1
|
Wang J, Miao Z, Gao Y, Xie Z, Liu M, Zou W. Formyl peptide receptor 2: a potential therapeutic target for inflammation-related diseases. Pharmacol Rep 2025; 77:593-609. [PMID: 40102363 DOI: 10.1007/s43440-025-00704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/20/2025]
Abstract
Formyl peptide receptor 2 (FPR2) is a G protein-coupled receptor with seven transmembrane domains, widely distributed in human cells. It plays a crucial role in inflammation-related diseases. Known for its "double-edged sword" nature, FPR2 can bind a variety of exogenous and endogenous ligands, mediating both pro-inflammatory and anti-inflammatory responses in tissues such as eyes, liver, joints, lungs, nerves, and blood vessels. FPR2's bioactivities are regulated by a complex network of genes and signaling pathways. However, the precise regulatory mechanisms governing its functions in different inflammatory conditions are still not well understood. This review summarizes the FPR2's activities in various inflammation-related diseases and looks into its potential as a therapeutic target. This review highlights recent advances in developing exogenous agonists for FPR2 and discusses receptor expression across species to support nonclinical research. Overall, this review aims to clarify FPR2's role in inflammation and provide insights for the development of new drugs against inflammatory diseases.
Collapse
Affiliation(s)
- Jiaying Wang
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China
| | - Zhishuo Miao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinhuang Gao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - ZhiZhong Xie
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China
| | - Menghua Liu
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zou
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Jia H, Zhang H, Mo D, Xie B, Qiao H, Chen T, Song H, Xu X, Yang S. UTX Responds to Nanotopography to Suppress Macrophage Inflammatory Response by Remodeling H3K27me3 Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e05723. [PMID: 40386877 DOI: 10.1002/advs.202505723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/28/2025] [Indexed: 05/20/2025]
Abstract
Peri-implantitis is the leading cause of implant failure, primarily due to weak defense at the implant-soft tissue interface, which disrupts the local immune microenvironment. As an integral part of this microenvironment, the implant-tissue interface plays a critical role in shaping immune cell function. Thus, engineering the surface topography of implants has emerged as a novel strategy for sustained immunomodulation following implantation. This study investigated the mechanical regulation of macrophage function by nanopatterned topographies. Titanium nanotubes (TNTs) surfaces reduce the expression of phosphorylated myosin light chain (pMLC) and promote the retention of the UTX histone methyltransferase in the nucleus. This process attenuates the enrichment of the repressive H3K27me3 histone marker at the Abca1 gene locus, increasing Abca1 expression and suppressing inflammation. This study reveals the mechanosensitivity of UTX and provides a new target for the development of therapeutic strategies that integrate mechanical signaling and immune modulation.
Collapse
Affiliation(s)
- Hengji Jia
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, China
| | - Dingqiang Mo
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Bo Xie
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hongdou Qiao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, China
| | - Haoyue Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xinxin Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, China
| |
Collapse
|
3
|
Li XY, Yu ZY, Li HJ, Yan DM, Yang C, Liu XZ. Biomarker identification associated with M2 tumor-associated macrophage infiltration in glioblastoma. Front Neurol 2025; 16:1545608. [PMID: 40438577 PMCID: PMC12117037 DOI: 10.3389/fneur.2025.1545608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/08/2025] [Indexed: 06/01/2025] Open
Abstract
Purpose M2 phenotype tumor-associated macrophages (TAMs) can promote tumor growth, invasion, chemotherapy resistance and so on, leading to malignant progression. The aim of this study was to identify novel prognostic profiles in glioblastoma (GBM) by integrating single-cell RNA sequencing (scRNA-seq) with bulk RNA-seq. Methods We identified M2-associated genes by intersecting TAM marker genes derived from scRNA-seq with macrophage module genes from WGCNA RNA-seq data. Prognostic M2 TAM-related genes were determined using univariate Cox and LASSO regression analyses. In the following steps, prognostic characteristics, risk groups, and external validation were constructed and validated. The immune landscape of patients with GBM was examined by evaluating immune cells, functions, evasion scores, and checkpoint genes. Results Analysis of scRNA-seq and bulk-seq data revealed 107 genes linked to M2 TAMs. Using univariate Cox and LASSO regression, 16 genes were identified as prognostic for GBM, leading to the creation and validation of a prognostic signature for GBM survival prediction. Conclusion Our findings reveal the immune landscape of GBM and enhance understanding of the molecular mechanisms associated with M2 TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Sabnis RW. Novel Pyrrolidinone Urea as FPR2 Agonists for Treating Atherosclerosis and Heart Failure. ACS Med Chem Lett 2025; 16:756-757. [PMID: 40365412 PMCID: PMC12067104 DOI: 10.1021/acsmedchemlett.5c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
Provided herein are novel pyrrolidinone urea as FPR2 agonists, pharmaceutical compositions, use of such compounds in treating atherosclerosis and heart failure, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Atlanta, Georgia 30309, United States
| |
Collapse
|
5
|
Silva RAD, Lima JVFD, Macedo RFLESD, Sant'Ana M, Gil CD, Vergara MN. Advances in immunomodulation for organ transplantation: The role of the Annexin A1/FPR axis. Clinics (Sao Paulo) 2025; 80:100626. [PMID: 40147182 PMCID: PMC11985118 DOI: 10.1016/j.clinsp.2025.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Affiliation(s)
- Rafael André da Silva
- Biosciences Graduate Program, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brazil; CellSight Ocular Stem Cell and Regeneration Research Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, USA.
| | - João Vitor Ferreira de Lima
- Centro Universitário Maurício de Nassau (Uninassau) ‒ Curso de Medicina, Unidade Boa Viagem, Recife, PE, Brazil
| | | | - Monielle Sant'Ana
- Nacional Laboratory of Bioscience ‒ LNBio, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Cristiane Damas Gil
- Biosciences Graduate Program, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brazil; Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - M Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Research Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2025; 20:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
7
|
Sabnis RW. Novel Carbocyclic Phenylpyrrolidinone Urea Compounds as FPR2 Agonists for Treating Atherosclerosis and Heart Failure. ACS Med Chem Lett 2025; 16:186-187. [PMID: 39967624 PMCID: PMC11831396 DOI: 10.1021/acsmedchemlett.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Provided herein are novel carbocyclic phenylpyrrolidinone urea compounds as FPR2 agonists, pharmaceutical compositions, use of such compounds in treating atherosclerosis and heart failure, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 W. Peachtree Street NE Suite
1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
8
|
Sabnis RW. Novel Pyrrolidinone Urea Compounds as FPR2 Agonists for Treating Atherosclerosis and Heart Failure. ACS Med Chem Lett 2024; 15:2093-2094. [PMID: 39691518 PMCID: PMC11647672 DOI: 10.1021/acsmedchemlett.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Indexed: 12/19/2024] Open
Abstract
Provided herein are novel pyrrolidinone urea compounds as FPR2 agonists, pharmaceutical compositions, use of such compounds in treating atherosclerosis and heart failure, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
9
|
Fu T, Mohan M, Bose M, Brennan EP, Kiriazis H, Deo M, Nowell CJ, Godson C, Cooper ME, Zhao P, Kemp-Harper BK, Woodman OL, Ritchie RH, Kantharidis P, Qin CX. Lipoxin A 4 improves cardiac remodeling and function in diabetes-associated cardiac dysfunction. Cardiovasc Diabetol 2024; 23:413. [PMID: 39563316 PMCID: PMC11577589 DOI: 10.1186/s12933-024-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Diabetic heart disease may eventually lead to heart failure, a leading cause of mortality in diabetic individuals. The lack of effective treatments for diabetes-induced heart failure may result from a failure to address the underlying pathological processes, including chronic, low-grade inflammation. Previous studies have reported that lipoxin A4 (LXA4), known to promote resolution of inflammation, attenuates diabetes-induced atherosclerosis, but its impact on diabetic hearts has not been sought. Thus, we aimed to determine whether LXA4 therapeutic treatment attenuates diabetes-induced cardiac pathology. METHODS Six-week-old male apolipoprotein E-deficient (ApoE-/-) mice were followed for 16 weeks after injection of streptozotocin (STZ, 55 mg/kg/day, i.p. for 5 days) to induce type-1 diabetes (T1DM). Treatment with LXA4 (5 μg/kg, i.p.) or vehicle (0.02% ethanol, i.p.) was administered twice weekly for the final 6 weeks. One week before endpoint, echocardiography was performed within a subset of mice from each group. At the end of the study, mice were euthanized with sodium pentobarbital (100 mg/kg i.p.) and hearts were collected for ex vivo analysis, including histological assessment, gene expression profiling by real-time PCR and protein level measurement by western blot. RESULTS As expected diabetic mice showed a significant elevation in plasma glycated hemoglobin (HbA1c) and glucose levels, along with reduced body weight. Vehicle-treated diabetic mice exhibited increased cardiac inflammation, macrophage content, and an elevated ratio of M1-like to M2-like macrophage markers. In addition, myocardial fibrosis, cardiomyocytes apoptosis and hypertrophy (at the genetic level) were evident, with echocardiography revealing early signs of left ventricular (LV) diastolic dysfunction. Treatment with LXA4 ameliorated diabetes-induced cardiac inflammation, pro-inflammatory macrophage polarization and cardiac remodeling (especially myocardial fibrosis and cardiomyocytes apoptosis), with ultimate improvement in cardiac function. Of note, this improvement was independent of glucose control. CONCLUSIONS These findings demonstrated that LXA4 treatment attenuated the extent of cardiac inflammation in diabetic hearts, resulting in limited cardiac remodeling and improved LV diastolic function. This supports further exploration of LXA4-based therapy for the management of diabetic heart disease. The recent development of stable LXA4 mimetics holds potential as a novel strategy to treat cardiac dysfunction in diabetes, paving the way for innovative and more effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Lipoxins/pharmacology
- Male
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Ventricular Remodeling/drug effects
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Ventricular Function, Left/drug effects
- Mice, Knockout, ApoE
- Anti-Inflammatory Agents/pharmacology
- Fibrosis
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/prevention & control
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocardium/pathology
- Myocardium/metabolism
- Mice
- Apoptosis/drug effects
- Inflammation Mediators/metabolism
Collapse
Affiliation(s)
- Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhura Bose
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Eoin P Brennan
- Diabetes Complications Research Centre, School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Minh Deo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Gao J, Su G, Liu J, Shen M, Zhang Z, Wang M. Formyl peptide receptors in the microglial activation: New perspectives and therapeutic potential for neuroinflammation. FASEB J 2024; 38:e70151. [PMID: 39520282 DOI: 10.1096/fj.202401927r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Secondary neurological impairment mediated by neuroinflammation is recognized as a crucial pathological factor in central nervous system (CNS) diseases. Currently, there exists a lack of specific therapies targeting neuroinflammation. Given that microglia constitute the primary immune cells involved in the neuroinflammatory response, a thorough comprehension of their role in CNS diseases is imperative for the development of efficacious treatments. Recent investigations have unveiled the significance of formyl peptide receptors (FPRs) in various neuroinflammatory diseases associated with microglial overactivation. Consequently, FPRs emerge as promising targets for modulating the neuroinflammatory response. This review aims to comprehensively explore the therapeutic potential of targeting FPRs in the management of microglia-mediated neuroinflammation. It delineates the molecular characteristics and functions of FPRs, elucidates their involvement in the inflammatory response linked to microglial overactivation, and synthesizes therapeutic strategies for regulating microglia-mediated neuroinflammation via FPR modulation, thereby charting a novel course for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Zhu R, Zhang Y, Wang X, Liu BD, Chowdhury D, Li Z, Pan M, Peng T, Chen J, Huang W, Zhan L, Fan GC. Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway. Mol Med 2024; 30:216. [PMID: 39543493 PMCID: PMC11566284 DOI: 10.1186/s10020-024-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored. METHODS BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis. RESULTS LGG-derived EVs (BEVLGG) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEVLGG collected from pH8 culture condition (BEVpH8) exhibited the strongest capacity of phagocytosis, compared with BEVpH5 and BEVpH6.5. Treatment of septic mice with BEVpH8 significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEVpH8-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEVpH8-mediated phagocytosis, compared to controls. CONCLUSIONS This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.
Collapse
Affiliation(s)
- Ruiyao Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Benjamin D Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, USA
| | - Debabrata Chowdhury
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Zhixin Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mingliang Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Tianqing Peng
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wei Huang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| |
Collapse
|
12
|
Peng C, Vecchio EA, Nguyen ATN, De Seram M, Tang R, Keov P, Woodman OL, Chen YC, Baell J, May LT, Zhao P, Ritchie RH, Qin CX. Biased receptor signalling and intracellular trafficking profiles of structurally distinct formylpeptide receptor 2 agonists. Br J Pharmacol 2024; 181:4677-4692. [PMID: 39154373 DOI: 10.1111/bph.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models. We aim to characterise the differences in ligand-receptor engagement and downstream signalling and trafficking bias profile. EXPERIMENTAL APPROACH Concentration-response curves to G protein dissociation, β-arrestin recruitment, receptor trafficking and second messenger signalling were generated using FPR2 ligands (BMS-986235, ACT-389949, compound 43 and WKYMVm), in HEK293A cells. Log(τ/KA) was obtained from the operational model for bias analysis using WKYMVm as a reference ligand. Docking of FPR2 ligands into the active FPR2 cryoEM structure (PDBID: 7T6S) was performed using ICM pro software. KEY RESULTS Bias analysis revealed that WKYMVm and ACT-389949 shared a very similar bias profile. In comparison, BMS-986235 and compound 43 displayed approximately 5- to 50-fold bias away from β-arrestin recruitment and trafficking pathways, while being 35- to 60-fold biased towards cAMP inhibition and pERK1/2. Molecular docking predicted key amino acid interactions at the FPR2 shared between WKYMVm and ACT-389949, but not with BMS-986235 and compound 43. CONCLUSION AND IMPLICATIONS In vitro characterisation demonstrated that WKYMVm and ACT-389949 differ from BMS-986235 and compound 43 in their signalling and protein coupling profile. This observation may be explained by differences in the ligand-receptor interactions. In vitro characterisation provided significant insights into identifying the desired bias profile for FPR2-based pharmacotherapy.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mia De Seram
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ruby Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter Keov
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yung-Chih Chen
- Monash Victorian Heart Institute, Blackburn Road Clayton, Monash University, Melbourne, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Vitoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
14
|
Wurtz NR, Shirude PS, Cheney DL, Lupisella JA, Chattopadhyay AK, Baligar V, Seshadri B, Anjanappa P, Viet A, Valente MN, Hsu MY, Abousleiman M, Sarodaya S, Tagore DM, Dudhgaonkar S, Putlur S, Dierks EA, Ostrowski J, Wexler RR, Garcia R, Kick EK. Discovery and Optimization of Aryl Piperidinone Ureas as Selective Formyl Peptide Receptor 2 Agonists. ACS Med Chem Lett 2024; 15:1500-1505. [PMID: 39291022 PMCID: PMC11403750 DOI: 10.1021/acsmedchemlett.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
We report the discovery and optimization of aryl piperidinone urea formyl peptide receptor 2 (FPR2) agonists from a weakly active high-throughput screening (HTS) hit to potent and selective agonists with favorable efficacy in acute in vivo models. A basis for the selectivity for FPR2 over FPR1 is proposed based on docking molecules into recently reported FPR2 and FPR1 cryoEM structures. Compounds from the new scaffold reported in this study exhibited superior potency and selectivity and favorable ADME profiles. Furthermore, select compounds were evaluated in an acute rat lipopolysaccharide (LPS) inflammation model and demonstrated robust dose-dependent induction of IL10, a marker for inflammation resolution, providing a valuable proof of concept for this class of FPR2 agonists.
Collapse
Affiliation(s)
- Nicholas R Wurtz
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | - Daniel L Cheney
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - John A Lupisella
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | | | - Balaji Seshadri
- Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore, Karnataka 560099, India
| | | | - Andrew Viet
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Meriah N Valente
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Mei-Yin Hsu
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | - Sanket Sarodaya
- Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore, Karnataka 560099, India
| | | | | | - Sivaprasad Putlur
- Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore, Karnataka 560099, India
| | | | - Jacek Ostrowski
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ruth R Wexler
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ricardo Garcia
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ellen K Kick
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| |
Collapse
|
15
|
Zhangsun Z, Dong Y, Tang J, Jin Z, Lei W, Wang C, Cheng Y, Wang B, Yang Y, Zhao H. FPR1: A critical gatekeeper of the heart and brain. Pharmacol Res 2024; 202:107125. [PMID: 38438091 DOI: 10.1016/j.phrs.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.
Collapse
Affiliation(s)
- Ziyin Zhangsun
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Institute of Neuroscience, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ying Cheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Baoying Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|