1
|
Pastor FM, de Melo Ocarino N, Silva JF, Reis AMS, Serakides R. Bone development in fetuses with intrauterine growth restriction caused by maternal endocrine-metabolic dysfunctions. Bone 2024; 186:117169. [PMID: 38880170 DOI: 10.1016/j.bone.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Intrauterine growth restriction (IUGR) affects a large proportion of infants, particularly in underdeveloped countries. Among the main causes of IUGR, maternal endocrine-metabolic dysfunction is highlighted, either due to its high incidence or due to the severity of the immediate and mediated changes that these dysfunctions cause in the fetus and the mother. Although the effects of endocrine and metabolic disorders have been widely researched, there are still no reviews that bring together and summarize the effects of these conditions on bone development in cases of IUGR. Therefore, the present literature review was conducted with the aim of discussing bone changes observed in fetuses with IUGR caused by maternal endocrine-metabolic dysfunction. The main endocrine dysfunctions that occur with IUGR include maternal hyperthyroidism, hypothyroidism, and hypoparathyroidism. Diabetes mellitus, hypertensive disorders, and obesity are the most important maternal metabolic dysfunctions that compromise fetal growth. The bone changes reported in the fetus are, for the most part, due to damage to cell proliferation and differentiation, as well as failures in the synthesis and mineralization of the extracellular matrix, which results in shortening and fragility of the bones. Some maternal dysfunctions, such as hyperthyroidism, have been widely studied, whereas conditions such as hypoparathyroidism and gestational hypertensive disorders require further study regarding the mechanisms underlying the development of bone changes. Similarly, there is a gap in the literature regarding changes related to intramembranous ossification, as most published articles only describe changes in endochondral bone formation associated with IUGR. Furthermore, there is a need for more research aimed at elucidating the late postnatal changes that occur in the skeletons of individuals affected by IUGR and their possible relationships with adult diseases, such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Felipe Martins Pastor
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Amanda Maria Sena Reis
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Schulmeister C, Lee J, Perwad F, Long R, Srinivasan S. Rickets in a child with prolonged acquired hypothyroidism secondary to Hashimoto's thyroiditis. Endocrinol Diabetes Metab Case Rep 2022; 2022:22-0267. [PMID: 35979838 PMCID: PMC9422259 DOI: 10.1530/edm-22-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Summary Skeletal abnormalities with delayed bone age and decreased linear bone growth are commonly found in children with prolonged juvenile hypothyroidism. However, rachitic bone abnormalities have not been previously reported in children with acquired hypothyroidism. Here, we present a case of newly found rickets in an 8-year-old female with untreated acquired hypothyroidism secondary to Hashimoto's thyroiditis. Laboratory finding for abnormalities in calcium/phosphorus homeostasis and hormones that regulate skeletal health was normal. Her radiographic anomalies resolved with levothyroxine treatment alone, suggesting that hypothyroidism was the etiology of the rickets. To our knowledge, this is the first case report of rickets associated with long-standing severe acquired hypothyroidism that resolved exclusively with thyroid repletion. Learning points Thyroid hormone plays an important role in bone mineralization. Prolonged hypothyroidism can result in rachitic bone abnormalities noted on radiographs. Hypothyroidism should be considered in the evaluation of a child with rickets.
Collapse
Affiliation(s)
- Caroline Schulmeister
- Pediatric Endocrinology, University of California at San Francisco, San Francisco, California, USA
- Pediatric Endocrinology, University of California at Davis, Sacramento, California, USA
| | - Jason Lee
- Pediatric Nephrology, University of California at San Francisco, San Francisco, California, USA
- Pediatric Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Farzana Perwad
- Pediatric Nephrology, University of California at San Francisco, San Francisco, California, USA
| | - Roger Long
- Pediatric Endocrinology, University of California at San Francisco, San Francisco, California, USA
| | - Shylaja Srinivasan
- Pediatric Endocrinology, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Wang W, Yang Y, Chen A, Song X, Chai L. Inhibition of Metamorphosis, Thyroid Gland, and Skeletal Ossification Induced by Hexavalent Chromium in Bufo gargarizans Larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2474-2483. [PMID: 34003524 DOI: 10.1002/etc.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr [VI]) is one of the major detrimental heavy metal pollutants. In the present study, Bufo gargarizans were exposed to 0, 52, 104, 208, and 416 μg/L Cr (VI) from Gosner stage 2 until metamorphosis; and growth, development, and histological characteristics of the thyroid gland and skeletal ossification were examined. The results demonstrated that the survival rate of larvae exposed to Cr (VI) was not different from that measured in animals from the control group. However, high levels of Cr (VI) (104, 208, and 416 μg/L) were associated with significantly delayed growth and development. The suppression of skeletal ossification was observed at high Cr (VI) levels. Besides, histological alterations of the thyroid gland, such as follicular cell hyperplasia, colloid depletion, and peripheral colloid vacuolation, were found in 52 to 416 μg/L Cr (VI) treatments. The results of the present study highlight reductions in growth and development as well as percent metamorphosis and skeletal ossification due to histological alteration of the thyroid gland during exposure to Cr (VI) in B. gargarizans larvae. The present investigation could provide a basis for understanding the detrimental effects of Cr (VI) in amphibian larvae. Environ Toxicol Chem 2021;40:2474-2483. © 2021 SETAC.
Collapse
Affiliation(s)
- Wenxiang Wang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Yijie Yang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
4
|
Hermans M, Burger NC, Kromhout K, Bhatti SFM, Cornelis I. Clinical and diagnostic findings in a dog and a cat with congenital hypothyroidism. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Michelle Hermans
- Small Animal DepartmentUniversiteit Gent Faculteit DiergeneeskundeMerelbekeBelgium
| | | | - Kaatje Kromhout
- Veterinary Medical Imaging and Small Animal OrthopaedicsUniversiteit Gent Faculteit DiergeneeskundeMerelbekeBelgium
| | - Sofie F M Bhatti
- Small Animal DepartmentUniversiteit Gent Faculteit DiergeneeskundeMerelbekeBelgium
| | - Ine Cornelis
- Small Animal DepartmentUniversiteit Gent Faculteit DiergeneeskundeMerelbekeBelgium
| |
Collapse
|
5
|
Upper and Lower Limb Strength and Body Posture in Children with Congenital Hypothyroidism: An Observational Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134830. [PMID: 32635579 PMCID: PMC7370191 DOI: 10.3390/ijerph17134830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Congenital hypothyroidism (CH) is an endocrine disease with a precocious significant impairment of growth and neuromotor development. Thyroid hormones are essential for central nervous system development, maturation, and myelination. Furthermore, thyroid hormone deficiency affects the function of several systems, including the musculoskeletal system. The disease has a significant incidence in the general population (1:3000-1:2000 newborns in Italy). The aim of the present study was to evaluate any differences in upper and lower limb strength, body sway, and plantar loading distribution in children with CH compared to healthy children. METHODS In this study, the case group was composed of children with CH (CHG), while the control group included healthy children (CG). Both groups comprised 19 children (CHG: female = 12; CG: female = 9). The maximum isometric handgrip strength and explosive-elastic lower limb strength were assessed with the handgrip test and the Sargent test, respectively. The stabilometric and baropodometric analyses were used to measure the Center of Pressure displacements and the plantar loading distribution between feet, respectively. The differences between groups were analyzed by a univariate analysis of covariance using as covariates weight and height with the significant level set at < 0.05. RESULTS We found that CHG children were shorter and thinner than CG ones (p < 0.05). No significant difference in the upper and lower limb strength was found between groups. CHG exhibited a significant greater Sway Path Length (p < 0.01) and Ellipse Surface (p < 0.05) than CG. Moreover, CHG displayed an asymmetric plantar loading distribution with a significant lower percentage in the right than in the left foot (p < 0.05). Moreover, a significant lower plantar loading percentage in the right foot of CHG than in the right foot of CG was observed (p < 0.05). CONCLUSIONS These findings seem to suggest that CH does not affect muscle strength in early treated children. However, these patients show poor postural control ability and asymmetric plantar loading distribution. Increasing the physical activity in these children could improve their body posture.
Collapse
|
6
|
Leitch VD, Bassett JHD, Williams GR. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16:147-164. [PMID: 31974498 DOI: 10.1038/s41574-019-0304-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Royal Melbourne Institute of Technology (RMIT) Centre for Additive Manufacturing, RMIT University, Melbourne, VIC, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
7
|
Mourouzis I, Lavecchia AM, Xinaris C. Thyroid Hormone Signalling: From the Dawn of Life to the Bedside. J Mol Evol 2019; 88:88-103. [PMID: 31451837 DOI: 10.1007/s00239-019-09908-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Thyroid hormone (TH) signalling is a key modulator of fundamental biological processes that has been evolutionarily conserved in both vertebrate and invertebrate species. TH may have initially emerged as a nutrient signal to convey environmental information to organisms to induce morpho-anatomical changes that could maximise the exploitation of environmental resources, and eventually integrated into the machinery of gene regulation and energy production to become a key regulator of development and metabolism. As such, TH signalling is particularly sensitive to environmental stimuli, and its alterations result in fundamental changes in homeostasis and physiology. Stressful stimuli of various origins lead to changes in the TH-TH receptor (TR) axis in different adult mammalian organs that are associated with phenotypical changes in terminally differentiated cells, the reactivation of foetal development programmes, structural remodelling and pathological growth. Here, we discuss the evolution of TH signalling, review evolutionarily conserved functions of THs in essential biological processes, such as metamorphosis and perinatal development, and analyse the role of TH signalling in the phenotypical and morphological changes that occur after injury, repair and regeneration in adult mammalian organs. Finally, we examine the potential of TH treatment as a therapeutic strategy for improving organ structure and functions following injury.
Collapse
Affiliation(s)
- Iordanis Mourouzis
- Department of Pharmacology, University of Athens, 75 Mikras Asias Ave., Goudi, 11527, Athens, Greece
| | - Angelo Michele Lavecchia
- Laboratory of Organ Regeneration, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Laboratory of Organ Regeneration, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy. .,University of Nicosia Medical School, 93 Agiou Nikolaou Street, Engomi, 2408, Nicosia, Cyprus.
| |
Collapse
|
8
|
Abstract
Thyroid hormone has profound effects on skeletal development and adult bone maintenance. Here, we review the current literature concerning thyroid hormone action in bone and cartilage in relation to human disease and animal models. We describe state-of-the-art imaging and biomechanical methods used to determine structural and functional parameters in the skeletal phenotyping of mouse models.
Collapse
|
9
|
|
10
|
Abstract
Thyroid hormones are essential for skeletal development and are important regulators of bone maintenance in adults. Childhood hypothyroidism causes delayed skeletal development, retarded linear growth and impaired bone mineral accrual. Epiphyseal dysgenesis is evidenced by classic features of stippled epiphyses on X-ray. In severe cases, post-natal growth arrest results in a complex skeletal dysplasia. Thyroid hormone replacement stimulates catch-up growth and bone maturation, but recovery may be incomplete dependent on the duration and severity of hypothyroidism prior to treatment. A severe phenotype characteristic of hypothyroidism occurs in children with resistance to thyroid hormone due to mutations affecting THRA encoding thyroid hormone receptor α (TRα). Discovery of this rare condition recapitulated animal studies demonstrating that TRα mediates thyroid hormone action in the skeleton. In adults, thyrotoxicosis is well known to cause severe osteoporosis and fracture, but cases are rare because of prompt diagnosis and treatment. Recent data, however, indicate that subclinical hyperthyroidism is associated with low bone mineral density (BMD) and an increased risk of fracture. Population studies have also shown that variation in thyroid status within the reference range in post-menopausal women is associated with altered BMD and fracture risk. Thus, thyroid status at the upper end of the euthyroid reference range is associated with low BMD and increased risk of osteoporotic fragility fracture. Overall, extensive data demonstrate that euthyroid status is required for normal post-natal growth and bone mineral accrual, and is fundamental for maintenance of adult bone structure and strength.
Collapse
Affiliation(s)
- G. R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, 10N5 Commonwealth Building, London, W12 0NN UK
| | - J. H. D. Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, 10N6 Commonwealth Building, London, W12 0NN UK
| |
Collapse
|
11
|
Thyroid Hormone Signaling in the Development of the Endochondral Skeleton. VITAMINS AND HORMONES 2018; 106:351-381. [PMID: 29407442 PMCID: PMC9830754 DOI: 10.1016/bs.vh.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone (TH) is an established regulator of skeletal growth and maintenance both in clinical studies and in laboratory models. The clinical consequences of altered thyroid status on the skeleton during development and in adulthood are well known, and genetic mouse models in which elements of the TH signaling axis have been manipulated illuminate the mechanisms which underlie TH regulation of the skeleton. TH is involved in the regulation of the balance between proliferation and differentiation in several skeletal cell types including chondrocytes, osteoblasts, and osteoclasts. The effects of TH are mediated primarily via the thyroid hormone receptors (TRs) α and β, ligand-inducible nuclear receptors which act as transcription factors to regulate target gene expression. Both TRα and TRβ signaling are important for different stages of skeletal development. The molecular mechanisms of TH action in bone are complex and include interaction with a number of growth factor signaling pathways. This review provides an overview of the regulation and mechanisms of TH action in bone, focusing particularly on the role of TH in endochondral bone formation during postnatal growth.
Collapse
|
12
|
D'Antoni AV, Donaldson OI, Schmidt C, Macchi V, De Caro R, Oskouian RJ, Loukas M, Shane Tubbs R. A comprehensive review of the anterior fontanelle: embryology, anatomy, and clinical considerations. Childs Nerv Syst 2017; 33:909-914. [PMID: 28396968 DOI: 10.1007/s00381-017-3406-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE Fontanelles are a regular feature of infant development in which two segments of bone remain separated, leaving an area of fibrous membrane or a "soft spot" that acts to accommodate growth of the brain without compression by the skull. Of the six fontanelles in the human skull, the anterior fontanelle, located between the frontal and parietal bones, serves as an important anatomical diagnostic tool in the assessment of impairments of the skull and brain and allows access to the brain and ventricles in the infant. METHODS Using a standard database search, we conducted a review of the anterior fontanelle, including its embryology, anatomy, pathology, and related surgical implications. CONCLUSIONS The diagnostic value of the anterior fontanelle, through observation of its shape, size, and palpability, makes the area of significant clinical value. It is important that clinicians are aware of the features and associated pathologies of this area in their everyday practice.
Collapse
Affiliation(s)
- Anthony V D'Antoni
- Department of Pathobiology, CUNY School of Medicine/Sophie Davis Program in Biomedical Education, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Orin Imani Donaldson
- Department of Pathobiology, CUNY School of Medicine/Sophie Davis Program in Biomedical Education, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Cameron Schmidt
- Seattle Science Foundation, 550 17th Ave, Seattle, WA, 98122, USA.
| | - Veronica Macchi
- Department of Molecular Medicine, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127, Padova, Italy
| | - Raffaele De Caro
- Department of Molecular Medicine, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127, Padova, Italy
| | - Rod J Oskouian
- Swedish Neuroscience Institute, 550 17th Ave, Seattle, WA, 98122, USA
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University School of Medicine, St. George's, West Indies, Grenada
| | - R Shane Tubbs
- Seattle Science Foundation, 550 17th Ave, Seattle, WA, 98122, USA
| |
Collapse
|
13
|
van Gucht ALM, Moran C, Meima ME, Visser WE, Chatterjee K, Visser TJ, Peeters RP. Resistance to Thyroid Hormone due to Heterozygous Mutations in Thyroid Hormone Receptor Alpha. Curr Top Dev Biol 2017; 125:337-355. [PMID: 28527577 DOI: 10.1016/bs.ctdb.2017.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Thyroid hormone (TH) acts via nuclear thyroid hormone receptors (TRs). TR isoforms (TRα1, TRα2, TRβ1, TRβ2) are encoded by distinct genes (THRA and THRB) and show differing tissue distributions. Patients with mutations in THRB, exhibiting resistance within the hypothalamic-pituitary-thyroid axis with elevated TH and nonsuppressed thyroid-stimulating hormone (TSH) levels, were first described decades ago. In 2012, the first patients with mutations in THRA were identified. Scope of this review: This review describes the clinical and biochemical characteristics of patients with resistance to thyroid hormone alpha (RTHα) due to heterozygous mutations in THRA. The genetic basis and molecular pathogenesis of the disorder together with effects of levothyroxine treatment are discussed. CONCLUSIONS The severity of the clinical phenotype of RTHα patients seems to be associated with the location and type of mutation in THRA. The most frequent abnormalities observed include anemia, constipation, and growth and developmental delay. In addition, serum (F)T3 levels can be high-normal to high, (F)T4 and rT3 levels normal to low, while TSH is normal or mildly raised. Despite heterogeneous consequences of mutations in THRA, RTHα should be suspected in subjects with even mild clinical features of hypothyroidism together with high/high-normal (F)T3, low/low-normal (F)T4, and normal TSH.
Collapse
Affiliation(s)
| | - Carla Moran
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Marcel E Meima
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Krishna Chatterjee
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Theo J Visser
- Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Robin P Peeters
- Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
15
|
Abstract
Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated.
Collapse
Affiliation(s)
- Carla Moran
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - Krishna Chatterjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
16
|
Abrahamsen B, Jørgensen HL, Laulund AS, Nybo M, Bauer DC, Brix TH, Hegedüs L. The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J Bone Miner Res 2015; 30:898-905. [PMID: 25431028 DOI: 10.1002/jbmr.2416] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022]
Abstract
The long-term relationship between hypothyroidism and fracture risk is challenging to dissect because of the modifying influence of subsequent thyroxine replacement with the potential for excessive replacement doses. We studied changes in serum thyrotropin concentration (TSH) over time and association with fracture risk in real-world patients presenting with elevated TSH. All TSH determinations were done in the same laboratory, which served all hospitals and general practices. The study population consisted of all adults with a first measurement of TSH >4.0 mIU/L (n = 8414) or normal TSH (n = 222,138; comparator). We used a Cox proportional hazards analysis incorporating additional time-dependent covariates to represent initiation of thyroxine replacement and cumulative number of periods with high versus low TSH after index date with a mean follow-up of 7.2 years. Elevated baseline TSH was not associated with an increased risk of hip fracture (HR 0.90; 95% CI, 0.80 to 1.02) or major osteoporotic fractures (HR 0.97; 95% CI, 0.90 to 1.05), nor was subsequent thyroxine prescription predictive of increased risk of fractures. The number of subsequent 6-month periods with low TSH-suggesting excessive thyroxine dosing-was significantly associated with increased risk of both hip fracture (HR 1.09; 95% CI, 1.04 to 1.15) and major osteoporotic fracture (HR 1.10; 95% CI, 1.06 to 1.14). When gender- and age-stratified analyses for major osteoporotic fractures were undertaken, hyperthyroid time was identified as a predictor of fracture risk in postmenopausal women whereas hypothyroid time predicted increased fracture risk in men below age 75 years. In conclusion, among patients who present with an elevated TSH, the long-term risk of hip and other osteoporotic fractures is strongly related to the cumulative duration of periods with low TSH-likely from excessive replacement. An independent effect of elevated TSH could only be observed in young and middle-aged men, suggesting gender-discrepant consequences on risk.
Collapse
Affiliation(s)
- Bo Abrahamsen
- Odense Patient data Explorative Network (OPEN), Institute of Clinical Research University of Southern Denmark, Odense, Denmark; Department of Medicine M, Research Centre for Ageing and Osteoporosis, Glostrup Hospital, Glostrup, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Schoenmakers N, Moran C, Peeters RP, Visser T, Gurnell M, Chatterjee K. Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochim Biophys Acta Gen Subj 2013; 1830:4004-8. [PMID: 23528896 DOI: 10.1016/j.bbagen.2013.03.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thyroid hormone acts via receptor subtypes (TRα1, TRβ1, TRβ2) with differing tissue distributions, encoded by distinct genes (THRA, THRB). THRB mutations cause a disorder with central (hypothalamic-pituitary) resistance to thyroid hormone action with markedly elevated thyroid hormone and normal TSH levels. SCOPE OF REVIEW This review describes the clinical features, genetic and molecular pathogenesis of a homologous human disorder mediated by defective THRA. Clinical features include growth retardation, skeletal dysplasia and constipation associated with low-normal T4 and high-normal T3 levels and a low T4/T3 ratio, together with subnormal reverse T3 levels. Heterozygous TRa1 mutations in affected individuals generate defective mutant receptors which inhibit wild-type receptor action in a dominant negative manner. MAJOR CONCLUSIONS Mutations in human TRα1 mediate RTH with features of hypothyroidism in particular tissues (e.g. skeleton, gastrointestinal tract), but are not associated with a markedly dysregulated pituitary-thyroid axis. GENERAL SIGNIFICANCE Human THRA mutations could be more common but may have eluded discovery due to the absence of overt thyroid dysfunction. Nevertheless, in the appropriate clinical context, a thyroid biochemical signature (low T4/T3 ratio, subnormal reverse T3 levels), may enable future identification of cases. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
18
|
Korzeniewski SJ, Grigorescu V, Kleyn M, Young WI, Birbeck G, Todem D, Romero R, Paneth N. Transient hypothyroidism at 3-year follow-up among cases of congenital hypothyroidism detected by newborn screening. J Pediatr 2013; 162:177-82. [PMID: 22878110 PMCID: PMC3529757 DOI: 10.1016/j.jpeds.2012.06.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the rate of transient thyroid deficiency and treatment compliance among cases with congenital hypothyroidism diagnosed and followed-up after age 3 years by newborn screening (NBS). STUDY DESIGN Cases detected by Michigan NBS between October 1, 2003, and December 31, 2007, and followed-up after age 3 years were included. The χ(2) and Fisher exact tests were used to test differences among followed and lost cases. Logistic regression models were used to investigate predictors of treatment cessation. RESULTS Roughly 45% of eligible cases were lost to follow-up, and disease state (transient or permanent congenital hypothyroidism) could not be determined for 12 cases (7.9%). Of the 72 followed cases, 34 (47%) were considered permanent congenital hypothyroidism based on thyroid imaging findings (n = 7) or an increase in medication dosage over time (n = 27). One-quarter of followed cases with congenital hypothyroidism were no longer being treated, and of these, just over 83% stopped treatment without medical supervision. Of 23 cases that underwent a medically supervised trial without thyroid hormone medication, treatment was reinstated in 20. Laboratory confirmation of euthyroidism was available for 6 of 18 cases clinically deemed transient. After adjustment, black race was the strongest predictor of treatment cessation (OR, 9.86; 95% CI, 1.82-53.31). Treatment cessation was also more common among low birth weight infants and those admitted to the neonatal intensive care unit at birth. CONCLUSION We recommend that NBS programs include long-term follow-up through at least age 3 years to determine treatment compliance and disease permanence. Further research is needed to determine ideal follow-up program operations and reassessment methods for congenital hypothyroidism disease permanence. Guidelines that provide evidence-based reassessment methods would be beneficial for the healthcare providers of children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Steven J Korzeniewski
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.
Collapse
Affiliation(s)
- Jonathan J Nicholls
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, Hammersmith Campus, Room 7N2b, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
20
|
Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JWR, Bain M, Lindley K, Muntoni F, Vargha-Khadem F, Dattani M, Farooqi IS, Gurnell M, Chatterjee K. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 2012; 366:243-9. [PMID: 22168587 DOI: 10.1056/nejmoa1110296] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones exert their effects through alpha (TRα1) and beta (TRβ1 and TRβ2) receptors. Here we describe a child with classic features of hypothyroidism (growth retardation, developmental retardation, skeletal dysplasia, and severe constipation) but only borderline-abnormal thyroid hormone levels. Using whole-exome sequencing, we identified a de novo heterozygous nonsense mutation in a gene encoding thyroid hormone receptor alpha (THRA) and generating a mutant protein that inhibits wild-type receptor action in a dominant negative manner. Our observations are consistent with defective human TRα-mediated thyroid hormone resistance and substantiate the concept of hormone action through distinct receptor subtypes in different target tissues.
Collapse
Affiliation(s)
- Elena Bochukova
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Impact du jeûne intermittent sur la maturation et le remodelage de l’os chez les jeunes rats. NUTR CLIN METAB 2008. [DOI: 10.1016/j.nupar.2008.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Feitosa DDS, Bezerra BDB, Ambrosano GMB, Nociti FH, Casati MZ, Sallum EA, de Toledo S. Thyroid Hormones May Influence Cortical Bone Healing Around Titanium Implants: A Histometric Study in Rats. J Periodontol 2008; 79:881-7. [DOI: 10.1902/jop.2008.070466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|