binding, E3 ligase activity, and a functional proteasome. RNA-seq analyses indicated that 40 significantly downregulated the expression of Myc target genes, as highlighted by GSEA analysis. More importantly, 40 exhibited robust antitumor efficacy in the MSTO-211H mouse xenograft model. Collectively, our results suggest that TEAD PROTACs have therapeutic potential for the treatment of cancers associated with TEAD overactivation.
Collapse
Affiliation(s)
- Yuhang Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
| | - Jiaqi Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenxu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lan Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
| | - Xiancheng Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Linghua Meng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yujun Zhao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
He J, Liu S, Zhang S, Gao Q, Zhu L, Xu N, Hu Z, Zhang X, Ma S, Wang X, Liu B, Liu W. Targeted degradation of CDK4/6 by LA-CB1 inhibits EMT and suppresses tumor growth in orthotopic breast cancer. Sci Rep 2025; 15:7605. [PMID: 40038413 PMCID: PMC11880390 DOI: 10.1038/s41598-025-92494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) are central regulators of cell cycle progression and frequently dysregulated in cancers, including breast cancer. While selective CDK4/6 inhibitors like Palbociclib, Ribociclib, and Abemaciclib have shown clinical benefit in hormone receptor-positive (HR+) breast cancer, their efficacy is often limited by resistance mechanisms and dose-limiting toxicities. In this study, we developed LA-CB1, a novel Abemaciclib derivative that induces CDK4/6 degradation through the ubiquitin-proteasome pathway, aiming to achieve sustained inhibition of the CDK4/6-Rb axis. LA-CB1 demonstrated potent anti-proliferative effects in various breast cancer cell lines, with notable efficacy in triple-negative breast cancer (TNBC) and HR + breast cancer models. Molecular docking studies confirmed high-affinity binding of LA-CB1 to the ATP-binding pocket of CDK4/6. Mechanistic studies revealed that LA-CB1 induces G0/G1 cell cycle arrest and promotes apoptosis through the degradation of CDK4/6. Importantly, LA-CB1 also suppressed epithelial-mesenchymal transition (EMT), inhibiting key processes such as cell migration, invasion, and angiogenesis, indicating its ability to disrupt multiple hallmarks of cancer. In an orthotopic breast cancer model, LA-CB1 significantly reduced tumor growth in a dose-dependent manner. These results suggest that LA-CB1 represents a promising therapeutic strategy by targeting CDK4/6 for degradation, addressing limitations associated with current CDK4/6 inhibitors, and providing broad anti-tumor activity in aggressive cancer types like TNBC.
Collapse
Affiliation(s)
- Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030, China
| | - Siyi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ningyang Xu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Zhongke Hu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xingyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Cole RN, Fang Q, Matsuoka K, Wang Z. Androgen receptor inhibitors in treating prostate cancer. Asian J Androl 2025; 27:144-155. [PMID: 39558858 PMCID: PMC11949463 DOI: 10.4103/aja202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
ABSTRACT Androgens play an important role in prostate cancer development and progression. Androgen action is mediated through the androgen receptor (AR), a ligand-dependent DNA-binding transcription factor. AR is arguably the most important target for prostate cancer treatment. Current USA Food and Drug Administration (FDA)-approved AR inhibitors target the ligand-binding domain (LBD) and have exhibited efficacy in prostate cancer patients, particularly when used in combination with androgen deprivation therapy. Unfortunately, patients treated with the currently approved AR-targeting agents develop resistance and relapse with castration-resistant prostate cancer (CRPC). The major mechanism leading to CRPC involves reactivation of AR signaling mainly through AR gene amplification, mutation, and/or splice variants. To effectively inhibit the reactivated AR signaling, new approaches to target AR are being actively explored. These new approaches include novel small molecule inhibitors targeting various domains of AR and agents that can degrade AR. The present review provides a summary of the existing FDA-approved AR antagonists and the current development of some of the AR targeting agents.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Zhang Q, He Y, Rao D, He R, Yu L, Sun Y, Lai Y, Shi Z, Peng L, Zhang Z, Xu S. Discovery of an Efficacious RET PROTAC Degrader with Enhanced Antiproliferative Activity against Resistant Cancer Cells Harboring RET Solvent-Front Mutations. J Med Chem 2025; 68:753-775. [PMID: 39731581 DOI: 10.1021/acs.jmedchem.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance. Herein, we describe the design, synthesis, and evaluation of a series of RET PROTAC degraders. The representative compound QZ2135 (20) effectively degraded RET kinase and its resistant mutants, such as V804M and G810C/R. It also exhibited superior antiproliferative activity against Ba/F3 cells stably expressing oncogenic fusions of RET with solvent-front mutants, including G810C/R/S, compared to its parental inhibitor. Notably, QZ2135 demonstrated in vivo antitumor efficacy in a Ba/F3-KIF5B-RET-G810C xenograft mouse model. Together, this study provides a potential alternative strategy for overcoming acquired resistance to RET inhibitors mediated by solvent-front mutations.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingqi He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510310, China
| | - Zihan Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, School of Pharmacy, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Thyroid and Breast Surgery, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510310, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Abeje Y, Wieske LHE, Poongavanam V, Maassen S, Atilaw Y, Cromm P, Lehmann L, Erdelyi M, Meibom D, Kihlberg J. Impact of Linker Composition on VHL PROTAC Cell Permeability. J Med Chem 2025; 68:638-657. [PMID: 39693386 PMCID: PMC11726670 DOI: 10.1021/acs.jmedchem.4c02492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
The discovery of cell permeable and orally bioavailable von Hippel-Lindau (VHL) proteolysis targeting chimeras (PROTACs) is challenging as their structures locates them at, or beyond, the outer limits of oral druggable space. We have designed a set of nine VHL PROTACs and found that the linker had a profound impact on passive cell permeability. Determination of the solution ensembles in a nonpolar solvent revealed that high permeability was correlated to the ability of the PROTACs to adopt folded conformations that have a low solvent accessible 3D polar surface area. Our results suggest that the design of cell permeable VHL PROTACs could focus on linkers that facilitate shielding of polar surface area in the VHL ligand in a nonpolar but not in a polar environment. In addition, we found that not only intramolecular hydrogen bonds, but also NH-π and π-π interactions contribute to the stabilization of low-polarity conformations, and thereby to high cell permeability.
Collapse
Affiliation(s)
| | - Lianne H. E. Wieske
- Department
of Chemistry—BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | | | | | - Yoseph Atilaw
- Department
of Chemistry—BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Philipp Cromm
- Bayer
AG, Drug Discovery Sciences, 42113 Wuppertal, Germany
| | - Lutz Lehmann
- Bayer
AG, Drug Discovery Sciences, 42113 Wuppertal, Germany
| | - Mate Erdelyi
- Department
of Chemistry—BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Daniel Meibom
- Bayer
AG, Drug Discovery Sciences, 42113 Wuppertal, Germany
| | - Jan Kihlberg
- Department
of Chemistry—BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| |
Collapse
|
10
|
Santisteban Valencia Z, Kingston J, Miljković F, Rowbottom H, Mann N, Davies S, Ekblad M, Di Castro S, Kwapień K, Malmerberg E, Friis SD, Lundbäck T, Leek T, Wernevik J. Closing the Design-Make-Test-Analyze Loop: Interplay between Experiments and Predictions Drives PROTACs Bioavailability. J Med Chem 2024; 67:20242-20257. [PMID: 39514447 DOI: 10.1021/acs.jmedchem.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The drug development landscape is expanding to include drug modalities such as PROteolysis-TArgeting Chimeras (PROTACs) and peptides, offering possibilities for previously intractable biological targets. However, with their size and chemical nature, they diverge from established frameworks for the prediction of oral bioavailability. This evolution to larger and more complex molecules necessitates new methodologies and prediction models to continuously expand on bioavailability guidelines. We describe the high-capacity adoption of two chromatographic physicochemical assays and their application for iterative compound optimization to achieve oral bioavailability. We further describe how these data underpin the continuous refinement of internal machine learning models, which guide compound synthesis decisions in the molecular design phase. Based on data for a set of 691 PROTACs, and two project examples, we confirm a sweet spot for oral bioavailability at log D values higher than the norm for small molecules and show how experimental data and prediction models synergize to effectively drive chemistry optimization.
Collapse
Affiliation(s)
| | - Jennifer Kingston
- Oncology Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Filip Miljković
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Hannah Rowbottom
- Assays, Profiling and Cell Sciences, Discovery Sciences, R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Nadia Mann
- Assays, Profiling and Cell Sciences, Discovery Sciences, R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Sophie Davies
- Oncology Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Martin Ekblad
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Silvio Di Castro
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Karolina Kwapień
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Erik Malmerberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Stig D Friis
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Thomas Lundbäck
- Assays, Profiling and Cell Sciences, Discovery Sciences, R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Tomas Leek
- Physical and Analytical Chemistry, Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| | - Johan Wernevik
- Assays, Profiling and Cell Sciences, Discovery Sciences, R&D, AstraZeneca, Mölndal SE-431 83, Sweden
| |
Collapse
|
11
|
Acharyya RK, Rej RK, Hu B, Chen Z, Wu D, Lu J, Metwally H, McEachern D, Wang Y, Jiang W, Bai L, Tošović J, Gersch CL, Xu G, Zhang W, Wu W, Priestley ES, Sui Z, Sarkari F, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-1233 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader for the Treatment of ER+ Human Breast Cancer. J Med Chem 2024; 67:19010-19037. [PMID: 39485242 DOI: 10.1021/acs.jmedchem.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the development of highly effective therapies for the treatment of estrogen receptor α (ERα)-positive human breast cancer, clinical resistance to current therapies requires the development of novel therapeutic strategies. Herein, we report the discovery of ERD-1233 as a potent and orally efficacious ERα degrader designed using the PROTAC technology. ERD-1233 was developed based on Lasofoxifene as the ER binding moiety and a novel cereblon ligand through extensive optimization of the linker. ERD-1233 potently and effectively reduces the ERα protein in vitro and achieves excellent oral bioavailability in mice and rats. Oral administration of ERD-1233 effectively reduces ER protein in ER+ tumors and achieves tumor regression in the ER wild-type MCF-7 xenograft tumor model and strong tumor growth inhibition in the ESR1Y537S mutated model in mice. Our data demonstrate that ERD-1233 is a promising ER PROTAC degrader for extensive evaluation as a new therapy for the treatment of ER+ human breast cancer.
Collapse
Affiliation(s)
- Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Jiang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guozhang Xu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Weihong Zhang
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - WenXue Wu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - E Scott Priestley
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Zhihua Sui
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Mi D, Li C, Li Y, Yao M, Li Y, Hong K, Xie C, Chen Y. Discovery of novel BCL6-Targeting PROTACs with effective antitumor activities against DLBCL in vitro and in vivo. Eur J Med Chem 2024; 277:116789. [PMID: 39208743 DOI: 10.1016/j.ejmech.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors. The optimal compound DZ-837 degraded BCL6 with DC50 values around 600 nM and effectively inhibited the proliferation of several DLBCL cell lines. Further study indicated that DZ-837 induced significant G1 phase arrest and exhibited sustained reactivation of BCL6 downstream genes. In the SU-DHL-4 xenograft model, DZ-837 significantly inhibited tumor growth with TGI of 71.8 % at 40 mg/kg once daily. Furthermore, the combination of DZ-837 with BTK inhibitor Ibrutinib showed synergistic effects and overcame acquired resistance against DLBCL cells. Overall, our findings demonstrate that DZ-837 is an effective BCL6 degrader for DLBCL treatment as a monotherapy or in combination with Ibrutinib.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Animals
- Cell Proliferation/drug effects
- Mice
- Structure-Activity Relationship
- Drug Discovery
- Drug Screening Assays, Antitumor
- Molecular Structure
- Dose-Response Relationship, Drug
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Proteolysis Targeting Chimera
Collapse
Affiliation(s)
- Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuzhan Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | | | - Yan Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Keyu Hong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunna, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Yan S, Zhang G, Luo W, Xu M, Peng R, Du Z, Liu Y, Bai Z, Xiao X, Qin S. PROTAC technology: From drug development to probe technology for target deconvolution. Eur J Med Chem 2024; 276:116725. [PMID: 39083982 DOI: 10.1016/j.ejmech.2024.116725] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug development remains a critical focus within the global pharmaceutical industry. To date, more than 80 % of disease targets are considered difficult to target. The emergence of PROTAC technology has, to some extent, alleviated this challenge. Since introduction, PROTAC technology has evolved through the peptide E3 ligase ligand phase and the small molecule E3 ligase ligand phase. Currently, multiple PROTAC molecules are in the clinical research phase, showing promising potential for addressing drug resistance, disease recurrence, and intractable targets. Target deconvolution is a crucial step in the drug discovery and development process. Due to the exceptional targeting ability and specificity of PROTAC, it is widely used and promoted as an innovative technology for discovering new drug targets, leading to significant breakthroughs. The use of PROTAC probe requires only a catalytic dose and weak interaction with the target protein to achieve target degradation. Thus, it offers substantial advantages over traditional probes, particularly in identifying new targets that are low-abundance or difficult to target. This review provides a comprehensive overview of the advancements made by PROTAC technology in drug development and drug target discovery, while also systematically reviewing the workflow of PROTAC probe. With the ongoing development of PROTAC technology, PROTAC probe is poised to become a key research area in future drug target deconvolution.
Collapse
Affiliation(s)
- Si Yan
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Guangshuai Zhang
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Wei Luo
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Mengwei Xu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Yan Liu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Zhaofang Bai
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Xiaohe Xiao
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Shuanglin Qin
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| |
Collapse
|
14
|
Venturi A, Di Bona S, Desantis J, Eleuteri M, Bartalucci M, Baroni M, Benedetti P, Goracci L, Cruciani G. Between Theory and Practice: Computational/Experimental Integrated Approaches to Understand the Solubility and Lipophilicity of PROTACs. J Med Chem 2024; 67:16355-16380. [PMID: 39271471 DOI: 10.1021/acs.jmedchem.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Emerging drug candidates more often fall in the beyond-rule-of-five chemical space. Among them, proteolysis targeting chimeras (PROTACs) have gained great attention in the past decade. Although physicochemical properties of small molecules accomplishing Lipinski's rule-of-five can now be easily predicted through models generated by large data collections, for PROTACs the knowledge is still limited and heterogeneous, hampering their prediction. Here, the kinetic solubility and the coefficient of distribution at pH 7.4 (LogD7.4) of 44 PROTACs, designed and synthesized to cover a wide chemical space, were measured. Their generally low solubility and high lipophilicity required an optimization of the experimental methods. Concerning the LogD7.4, several in silico prediction tools were tested, which were quite accurate for classical small molecules but provided dissimilar outcomes for PROTACs. Finally, in silico models for the prediction of PROTACs' kinetic solubility and LogD7.4 were proposed by combining in-house generated experimental data with 3D description of PROTACs' structures.
Collapse
Affiliation(s)
- Andrea Venturi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Stefano Di Bona
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Jenny Desantis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Michela Eleuteri
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Matteo Bartalucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Massimo Baroni
- Kinetic Business Centre, Molecular Discovery Ltd., Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Paolo Benedetti
- Kinetic Business Centre, Molecular Discovery Ltd., Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
15
|
Oduselu GO, Elebiju OF, Ogunnupebi TA, Akash S, Ajani OO, Adebiyi E. Employing Hexahydroquinolines as PfCDPK4 Inhibitors to Combat Malaria Transmission: An Advanced Computational Approach. Adv Appl Bioinform Chem 2024; 17:83-105. [PMID: 39345873 PMCID: PMC11430315 DOI: 10.2147/aabc.s476404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background Existing antimalarial drugs primarily target blood-stage parasites, but there is a need for transmission-blocking drugs to combat malaria effectively. Plasmodium falciparum Calcium-dependent Protein Kinase 4 (CDPK4) is a promising target for such drugs. This study employed advanced in silico analyses of hexahydroquinolines (HHQ) derivatives to identify PfCDPK4 inhibitors capable of disrupting malaria transmission. Structure-based virtual screening (SBVS) was employed to discover HHQ derivatives with the highest binding affinities against the 3D structure of PfCDPK4 (PDB 1D: 4QOX). Methods Interaction analysis of protein-ligand complexes utilized Discovery Studio Client, while druglikeness and ADMET properties were assessed using SwissADME and pkCSM web servers, respectively. Quantum mechanical calculations of the top hits were conducted using density functional theory (DFT), and GROMACS was employed to perform the molecular dynamics (MD) simulations. Binding free energy was predicted using the MMPBSA.py tool from the AMBER package. Results SBVS identified ten best hits possessing docking scores within the range of -11.2 kcal/mol and -10.6 kcal/mol, surpassing the known inhibitor, BKI-1294 (-9.9 kcal/mol). Among these, 4-[4-(Furan-2-carbonyl)piperazin-1-yl]-1-(naphthalen-2-ylmethyl)-2-oxo-4a,5,6,7,8,8a-hexahydroquinoline-3-carbonitrile (PubChem ID: 145784778) exhibited the highest binding affinity (-11.2 kcal/mol) against PfCDPK4. Conclusion Comparative analysis of this compound with BKI-1294 using advanced computational approaches demonstrated competitive potential. These findings suggest the potential of 4-[4-(Furan-2-carbonyl)piperazin-1-yl]-1-(naphthalen-2-ylmethyl)-2-oxo-4a,5,6,7,8,8a-hexahydroquinoline-3-carbonitrile as a promising PfCDPK4 inhibitor for disrupting malaria transmission. However, further experimental studies are warranted to validate its efficacy and safety profile.
Collapse
Affiliation(s)
- Gbolahan O Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
| | - Oluwadunni F Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- Department of Chemistry, Covenant University, Ota, OG, Nigeria
| | - Temitope A Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- Department of Chemistry, Covenant University, Ota, OG, Nigeria
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Olayinka O Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- Department of Chemistry, Covenant University, Ota, OG, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
17
|
Das D, Xie L, Hong J. Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019-2024). RSC Med Chem 2024:d4md00384e. [PMID: 39246743 PMCID: PMC11376191 DOI: 10.1039/d4md00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for the major portion (80-85%) of all lung cancer cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are commonly used as the targeted therapy for EGFR-mutated NSCLC. The FDA has approved first-, second- and third-generation EGFR-TKIs as therapeutics options. Osimertinib, the third-generation irreversible EGFR-TKI, has been approved for the treatment of NSCLC patients with the EGFRT790M mutation. However, due to the EGFRC797S mutation in the kinase domain of EGFR, resistance to osimertinib is observed and that limits the long-term effectiveness of the drug. The C797S mutation is one of the major causes of drug resistance against the third-generation EGFR TKIs. The C797S mutations including EGFR double mutations (19Del/C797S or L858R/C797S) and or EGFR triple mutations (19Del/T790M/C797S or L858R/T790M/C797S) cause major resistance to the third-generation EGFR-TKIs. Therefore, the discovery and development of fourth-generation EGFR-TKIs to target triple mutant EGFR with C797S mutation is a challenging topic in medicinal chemistry research. In this review, we discuss the discovery of novel fourth-generation EGFR TKIs, medicinal chemistry approaches and the strategies to overcome the C797S mutations. In vitro activities of EGFR-TKIs (2019-2024) against mutant EGFR TK, anti-proliferative activities, structural modifications, binding modes of the inhibitors and in vivo efficacies in animal models are discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Lingzhi Xie
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| |
Collapse
|
18
|
He Y, Zheng Y, Zhu C, Lei P, Yu J, Tang C, Chen H, Diao X. Radioactive ADME Demonstrates ARV-110's High Druggability Despite Low Oral Bioavailability. J Med Chem 2024; 67:14277-14291. [PMID: 39072617 DOI: 10.1021/acs.jmedchem.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as potentially effective therapeutic medicines, but their high molecular weight and poor solubility directly impact their oral bioavailability. This work synthesized 14C-labeled bavdegalutamide (ARV-110) as a model compound of PROTACs to evaluate its ADME features. Compared with targeted antitumor drugs, the use of food increased oral bioavailability of ARV-110 in rats from 10.75% to 20.97%, which is still undesirable. However, the therapeutic effect of ARV-110 at a low dose was much better than that of enzalutamide, demonstrating the specific catalytic medicinal properties of PROTACs. Moreover, the specific distribution of ARV-110 in subcutaneous prostate tumors was determined by quantitative whole-body autoradiography (QWBA). Notably, the specificity and activity of PROTACs take precedence over their oral absorption, and high oral bioavailability is not necessary to produce excellent therapeutic effects. This work presents a roadmap for developing future PROTAC medications from a radioactive drug metabolism and pharmacokinetics (DMPK) perspective.
Collapse
Affiliation(s)
- Yifei He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenggu Zhu
- Wuxi Beita Pharmatech Co., Ltd., Wuxi 214437, China
| | - Peng Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Hao Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- XenoFinder Co., Ltd., Suzhou 215123, China
| |
Collapse
|
19
|
Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol 2024; 275:133680. [PMID: 38971291 DOI: 10.1016/j.ijbiomac.2024.133680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130021, China
| | - Anhui Wei
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
20
|
Jarusiewicz JA, Yoshimura S, Actis M, Li Y, Fu X, Yang L, Narina S, Pruett-Miller SM, Zhou S, Wang X, High AA, Nishiguchi G, Yang JJ, Rankovic Z. Development of an Orally Bioavailable LCK PROTAC Degrader as a Potential Therapeutic Approach to T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2024; 67:11868-11884. [PMID: 38973320 DOI: 10.1021/acs.jmedchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Despite significant advances over recent years, the treatment of T cell acute lymphoblastic leukemia (T-ALL) remains challenging. We have recently shown that a subset of T-ALL cases exhibited constitutive activation of the lymphocyte-specific protein tyrosine kinase (LCK) and were consequently responsive to treatments with LCK inhibitors and degraders such as dasatinib and dasatinib-based PROTACs. Here we report the design, synthesis and in vitro/vivo evaluation of SJ45566, a potent and orally bioavailable LCK PROTAC.
Collapse
Affiliation(s)
- Jamie A Jarusiewicz
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Xiang Fu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Shilpa Narina
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gisele Nishiguchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
21
|
Li Y, Qu J, Jiang L, Peng X, Wu K, Chen M, Peng Y, Cao X. Application and challenges of nitrogen heterocycles in PROTAC linker. Eur J Med Chem 2024; 273:116520. [PMID: 38788299 DOI: 10.1016/j.ejmech.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The absence of effective active pockets makes traditional molecularly targeted drug strategies ineffective against 80 % of human disease-related proteins. The PROTAC technology effectively makes up for the deficiency of traditional molecular targeted drugs, which produces drug activity by degrading rather than inhibiting the target protein. The degradation of PROTAC is not only affected by POI ligand and E3 ligand, but by the selection of suitable linker which can play an important role in the efficiency and selectivity of the degradation. In the early exploring stage of the PROTAC, flexible chains were priorly applied as the linker of PROTAC. Although PROTAC with flexible chains as linkers sometimes perform well in vitro bioactivity evaluations, the introduction of lipophilic flexible chains reduces the hydrophilicity of these molecules, resulting in generally poor pharmacokinetic characteristics and pharmacological activities in vivo. In addition, recent reports have also shown that some PROTAC with flexible chains have some risks to causing hemolysis in vivo. Therefore, PROTAC with flexible chains show less druggability and large difficulty to entering the clinical trial stage. On the other hand, the application of nitrogen heterocycles in the design of PROTAC linkers has been widely reported in recent years. More and more reports have shown that the introduction of nitrogen heterocycles in the linker not only can effectively improves the metabolism of PROTAC in vivo, but also can enhance the degradation efficiency and selectivity of PROTAC. These PROTAC with nitrogen heterocycle linkers have attracted much attention of pharmaceutical chemists. The introduction of nitrogen heterocycles in the linker deserves priority consideration in the primary design of the PROTAC based on various druggabilities including pharmacokinetic characteristics and pharmacological activity. In this work, we summarized the optimization process and progress of nitrogen heterocyclic rings as the PROTAC linker in recent years. However, there were still limited understanding of how to discover, design and optimize PROTAC. For example, the selection of the types of nitrogen heterocycles and the optimization sites of this linker are challenges for researchers, choosing between four to six-membered nitrogen heterocycles, selecting from saturated to unsaturated ones, and even optimizing the length and extension angle of the linker. There is a truly need for theoretical explanation and elucidation of the PROTAC to guide the developing of more effective and valuable PROTAC.
Collapse
Affiliation(s)
- Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junfeng Qu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Lizhi Jiang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kaiyue Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Miaojia Chen
- Department of Pharmacy, The First People's Hospital, Pingjiang, Yueyang, Hunan, China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330000, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
22
|
Song Y, Dong QQ, Ni YK, Xu XL, Chen CX, Chen W. Nano-Proteolysis Targeting Chimeras (Nano-PROTACs) in Cancer Therapy. Int J Nanomedicine 2024; 19:5739-5761. [PMID: 38882545 PMCID: PMC11180470 DOI: 10.2147/ijn.s448684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People’s Republic of China
| | - Qing-Qing Dong
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Yi-Ke Ni
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, People’s Republic of China
| | - Chao-Xiang Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, People’s Republic of China
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
23
|
Zhang R, Xie S, Ran J, Li T. Restraining the power of Proteolysis Targeting Chimeras in the cage: A necessary and important refinement for therapeutic safety. J Cell Physiol 2024; 239:e31255. [PMID: 38501341 DOI: 10.1002/jcp.31255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.
Collapse
Affiliation(s)
- Renshuai Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Kovachka S, Tong Y, Childs-Disney JL, Disney MD. Heterobifunctional small molecules to modulate RNA function. Trends Pharmacol Sci 2024; 45:449-463. [PMID: 38641489 PMCID: PMC11774243 DOI: 10.1016/j.tips.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
RNA has diverse cellular functionality, including regulating gene expression, protein translation, and cellular response to stimuli, due to its intricate structures. Over the past decade, small molecules have been discovered that target functional structures within cellular RNAs and modulate their function. Simple binding, however, is often insufficient, resulting in low or even no biological activity. To overcome this challenge, heterobifunctional compounds have been developed that can covalently bind to the RNA target, alter RNA sequence, or induce its cleavage. Herein, we review the recent progress in the field of RNA-targeted heterobifunctional compounds using representative case studies. We identify critical gaps and limitations and propose a strategic pathway for future developments of RNA-targeted molecules with augmented functionalities.
Collapse
Affiliation(s)
- Sandra Kovachka
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuquan Tong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Rej RK, Allu SR, Roy J, Acharyya RK, Kiran INC, Addepalli Y, Dhamodharan V. Orally Bioavailable Proteolysis-Targeting Chimeras: An Innovative Approach in the Golden Era of Discovering Small-Molecule Cancer Drugs. Pharmaceuticals (Basel) 2024; 17:494. [PMID: 38675453 PMCID: PMC11054475 DOI: 10.3390/ph17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show promise to open a target space not accessible to conventional small molecules via a degradation-based mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as 'beyond the Rule of Five', have gained attention as a distinctive therapeutic approach for oral administration in clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a significant hurdle, largely due to their large size and less than ideal physical and chemical properties. This review encapsulates the latest advancements in orally delivered PROTACs that have entered clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and methodologies elaborated upon in this review could be instrumental in supporting the discovery and refinement of novel PROTAC degraders aimed at the treatment of various human cancers.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - Joyeeta Roy
- Rogel Cancer Center, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.A.); (R.K.A.)
| | - I. N. Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA;
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - V. Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
26
|
He T, Cheng C, Qiao Y, Cho H, Young E, Mannan R, Mahapatra S, Miner SJ, Zheng Y, Kim N, Zeng VZ, Wisniewski JP, Hou S, Jackson B, Cao X, Su F, Wang R, Chang Y, Kuila B, Mukherjee S, Dukare S, Aithal KB, D.S. S, Abbineni C, Vaishampayan U, Lyssiotis CA, Parolia A, Xiao L, Chinnaiyan AM. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2322563121. [PMID: 38557192 PMCID: PMC11009648 DOI: 10.1073/pnas.2322563121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan410008, China
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Victoria Z. Zeng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Jasmine P. Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI48109
| | - Bailey Jackson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Bilash Kuila
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | | | - Sandeep Dukare
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | - Kiran B. Aithal
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | - Samiulla D.S.
- Aurigene Oncology Limited, Bangalore, Karnataka560100, India
| | | | - Ulka Vaishampayan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Medical Oncology, University of Michigan, Ann Arbor, MI48109
| | - Costas A. Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Apprato G, Poongavanam V, Garcia Jimenez D, Atilaw Y, Erdelyi M, Ermondi G, Caron G, Kihlberg J. Exploring the chemical space of orally bioavailable PROTACs. Drug Discov Today 2024; 29:103917. [PMID: 38360147 DOI: 10.1016/j.drudis.2024.103917] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
A principal challenge in the discovery of proteolysis targeting chimeras (PROTACs) as oral medications is their bioavailability. To facilitate drug design, it is therefore essential to identify the chemical space where orally bioavailable PROTACs are more likely to be situated. To this aim, we extracted structure-bioavailability insights from published data using traditional 2D descriptors, thereby shedding light on their potential and limitations as drug design tools. Subsequently, we describe cutting-edge experimental, computational and hybrid design strategies based on 3D descriptors, which show promise for enhancing the probability of discovering PROTACs with high oral bioavailability.
Collapse
Affiliation(s)
- Giulia Apprato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44bis, 10126 Torino, Italy
| | | | - Diego Garcia Jimenez
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44bis, 10126 Torino, Italy
| | - Yoseph Atilaw
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44bis, 10126 Torino, Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44bis, 10126 Torino, Italy.
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|
28
|
Xu M, Yun Y, Li C, Ruan Y, Muraoka O, Xie W, Sun X. Radiation responsive PROTAC nanoparticles for tumor-specific proteolysis enhanced radiotherapy. J Mater Chem B 2024; 12:3240-3248. [PMID: 38437473 DOI: 10.1039/d3tb03046f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) is a promising strategy for cancer therapy. However, the always-on bioactivity of PROTACs may lead to non-target toxicity, which restricts their antitumor performance. Here, we developed an X-ray radiation responsive PROTAC nanomicelle (RCNprotac) by covalently conjugating a reported small molecule PROTAC (MZ1) to hydrophilic PEG via a diselenide bond-containing carbon chain, which then self-assembled into a 141.80 ± 5.66 nm nanomicelle. The RCNprotac displayed no bioactivity during circulation due to the occupation of the hydroxyl group on the E3 ubiquitin ligand component and could effectively accumulate at the tumor site owing to the enhanced permeability and retention effect. Upon exposure to X-ray radiation, the radiation-sensitive diselenide bonds were broken to specifically release MZ1 for tumor BRD4 protein degradation. Furthermore, the reduction in the BRD4 protein level could increase the tumor's sensitivity to radiation. RCNprotac showed a synergistic enhancement of antitumor effects both in vitro and in vivo. We believe that this X-ray-responsive PROTAC nanomicelle could provide a new strategy for the X-ray-activated spatiotemporally controlled protein degradation and for the BRD4 proteolysis enhanced tumor radiosensitivity.
Collapse
Affiliation(s)
- Mengxia Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyang Yun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Changjun Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
29
|
Bouvier C, Lawrence R, Cavallo F, Xolalpa W, Jordan A, Hjerpe R, Rodriguez MS. Breaking Bad Proteins-Discovery Approaches and the Road to Clinic for Degraders. Cells 2024; 13:578. [PMID: 38607017 PMCID: PMC11011670 DOI: 10.3390/cells13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) describe compounds that bind to and induce degradation of a target by simultaneously binding to a ubiquitin ligase. More generally referred to as bifunctional degraders, PROTACs have led the way in the field of targeted protein degradation (TPD), with several compounds currently undergoing clinical testing. Alongside bifunctional degraders, single-moiety compounds, or molecular glue degraders (MGDs), are increasingly being considered as a viable approach for development of therapeutics, driven by advances in rational discovery approaches. This review focuses on drug discovery with respect to bifunctional and molecular glue degraders within the ubiquitin proteasome system, including analysis of mechanistic concepts and discovery approaches, with an overview of current clinical and pre-clinical degrader status in oncology, neurodegenerative and inflammatory disease.
Collapse
Affiliation(s)
- Corentin Bouvier
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31077 Toulouse, France; (C.B.); (M.S.R.)
| | - Rachel Lawrence
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Francesca Cavallo
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Wendy Xolalpa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Morelos, Mexico;
| | - Allan Jordan
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Roland Hjerpe
- Sygnature Discovery, Bio City, Pennyfoot St., Nottingham NG1 1GR, UK (F.C.); (A.J.)
| | - Manuel S. Rodriguez
- Laboratoire de Chimie de Coordination LCC-UPR 8241-CNRS, 31077 Toulouse, France; (C.B.); (M.S.R.)
- Pharmadev, UMR 152, Université de Toulouse, IRD, UT3, 31400 Toulouse, France
- B Molecular, Centre Pierre Potier, Canceropôle, 31106 Toulouse, France
| |
Collapse
|
30
|
Desantis J, Bazzacco A, Eleuteri M, Tuci S, Bianconi E, Macchiarulo A, Mercorelli B, Loregian A, Goracci L. Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity. Eur J Med Chem 2024; 268:116202. [PMID: 38394929 DOI: 10.1016/j.ejmech.2024.116202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
To date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses. Here, we report the design, synthesis, and characterization of a novel series of INM-based PROTACs that recruit either Von-Hippel Lindau (VHL) or cereblon (CRBN) E3 ligases. The panel of INM-based PROTACs was also enlarged by varying the linker moiety. The antiviral activity resulted very susceptible to this modification, particularly for PROTACs hijacking VHL as E3 ligase, with one piperazine-based compound (PROTAC 6) showing potent anti-SARS-CoV-2 activity in infected human lung cells. Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hypothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (Mpro) both in Mpro-transfected and in SARS-CoV-2-infected cells. Importantly, thanks to the target degradation, INM-PROTACs exhibited a considerable enhancement in antiviral activity with respect to indomethacin, with EC50 values in the low-micromolar/nanomolar range. Finally, kinetic solubility as well as metabolic and chemical stability were measured for PROTACs 5 and 6. Altogether, the identification of INM-based PROTACs as the first class of SARS-CoV-2 Mpro degraders demonstrating activity also in SARS-CoV-2-infected cells represents a significant advance in the development of effective, broad-spectrum anti-coronavirus strategies.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | | | - Michela Eleuteri
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | - Sara Tuci
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Science, University of Perugia, Italy
| | | | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
31
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
32
|
Chen S, Cui J, Chen H, Yu B, Long S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur J Med Chem 2023; 262:115911. [PMID: 37924709 DOI: 10.1016/j.ejmech.2023.115911] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Targeted protein degradation (TPD) is one of the key strategies of current targeted cancer therapy, and it can eliminate some of the root causes of cancer, and effectively avoid drug resistance caused by traditional drugs. Proteolysis targeting chimera (PROTAC) is a hot branch of the TPD strategy, and it has been shown to induce the degradation of target proteins by activating the inherent ubiquitin-proteasome system (UPS) in tumor cells. PROTACs have been developed for more than two decades, and some of them have been clinically evaluated. Although most of the proteins degraded by PROTACs are intracellular, degradation of some typical membrane proteins has also been reported, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), programmed death ligand 1 (PD-L1), and G-protein-coupled receptor (GPCR). In addition, some other effective membrane protein-degrading strategies have also emerged, such as antibody-based PROTAC (AbTAC), lysosome targeting chimera (LYTAC), molecular glue, and nanoparticle-based PROTAC (Nano-PROTAC). Herein, we discussed the advantages, disadvantages and potential applications of several important membrane protein degradation techniques. These techniques that we have summarized are insightful in paving the way for future development of more general strategies for membrane protein degradation.
Collapse
Affiliation(s)
- Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Jingliang Cui
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Haiyan Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Bo Yu
- Tongji Hospital, Department of Nuclear Medicine, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|