1
|
Dube R, Kar SS, Jhancy M, George BT. Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility-A Systematic Review. Int J Mol Sci 2023; 25:120. [PMID: 38203291 PMCID: PMC10778982 DOI: 10.3390/ijms25010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques, women with MA having biological offspring is possible. The exact etiology of MA is unknown, although several genes and mechanisms affect the development of Müllerian ducts. Through this systematic review of the available literature, we searched for the genetic basis of MA. The aims included identification of the genes, chromosomal locations, changes responsible for MA, and fertility options, in order to offer proper management and counseling to these women with MA. A total of 85 studies were identified through searches. Most of the studies identified multiple genes at various locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be multifactorial and complex, involving multiple genes and mechanisms including various mutations and mosaicism.
Collapse
Affiliation(s)
- Rajani Dube
- Department of Obstetrics and Gynaecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Subhranshu Sekhar Kar
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Malay Jhancy
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Biji Thomas George
- Department of General Surgery, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
2
|
Wu Y, Wu D, Lan Y, Lan S, Li D, Zheng Z, Wang H, Ma L. Case report: Sex-specific characteristics of epilepsy phenotypes associated with Xp22.31 deletion: a case report and review. Front Genet 2023; 14:1025390. [PMID: 37347056 PMCID: PMC10280017 DOI: 10.3389/fgene.2023.1025390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Deletion in the Xp22.31 region is increasingly suggested to be involved in the etiology of epilepsy. Little is known regarding the genomic and clinical delineations of X-linked epilepsy in the Chinese population or the sex-stratified difference in epilepsy characteristics associated with deletions in the Xp22.31 region. In this study, we reported two siblings with a 1.69 Mb maternally inherited microdeletion at Xp22.31 involving the genes VCX3A, HDHD1, STS, VCX, VCX2, and PNPLA4 presenting with easily controlled focal epilepsy and language delay with mild ichthyosis in a Chinese family with a traceable 4-generation history of skin ichthyosis. Both brain magnetic resonance imaging results were normal, while EEG revealed epileptic abnormalities. We further performed an exhaustive literature search, documenting 25 patients with epilepsy with gene defects in Xp22.31, and summarized the epilepsy heterogeneities between sexes. Males harboring the Xp22.31 deletion mainly manifested with child-onset, easily controlled focal epilepsy accompanied by X-linked ichthyosis; the deletions were mostly X-linked recessive, with copy number variants (CNVs) in the classic region of deletion (863.38 kb-2 Mb). In contrast, epilepsy in females tended to be earlier-onset, and relatively refractory, with pathogenic CNV sizes varying over a larger range (859 kb-56.36 Mb); the alterations were infrequently inherited and almost combined with additional CNVs. A candidate region encompassing STS, HDHD1, and MIR4767 was the likely pathogenic epilepsy-associated region. This study filled in the knowledge gap regarding the genomic and clinical delineations of X-linked recessive epilepsy in the Chinese population and extends the understanding of the sex-specific characteristics of Xp22.31 deletion in regard to epilepsy.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shaocong Lan
- Department of clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Hospital of Guangzhou Medical University), Guangzhou, China
| |
Collapse
|
3
|
Hu H, Huang Y, Hou R, Xu H, Liu Y, Liao X, Xu J, Jiang L, Wang D. Xp22.31 copy number variations in 87 fetuses: refined genotype-phenotype correlations by prenatal and postnatal follow-up. BMC Med Genomics 2023; 16:69. [PMID: 37013593 PMCID: PMC10069036 DOI: 10.1186/s12920-023-01493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Xp22.31 deletion and duplication have been described in various studies, but different laboratories interpret pathogenicity differently. OBJECTIVES Our study aimed to refine the genotype-phenotype associations between Xp22.31 copy number variants in fetuses, with the aim of providing data support to genetic counseling. METHODS We retrospectively analyzed karyotyping and single nucleotide polymorphism array results from 87 fetuses and their family members. Phenotypic data were obtained through follow-up visits. RESULTS The percentage of fetuses carrying the Xp22.31 deletions (9 females, 12 males) was 24.1% (n = 21), while duplications (38 females, 28 males) accounted for 75.9% (n = 66). Here, we noted that the typical region (from 6.4 to 8.1 Mb, hg19) was detected in the highest ratio, either in the fetuses with deletions (76.2%, 16 of 21) or duplications (69.7%, 46 of 66). In female deletion carriers, termination of pregnancy was chosen for two fetuses, and the remaining seven were born without distinct phenotypic abnormalities. In male deletion carriers, termination of pregnancy was chosen for four fetuses, and the remaining eight of them displayed ichthyosis without neurodevelopmental anomalies. In two of these cases, the chromosomal imbalance was inherited from the maternal grandfathers, who also only had ichthyosis phenotypes. Among the 66 duplication carriers, two cases were lost at follow-up, and pregnancy was terminated for eight cases. There were no other clinical findings in the rest of the 56 fetuses, including two with Xp22.31 tetrasomy, for either male or female carriers. CONCLUSION Our observations provide support for genetic counseling in male and female carriers of Xp22.31 copy number variants. Most of them are asymptomatic in male deletion carriers, except for skin findings. Our study is consistent with the view that the Xp22.31 duplication may be a benign variant in both sexes.
Collapse
Affiliation(s)
- Huamei Hu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulin Huang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Renke Hou
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Liu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xueqian Liao
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juchun Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Zunova H, Stolfa M, Kunikova T, Novotna D, Valkovicova R, Štěrbová K, Vlckova M. A unique coincidence of a 17q12 deletion and duplication in a Czech family led to a refined genotype-phenotype correlation. Am J Med Genet A 2023; 191:870-877. [PMID: 36548033 DOI: 10.1002/ajmg.a.63085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
Chromosomal band 17q12 is a gene-rich region flanked by segmental duplications, making the region prone to deletions and duplications via the non-allelic homologous recombination mechanism. While deletions cause a well-described disorder with a specific phenotype called renal cysts and diabetes mellitus, the phenotype caused by reciprocal duplications is less specific, primarily because of variable expressivity, and incomplete penetrance. We present an unusual family with four children carrying the 17q12 microduplication inherited from their clinically healthy mother, who was a carrier of both the duplication and, interestingly, also of an atypical deletion of the 17q12 region. The duplication was inherited from her diabetic father and the deletion from her diabetic mother who also suffered from a renal disorder. Clinical manifestations in the family were variable, but all children showed some degree of a neurodevelopmental disorder, such as epilepsy, intellectual disability, delayed speech development, or attention deficit disorder. The simultaneous occurrence of a deletion and duplication in the same chromosomal region in one family is very rare, and to our knowledge, individuals carrying both a deletion and a duplication of this region have never been described.
Collapse
Affiliation(s)
- Hana Zunova
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Miroslav Stolfa
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Tereza Kunikova
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Drahuse Novotna
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radka Valkovicova
- Department of Pediatric Neurology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Katalin Štěrbová
- Department of Pediatric Neurology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
The Clinical and Genetic Characteristics in Children with Idiopathic Hypogonadotropin Hypogonadism. JOURNAL OF ONCOLOGY 2022; 2022:7973726. [PMID: 36245975 PMCID: PMC9553531 DOI: 10.1155/2022/7973726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Background. Idiopathic hypogonadotropin hypogonadism (IHH) is caused by hypothalamic-pituitary-gonadal axis dysfunction. This is divided into Kallmann syndrome which has an impaired sense of smell and hypogonadotropin hypogonadism with normal olfactory (nIHH sense. Approximately 60% of patients are associated with Kallmann syndrome, whereas there are approximately 40% with hypogonadotropin hypogonadism (nIHH). This disease is associated with various variants in genes along with different phenotypic characteristics, and even those gene variations could also lead to the cancer formation in patients. So, current study has been designed to investigate and to better understand the characteristics of various IHH-associated genes and the correlation between IHH genes and phenotype. Methods. The cohort included 14 children with IHH (6 patients of KS and 8 patients of IHH), including 13 boys and 1 girl. Exclusion criteria are as follows: diagnosis of secondary hypogonadotropin hypogonadism due to tumor, trauma, drugs, or other systemic diseases. Clinical data and genetic results were analyzed. Results. Almost all male patients showed micropenis (12/13, 92.3%), and few of them had cryptorchidism (5/13, 41.7%). A total of 6 genes, CHD7, PROKR2, ANOS1, FGFR1, SEMA3A, and NDNF, were detected. CHD7 was the most common (11/17, 64.7%), and the main mutation type was missense mutation (14/16, 87.5%). Six reported variants and 10 new variants (5 genes, including entire ANSO1 duplicates) were found. Neonatal variation was detected in 3 patients with IHH. Eight patients inherited the variation from their father, while five patients inherited it from their mother. One patient had both FGFR1 and SEMA3A gene variants, while the other had two different CHD7 gene variants and entire ANSO1 repeats. According to ACMG criteria, 4 variants were pathogenic (P), 2 were possibly pathogenic (LP), and 8 had uncertain significance (US). In patients with P or LP (5/6, 83.3%), we found that extragonadal symptoms were more common. Conclusions. It was concluded that variations in the studied genes could lead to the IHH. Ten new variants have been reported which may lead to different symptoms of IHH. For CHD7 variants, the rare sequencing variants (RSVs) of P or LP showed commonly associated with CHARGE syndrome. Findings of the current study may help for the better diagnosis and treatment of IHH.
Collapse
|
6
|
Triantafyllidi VE, Mavrogianni D, Kalampalikis A, Litos M, Roidi S, Michala L. Identification of Genetic Causes in Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:961. [PMID: 35883945 PMCID: PMC9322756 DOI: 10.3390/children9070961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital condition characterizing females with absence of the uterus and part of the vagina. Several genetic defects have been correlated with the presence of MRKH; however, the exact etiology is still unknown due to the complexity of the genetic pathways implicated during the embryogenetic development of the Müllerian ducts. A systematic review (SR) of the literature was conducted to investigate the genetic causes associated with MRKH syndrome and Congenital Uterine Anomalies (CUAs). This study aimed to identify the most affected chromosomal areas and genes along with their associated clinical features in order to aid clinicians in distinguishing and identifying the possible genetic cause in each patient offering better genetic counseling. We identified 76 studies describing multiple genetic defects potentially contributing to the pathogenetic mechanism of MRKH syndrome. The most reported chromosomal regions and the possible genes implicated were: 1q21.1 (RBM8A gene), 1p31-1p35 (WNT4 gene), 7p15.3 (HOXA gene), 16p11 (TBX6 gene), 17q12 (LHX1 and HNF1B genes), 22q11.21, and Xp22. Although the etiology of MRKH syndrome is complex, associated clinical features can aid in the identification of a specific genetic defect.
Collapse
Affiliation(s)
- Varvara Ermioni Triantafyllidi
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| | - Despoina Mavrogianni
- Molecular Biology Unit, Division of Human Reproduction, 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece;
| | - Andreas Kalampalikis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| | - Michael Litos
- Department of Obstetrics & Gynecology, Konstantopouleio General Hospital of Nea Ionia, 14233 Athens, Greece;
| | - Stella Roidi
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| | - Lina Michala
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Ave, 11528 Athens, Greece; (A.K.); (S.R.); (L.M.)
| |
Collapse
|
7
|
Lo Faro V, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics 2021; 22:590. [PMID: 34348663 PMCID: PMC8336345 DOI: 10.1186/s12864-021-07846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Department of Ophthalmology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Gubb SJA, Brcic L, Underwood JFG, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in male and female carriers of Xp22.31 duplications in the UK Biobank. Hum Mol Genet 2020; 29:2872-2881. [PMID: 32766777 PMCID: PMC7566349 DOI: 10.1093/hmg/ddaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deletions spanning the STS (steroid sulfatase) gene at Xp22.31 are associated with X-linked ichthyosis, corneal opacities, testicular maldescent, cardiac arrhythmia, and higher rates of developmental and mood disorders/traits, possibly related to the smaller volume of some basal ganglia structures. The consequences of duplication of the same genomic region have not been systematically assessed in large or adult samples, although evidence from case reports/series has indicated high rates of developmental phenotypes. We compared multiple measures of physical and mental health, cognition and neuroanatomy in male (n = 414) and female (n = 938) carriers of 0.8-2.5 Mb duplications spanning STS, and non-carrier male (n = 192, 826) and female (n = 227, 235) controls from the UK Biobank (recruited aged 40-69 from the UK general population). Clinical and self-reported diagnoses indicated a higher prevalence of inguinal hernia and mania/bipolar disorder respectively in male duplication carriers, and a higher prevalence of gastro-oesophageal reflux disease and blistering/desquamating skin disorder respectively in female duplication carriers; duplication carriers also exhibited reductions in several depression-related measures, and greater happiness. Cognitive function and academic achievement did not differ between comparison groups. Neuroanatomical analysis suggested greater lateral ventricle and putamen volume in duplication carriers. In conclusion, Xp22.31 duplications appear largely benign, but could slightly increase the likelihood of specific phenotypes (although results were only nominally-significant). In contrast to deletions, duplications might protect against depressive symptoms, possibly via higher STS expression/activity (resulting in elevated endogenous free steroid levels), and through contributing towards an enlarged putamen volume. These results should enable better genetic counselling of individuals with Xp22.31 microduplications.
Collapse
Affiliation(s)
- Samuel J A Gubb
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Lucija Brcic
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jack F G Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Kimberley M Kendall
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Xavier Caseras
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - George Kirov
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - William Davies
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
9
|
Zhuang J, Wang Y, Zeng S, Lv C, Lin Y, Jiang Y. A prenatal diagnosis and genetics study of five pedigrees in the Chinese population with Xp22.31 microduplication. Mol Cytogenet 2019; 12:50. [PMID: 31857824 PMCID: PMC6907354 DOI: 10.1186/s13039-019-0461-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background Copy number variations (CNVs) can contribute to human phenotype, phenotypic diversity and disease susceptibility, while others may benign. In the current study, an attempt to investigate the pathogenicity of CNVs in chromosome Xp22.31 was explored. Methods G-banding and SNP-array techniques were used to analyze chromosome karyotypes and CNVs in fetuses. Parents associate with five different pedigrees possessing high risk factors in pregnancy were considered with such parameters as advanced age, high risk of serological screening and ultrasound abnormalities. Results The fetuses’ amniotic fluid karyotypes were 46, XX and those of their parents with the five pedigrees revealed no abnormalities. Here, we noticed a series of individuals with Xp22.31 duplications ranging from 534.6 kb to 1.6 Mb. It was detected through SNP array that the fetuses in Pedigree 1 and 2 had ~ 600 kb duplications in the Xp22.31 region of their X chromosomes which contained two OMIM genes, HDHD1 (OMIM: 306480) and part of STS (OMIM: 300747). The fetuses of Pedigrees 3, 4 and 5 had 1.6 Mb duplication in the same chromosome which contained four OMIM genes: HDHD1 (OMIM: 306480), STS (OMIM: 300747), PNPLA4 (OMIM: 300102) and VCX (OMIM: 300229). The duplications in the fetuses of Pedigrees 1 and 5 were inherited from the non-phenotypic parents. Pedigrees 3 and 4 refused to perform parental verification. Finally, four of the five pedigrees continue towards pregnancy with no abnormalities being observed during followed-ups. Conclusion Our study first showed duplications of Xp22.31 in Chinese population. Clinical and genetic investigation on five different pedigrees, we consider the duplication of these fragments as likely benign copy number variants (CNVs). We suggest that the duplications of Xp22.31 with recurrent duplication as a benign CNVs .
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Fujian Province, People's Republic of China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Fujian Province, People's Republic of China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Fujian Province, People's Republic of China
| | - Chunling Lv
- Zhejiang Biosan technology Co., Ltd, Zhejiang, People's Republic of China
| | - Yiming Lin
- Neonatal Disease Screening Center of Quanzhou, Quanzhou Women's and Children's Hospital, Fujian Province, People's Republic of China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Fujian Province, People's Republic of China
| |
Collapse
|
10
|
Candelo E, Ramirez-Montaño D, Pachajoa H. Microduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:347-353. [PMID: 31439979 PMCID: PMC6661518 DOI: 10.30476/ijms.2019.44945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations, and other gene mutations. A 12-year-old female Colombian patient was presented with refractory epilepsy and regression in skill acquisition (especially language with motor and verbal stereotypies, hyperactivity, and autistic spectrum disorder criteria). The patient was born to non-consanguineous parents and had an early normal development until the age of 36 months. Comparative genomic hybridization array-CGH (750K) was performed and Xp22.31 duplication was detected (6866889-8115153) with a size of 1.248 Mb associated with developmental delay, epilepsy, and autistic traits. Given the clinical criteria of RS, MECP2 sequencing was performed which showed a de novo pathogenic variant c.338C>G (p.Pro113Arg). The features of RS include intellectual disability, developmental delay, and autism. These features are associated with copy number variations (CNVs) on the X chromosome (Xp22.31 microduplication). Here we present the first reported case of simultaneous CNV and MECP2 pathogenic mutation in a patient with RS. We propose that both DNA alterations might have a synergistic effect and could lead to variable expressivity of the phenotype.
Collapse
Affiliation(s)
- Estephania Candelo
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Health Sciences Faculty, L Building, Universidad Icesi, Cali, Colombia
| | - Diana Ramirez-Montaño
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Health Sciences Faculty, L Building, Universidad Icesi, Cali, Colombia
| | - Harry Pachajoa
- Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Health Sciences Faculty, L Building, Universidad Icesi, Cali, Colombia.,Department of Genetics, Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
11
|
Epilepsy phenotype in patients with Xp22.31 microduplication. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 11:31-34. [PMID: 30603611 PMCID: PMC6310737 DOI: 10.1016/j.ebcr.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
The clinical significance of Xp22.31 microduplication is still unclear. We describe a family in which a mother and two children have Xp22.31 microduplication associated with different forms of epilepsy and epileptiform EEG abnormalities. The proband had benign epilepsy with centrotemporal spikes with dysgraphia and dyscalculia (IQ 72), the sister had juvenile myoclonic epilepsy, and both had bilateral talipes anomalies. The mother, who was the carrier of the microduplication, was asymptomatic. The asymptomatic father did not possess the microduplication. These data contribute to delineate the phenotype associated with Xp22.31 microduplication and suggest a potential pathogenic role for an epilepsy phenotype. Developmental disorders are commonly associated with Xp22.31 microduplication. Seizures may occur but specific epileptic syndromes are rare. Xp22.31 microduplication may have an additive role in epilepsy phenotype expression.
Collapse
|
12
|
Lee MY, Won HS, Han YJ, Ryu HM, Lee DE, Jeong BD. Clinical value of chromosomal microarray analysis in prenatally diagnosed dextro-transposition of the great arteries. J Matern Fetal Neonatal Med 2018; 33:1480-1485. [PMID: 30176760 DOI: 10.1080/14767058.2018.1519800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objectives: To evaluate the usefulness of chromosomal microarray analysis (CMA) in fetuses with dextro-transposition of the great arteries (d-TGA).Methods: Thirty-two fetuses with d-TGA were examined for submicroscopic copy number variations (CNVs) using CMA.Results: Among the 32 d-TGA fetuses, 23 had isolated lesions (71.9%) and nine had other cardiac or extracardiac anomalies (28.1%). CNVs were detected in 16/32 (50%) of the fetuses, including benign CNVs detected in nine fetuses (28.1%), pathogenic CNVs detected in three fetuses (9.4%), and variants of unknown significance (VOUS) detected in four fetuses (12.5%). There was no significant difference in the detection rates of pathogenic CNVs between the isolated and nonisolated groups. All four VOUS were found in the nonisolated group.Conclusion: CMA might be an effective tool for identifying submicroscopic chromosomal aberrations in fetuses with d-TGA.
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye-Sung Won
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Hyun Mee Ryu
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Da Eun Lee
- Laboratory of Medicine Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Ba-Da Jeong
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
13
|
Kamath A, Linden SC, Evans FM, Hall J, Jose SF, Spillane SA, Hardie ADR, Morgan SM, Pilz DT. Chromosome 17q12 duplications: Further delineation of the range of psychiatric and clinical phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:520-528. [PMID: 30134084 DOI: 10.1002/ajmg.b.32643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/22/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
Copy number variants at chromosome 17q12 have been associated with a spectrum of phenotypes. Deletions of 17q12 are well described and associated with maturity onset diabetes of the young type 5 (MODY5) and cystic renal disease (HNF1β) as well as cognitive impairment and seizures. Duplication of 17q12 is emerging as a new genetic syndrome, associated with learning disability, seizures, and behavioral problems. The duplication is often inherited from an apparently unaffected parent. Here, we describe a three-generation family with multiple individuals carrying a17q12 microduplication with varying clinical features, consistent with variable penetrance. The proband who inherited a 1.8 Mb interstitial 17q12 duplication from his mother presented with developmental delay, behavioral problems, and mild dysmorphism. One of his sisters, his maternal uncle, and his maternal grandmother also carry the 17q12 microduplication. Clinical features of the carriers include renal problems, diabetes mellitus, learning difficulties, epilepsy and mental illness. Cognitive abilities range from normal function to moderate impairment (full-scale IQ range: 52-99). In light of recent reports of association of this locus with schizophrenia, we performed a detailed psychiatric assessment and confirmed that one family member has symptoms consistent with a diagnosis of schizophrenia and another has a prodromal syndrome with attenuated positive symptoms of psychosis. This report extends the clinical phenotype associated with the 17q12 microduplication and highlights the phenotypic variability.
Collapse
Affiliation(s)
- Arveen Kamath
- Institute of Medical Genetics, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, United Kingdom
| | - Stefanie C Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ffion M Evans
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sian F Jose
- Institute of Medical Genetics, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, United Kingdom
| | - Sally A Spillane
- Institute of Medical Genetics, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, United Kingdom
| | - Alan D R Hardie
- Institute of Medical Genetics, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, United Kingdom
| | - Sian M Morgan
- Institute of Medical Genetics, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, United Kingdom
| | - Daniela T Pilz
- Institute of Medical Genetics, All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
14
|
Qiao Y, Bagheri H, Tang F, Badduke C, Martell S, Lewis SME, Robinson W, Connolly MB, Arbour L, Rajcan-Separovic E. Exome sequencing identified a de novo mutation of PURA gene in a patient with familial Xp22.31 microduplication. Eur J Med Genet 2018; 62:103-108. [PMID: 29908350 DOI: 10.1016/j.ejmg.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 11/28/2022]
Abstract
The clinical significance of Xp22.31 microduplication is controversial as it is reported in subjects with developmental delay (DD), their unaffected relatives and unrelated controls. We performed multifaceted studies in a family of a boy with hypotonia, dysmorphic features and DD who carried a 600 Kb Xp22.31 microduplication (7515787-8123310bp, hg19) containing two genes, VCX and PNPLA4. The duplication was transmitted from his cognitively normal maternal grandfather. We found no evidence of the duplication causing the proband's DD and congenital anomalies based on unaltered expression of PNPLA4 in the proband and his mother in comparison to controls and preferential activation of the paternal chromosome X with Xp22.31 duplication in proband's mother. However, a de novo, previously reported deleterious, missense mutation in Pur-alpha gene (PURA) (5q31.2), with a role in neuronal differentiation was detected in the proband by exome sequencing. We propose that the variability in the phenotype in carriers of Xp22.31 microduplication can be due to a second and more deleterious genetic mutation in more severely affected carriers. Widespread use of whole genome next generation sequencing in families with Xp22.31 CNV could help identify such cases.
Collapse
Affiliation(s)
- Ying Qiao
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hani Bagheri
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Flamingo Tang
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | | | - Sally Martell
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Suzanne M E Lewis
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, UBC, Vancouver, BC, Canada
| | - Wendy Robinson
- Department of Medical Genetics, UBC, Vancouver, BC, Canada
| | - Mary B Connolly
- Division of Pediatric Neurology, Department of Pediatrics, UBC and BC Children's Hospital, Vancouver, BC, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of Victoria, Victoria, BC, Canada.
| | - Evica Rajcan-Separovic
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Abstract
The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome [MIM 277000] is characterised by the absence of a uterus and vagina in otherwise phenotypically normal women with karyotype 46,XX. Clinically, the MRKH can be subdivided into two subtypes: an isolated or type I form can be delineated from a type II form, which is characterised by extragenital malformations. The so-called Müllerian hypoplasia, renal agenesis, cervicothoracic somite dysplasia (MURCS) association can be seen as the most severe phenotypic outcome. The MRKH syndrome affects at least 1 in 4000 to 5000 female new-borns. Although most of the cases are sporadic, familial clustering has also been described, indicating a genetic cause of the disease. However, the mode of inheritance is autosomal-dominant inheritance with reduced penetrance. High-resolution array-CGH and MLPA analysis revealed recurrent aberrations in different chromosomal regions such as TAR susceptibility locus in 1q21.1, chromosomal regions 16p11.2, and 17q12 and 22q11.21 microduplication and -deletion regions in patients with MRKH. Sequential analysis of the genes LHX1, TBX6 and RBM8A, which are located in chromosomal regions 17q12, 16p11.2 and 1q21.1, yielded in the detection of MRKH-associated mutations. In a subgroup of patients with signs of hyperandrogenaemia mutations of WNT4 have been found to be causative. Analysis of another member of the WNT family, WNT9B, resulted in the detection of some causative mutations in MRKH patients.
Collapse
Affiliation(s)
- Susanne Ledig
- Institute of Human Genetics, Westfälische Wilhelms-Universität, Vesaliusweg 12–14, 48149 Münster, Germany
| | - Peter Wieacker
- Institute of Human Genetics, Westfälische Wilhelms-Universität, Vesaliusweg 12–14, 48149 Münster, Germany
| |
Collapse
|
16
|
Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genet 2017; 58:449-457. [PMID: 28963714 PMCID: PMC5655614 DOI: 10.1007/s13353-017-0407-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
Molecular methods, by which copy number variants (CNVs) detection is available, have been gradually introduced into routine diagnostics over the last 15 years. Despite this, some CNVs continue to be a huge challenge when it comes to clinical interpretation. CNVs are an important source of normal and pathogenic variants, but, in many cases, their impact on human health depends on factors that are not yet known. Therefore, perception of their clinical consequences can change over time, as our knowledge grows. This review summarises guidelines that facilitate correct classification of identified changes and discusses difficulties with the interpretation of rare, small CNVs.
Collapse
Affiliation(s)
- Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.
| |
Collapse
|
17
|
Gilboa Y, Perlman S, Pode-Shakked N, Pode-Shakked B, Shrim A, Azaria-Lahav E, Dekel B, Yonath H, Berkenstadt M, Achiron R. Prenatal diagnosis of 17q12 deletion syndrome: from fetal hyperechogenic kidneys to high risk for autism. Prenat Diagn 2016; 36:1027-1032. [DOI: 10.1002/pd.4926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Yinon Gilboa
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Sharon Perlman
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Naomi Pode-Shakked
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Tel HaShomer Israel
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Tel HaShomer Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program; Sheba Medical Center; Tel HaShomer Israel
| | - Ben Pode-Shakked
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program; Sheba Medical Center; Tel HaShomer Israel
- The Danek Gertner Institute of Human Genetics and Internal Medicine; Sheba Medical Center; Tel HaShomer Israel
| | - Alon Shrim
- Department of Obstetrics and Gynecology; Hillel Yaffe Medical Center; Hadera Israel
- Technion Israel Institute of Technology; Haifa Israel
| | - Einat Azaria-Lahav
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Tel HaShomer Israel
| | - Benjamin Dekel
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Tel HaShomer Israel
- Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Tel HaShomer Israel
| | - Hagith Yonath
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- The Danek Gertner Institute of Human Genetics and Internal Medicine; Sheba Medical Center; Tel HaShomer Israel
| | - Michal Berkenstadt
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
- The Danek Gertner Institute of Human Genetics and Internal Medicine; Sheba Medical Center; Tel HaShomer Israel
| | - Reuven Achiron
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel, affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
18
|
Papale LA, Li S, Madrid A, Zhang Q, Chen L, Chopra P, Jin P, Keleş S, Alisch RS. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress. Neurobiol Dis 2016; 96:54-66. [PMID: 27576189 DOI: 10.1016/j.nbd.2016.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Sisi Li
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Qi Zhang
- Department of Statistics, University of Nebraska, Lincoln, NE, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Reid S Alisch
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
19
|
|
20
|
Mitchell E, Douglas A, Kjaegaard S, Callewaert B, Vanlander A, Janssens S, Yuen AL, Skinner C, Failla P, Alberti A, Avola E, Fichera M, Kibaek M, Digilio MC, Hannibal MC, den Hollander NS, Bizzarri V, Renieri A, Mencarelli MA, Fitzgerald T, Piazzolla S, van Oudenhove E, Romano C, Schwartz C, Eichler EE, Slavotinek A, Escobar L, Rajan D, Crolla J, Carter N, Hodge JC, Mefford HC. Recurrent duplications of 17q12 associated with variable phenotypes. Am J Med Genet A 2015; 167A:3038-45. [PMID: 26420380 DOI: 10.1002/ajmg.a.37351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/06/2015] [Indexed: 02/02/2023]
Abstract
The ability to identify the clinical nature of the recurrent duplication of chromosome 17q12 has been limited by its rarity and the diverse range of phenotypes associated with this genomic change. In order to further define the clinical features of affected patients, detailed clinical information was collected in the largest series to date (30 patients and 2 of their siblings) through a multi-institutional collaborative effort. The majority of patients presented with developmental delays varying from mild to severe. Though dysmorphic features were commonly reported, patients do not have consistent and recognizable features. Cardiac, ophthalmologic, growth, behavioral, and other abnormalities were each present in a subset of patients. The newly associated features potentially resulting from 17q12 duplication include height and weight above the 95th percentile, cataracts, microphthalmia, coloboma, astigmatism, tracheomalacia, cutaneous mosaicism, pectus excavatum, scoliosis, hypermobility, hypospadias, diverticulum of Kommerell, pyloric stenosis, and pseudohypoparathryoidism. The majority of duplications were inherited with some carrier parents reporting learning disabilities or microcephaly. We identified additional, potentially contributory copy number changes in a subset of patients, including one patient each with 16p11.2 deletion and 15q13.3 deletion. Our data further define and expand the clinical spectrum associated with duplications of 17q12 and provide support for the role of genomic modifiers contributing to phenotypic variability.
Collapse
Affiliation(s)
- Elyse Mitchell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew Douglas
- Princess Anne Hospital, Wessex Clinical Genetics Service, Southhampton, United Kingdom
| | - Susanne Kjaegaard
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Sandra Janssens
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Amy Lawson Yuen
- Multicare Health System, Genomics Institute, Tacoma, Washington
| | - Cindy Skinner
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina
| | | | | | | | - Marco Fichera
- IRCCS Associazione Oasi Maria Santissima, Troina, Italy.,Medical Genetics, University of Catania, Catania, Italy
| | | | - Maria C Digilio
- Department of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Mark C Hannibal
- Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | - Tomas Fitzgerald
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Serena Piazzolla
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | | | - Charles Schwartz
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina
| | - Evan E Eichler
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, California
| | - Luis Escobar
- Payton Manning Children's Hospital, Indianapolis, Indiana
| | - Diana Rajan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - John Crolla
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom
| | - Nigel Carter
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jennelle C Hodge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
21
|
Casey JP, Goggin P, McDaid J, White M, Ennis S, Betts DR, Lucas JS, Elnazir B, Lynch SA. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder. BMC MEDICAL GENETICS 2015; 16:45. [PMID: 26123568 PMCID: PMC4630905 DOI: 10.1186/s12881-015-0192-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/22/2015] [Indexed: 11/10/2022]
Abstract
Background Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterised by abnormal ciliary motion and impaired mucociliary clearance, leading to recurrent respiratory infections, sinusitis, otitis media and male infertility. Some patients also have laterality defects. We recently reported the identification of three disease-causing PCD genes in the Irish Traveller population; RSPH4A, DYX1C1 and CCNO. We have since assessed an additional Irish Traveller family with a complex phenotype involving PCD who did not have any of the previously identified PCD mutations. Case presentation In this study we report on a family with three children with PCD and various laterality defects. In addition, one child (V:1) has mild-to-moderate developmental delay and one child has speech delay (V:2). Developmental delay is not usually associated with PCD and is likely to be caused by an additional genetic abnormality. Transmission electron microscopy showed variable inner and outer dynein arm defects. Exome sequencing identified a homozygous missense variant in CCDC103 (c.461A > C; p.His154Pro) as the most likely cause of the PCD and laterality defects in this family. However, as mutation in CCDC103 would not account for the developmental delay, array comparative genomic hybridisation was undertaken and identified a maternally inherited gain of ~1.6 Mb (chr17:34,611,352-36,248,918). Gains at this locus are associated with 17q12 duplication syndrome which includes speech and language delay. Conclusion We report on a variable and complex phenotype caused by the co-inheritance of a single gene mutation in CCDC103 and a microduplication at 17q12, both on chromosome 17. The co-existence of a single gene and chromosome disorder is unusual but accounts for the spectrum of clinical features in this family. In addition, our study brings the total number of PCD genes in the Irish Traveller population to four and we suspect additional PCD genes are yet to be identified. Although, on a global scale, PCD is associated with extensive genetic heterogeneity, finding such a high number of causative PCD genes within the relatively small Irish Traveller population was unexpected. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0192-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jillian P Casey
- Genetics Department, Temple Street Children's University Hospital, Dublin 1, Ireland. .,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Jennifer McDaid
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Martin White
- Neonatology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Sean Ennis
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland. .,Neonatology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - David R Betts
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Basil Elnazir
- Pediatric Respiratory Medicine, The Adelaide and Meath Hospital, Tallaght, Dublin 24, Ireland.
| | - Sally Ann Lynch
- Genetics Department, Temple Street Children's University Hospital, Dublin 1, Ireland. .,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland. .,National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| |
Collapse
|
22
|
Quintela I, Fernandez-Prieto M, Gomez-Guerrero L, Resches M, Eiris J, Barros F, Carracedo A. A 6q14.1-q15 microdeletion in a male patient with severe autistic disorder, lack of oral language, and dysmorphic features with concomitant presence of a maternally inherited Xp22.31 copy number gain. Clin Case Rep 2015; 3:415-23. [PMID: 26185640 PMCID: PMC4498854 DOI: 10.1002/ccr3.255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022] Open
Abstract
We report on a male patient with severe autistic disorder, lack of oral language, and dysmorphic features who carries a rare interstitial microdeletion of 4.96 Mb at chromosome 6q14.1-q15. The patient also harbors a maternally inherited copy number gain of 1.69 Mb at chromosome Xp22.31, whose pathogenicity is under debate.
Collapse
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformaticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Montse Fernandez-Prieto
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain
| | - Lorena Gomez-Guerrero
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain
| | - Mariela Resches
- Departamento de Psicologia Evolutiva y de la Educacion, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Jesus Eiris
- Unidad de Neurologia Pediatrica, Departamento de Pediatria, Hospital Clinico Universitario de Santiago de Compostela Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformaticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Universidade de Santiago de Compostela Santiago de Compostela, Spain ; Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica - SERGAS Santiago de Compostela, Spain ; Center of Excellence in Genomic Medicine Research, King Abdulaziz University Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Prenatal diagnosis of 17q12 duplication and deletion syndrome in two fetuses with congenital anomalies. Taiwan J Obstet Gynecol 2014; 53:579-82. [DOI: 10.1016/j.tjog.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 11/22/2022] Open
|
24
|
Esplin ED, Li B, Slavotinek A, Novelli A, Battaglia A, Clark R, Curry C, Hudgins L. Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies. Am J Med Genet A 2014; 164A:2097-103. [DOI: 10.1002/ajmg.a.36598] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Edward D. Esplin
- Division of Medical Genetics, Department of Pediatrics; Stanford University School of Medicine; Stanford California
| | - Ben Li
- Division of Medical Genetics, Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Antonio Novelli
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Hospital; San Giovanni Rotondo (FG) Italy
| | - Agatino Battaglia
- The Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry; Calambrone (Pisa) Italy
| | - Robin Clark
- Division of Medical Genetics, Department of Pediatrics; Loma Linda University; Loma Linda California
| | - Cynthia Curry
- Division of Medical Genetics, Department of Pediatrics; UCSF Fresno; Fresno California
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics; Stanford University School of Medicine; Stanford California
| |
Collapse
|
25
|
Xp22.3 interstitial deletion: A recognizable chromosomal abnormality encompassing VCX3A and STS genes in a patient with X-linked ichthyosis and mental retardation. Gene 2013; 527:578-83. [DOI: 10.1016/j.gene.2013.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
|
26
|
Bierhals T, Maddukuri SB, Kutsche K, Girisha KM. Expanding the phenotype associated with 17q12 duplication: Case report and review of the literature. Am J Med Genet A 2013; 161A:352-9. [DOI: 10.1002/ajmg.a.35730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 10/01/2012] [Indexed: 12/29/2022]
|
27
|
Vermeesch JR, Brady PD, Sanlaville D, Kok K, Hastings RJ. Genome-wide arrays: quality criteria and platforms to be used in routine diagnostics. Hum Mutat 2012; 33:906-15. [PMID: 22415865 DOI: 10.1002/humu.22076] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Whole-genome analysis using genome-wide arrays, also called "genomic arrays," "microarrays," or "arrays," has become the first-tier diagnostic test for patients with developmental abnormalities and/or intellectual disabilities. In addition to constitutional anomalies, genomic arrays are also used to diagnose acquired disorders. Despite the rapid implementation of these technologies in diagnostic laboratories, external quality control schemes (such as CEQA, EMQN, UK NEQAS, and the USA QA scheme CAP) and interlaboratory comparisons show that there are huge differences in quality, interpretation, and reporting among laboratories. We offer guidance to laboratories to help assure the quality of array experiments and to standardize minimum detection resolution, and we also provide guidelines to standardize interpretation and reporting.
Collapse
Affiliation(s)
- Joris R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, University Hospital Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
28
|
Sporadic male patients with intellectual disability: contribution of X-chromosome copy number variants. Eur J Med Genet 2012; 55:577-85. [PMID: 22659343 DOI: 10.1016/j.ejmg.2012.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/19/2012] [Accepted: 05/20/2012] [Indexed: 12/18/2022]
Abstract
Genome-wide array comparative genome hybridization has become the first in line diagnostic tool in the clinical work-up of patients presenting with intellectual disability. As a result, chromosome X-copy number variations are frequently being detected in routine diagnostics. We retrospectively reviewed genome wide array-CGH data in order to determine the frequency and nature of chromosome X-copy number variations (X-CNV) in a cohort of 2222 sporadic male patients with intellectual disability (ID) referred to us for diagnosis. In this cohort, 68 males were found to have at least one X-CNV (3.1%). However, correct interpretation of causality remains a challenging task, and is essential for proper counseling, especially when the CNV is inherited. On the basis of these data, earlier experience and literature data we designed and propose an algorithm that can be used to evaluate the clinical relevance of X-CNVs detected in sporadic male ID patients. Applied to our cohort, 19 male ID patients (0.85%) were found to carry a (likely) pathogenic X-CNV.
Collapse
|
29
|
Mancini TI, Oliveira MM, Dutra ARN, Perez ABA, Minillo RM, Takeno SS, Melaragno MI. Interstitial 4q Deletion and Isodicentric Y-Chromosome in a Patient with Dysmorphic Features. Mol Syndromol 2012; 3:39-43. [PMID: 22855654 DOI: 10.1159/000338468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2012] [Indexed: 12/12/2022] Open
Abstract
We present a 2-year-old boy with a de novo 46,XY,idic(Y)(q11.221),del(4)(q26q31.1) karyotype. G-banding, FISH, MLPA, and SNP-array techniques were used to characterize the 24-Mb deletion in 4q and the breakpoint in the isodicentric Y-chromosome region between 15,982,252 and 15,989,842 bp. The patient presented with mild facial dysmorphism, hemangioma, mild frontal cerebral atrophy, and Dandy-Walker variant. Essentially, this case reveals that patients can present more complex genomic imbalances than initially suspected.
Collapse
Affiliation(s)
- T I Mancini
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The diagnostic benefits of array comparative genomic hybridisation (CGH) have been demonstrated, with this technique now being applied as the first-line test for patients with intellectual disabilities and/or multiple congenital anomalies in numerous laboratories. There are no technical barriers preventing the introduction of array CGH to prenatal diagnosis. The question is rather how this is best implemented, and for whom. The challenges lie in the interpretation of copy number variations, particularly those which exhibit reduced penetrance or variable expression, and how to deal with incidental findings, which are not related to the observed foetal anomalies, or unclassified variants which are currently of uncertain clinical significance. Recently, applications of array technologies to the field of pre-implantation genetic diagnosis have also been demonstrated. It is important to address the ethical questions raised concerning the genome-wide analysis of prenatal samples to ensure the maximum benefit for patients. We provide an overview of the recent developments on the use of array CGH in the prenatal setting, and address the challenges posed.
Collapse
|
31
|
Vetro A, Bouman K, Hastings R, McMullan DJ, Vermeesch JR, Miller K, Sikkema-Raddatz B, Ledbetter DH, Zuffardi O, van Ravenswaaij-Arts CMA. The introduction of arrays in prenatal diagnosis: a special challenge. Hum Mutat 2012; 33:923-9. [PMID: 22508381 DOI: 10.1002/humu.22050] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 01/14/2023]
Abstract
Genome-wide arrays are rapidly replacing conventional karyotyping in postnatal cytogenetic diagnostics and there is a growing request for arrays in the prenatal setting. Several studies have documented 1-3% additional abnormal findings in prenatal diagnosis with arrays compared to conventional karyotyping. A recent meta-analysis demonstrated that 5.2% extra diagnoses can be expected in fetuses with ultrasound abnormalities. However, no consensus exists as to whether the use of genome-wide arrays should be restricted to pregnancies with ultrasound abnormalities, performed in all women undergoing invasive prenatal testing or offered to all pregnant women. Moreover, the interpretation of array results in the prenatal situation is challenging due to the large numbers of copy number variants with no major phenotypic effect. This also raises the question of what, or what not to report, for example, how to deal with unsolicited findings. These issues were discussed at a working group meeting that preceded the European Society of Human Genetics 2011 Conference in Amsterdam. This article is the result of this meeting and explores the introduction of genome-wide arrays into routine prenatal diagnosis. We aim to give some general recommendations on how to develop practical guidelines that can be implemented in the local setting and that are consistent with the emerging international consensus.
Collapse
|
32
|
Brandt T, Desai K, Grodberg D, Mehta L, Cohen N, Tryfon A, Kolevzon A, Soorya L, Buxbaum JD, Edelmann L. Complex autism spectrum disorder in a patient with a 17q12 microduplication. Am J Med Genet A 2012; 158A:1170-7. [PMID: 22488896 DOI: 10.1002/ajmg.a.35267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/26/2011] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASDs) are phenotypically complex developmental neuropsychiatric disorders affecting approximately 0.6% of the population. About 30-70% of affected children are also considered to have intellectual disability (ID). The underlying genetic causes of ASDs are diverse with a defined etiology in 16-20%. Array comparative genomic hybridization (aCGH) has proven useful in identifying sub-microscopic chromosome aberrations in a subset of patients, some of which have been shown to be recurrent. One such aberration is the 1.4 Mb microdeletion at chromosome 17q12, which has been reported to be associated with renal disease, growth restriction, diabetes, cognitive impairment, seizures, and in some cases an ASD. Patients with the reciprocal chromosome 17q12 microduplication typically have also been identified with ID and in some cases seizures and behavioral abnormalities. Here we report a patient with a de novo, 1.4 Mb microduplication diagnosed with significant ID involving complex deficits and autism. To our knowledge, this is the first report of a patient with the 17q12 microduplication and a complex ASD phenotype.
Collapse
Affiliation(s)
- Tracy Brandt
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, New York 100029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Meloni VDFA, Piazzon FB, Soares MDFDF, Takeno SS, Christofolini DM, Kulikowski LD, Brunoni D, Melaragno MI. Cytogenomic characterization of an unexpected 17.6 Mb 9p deletion associated to a 14.8 Mb 20p duplication in a dysmorphic patient with multiple congenital anomalies presenting a normal G-banding karyotype. Gene 2012; 496:59-62. [PMID: 22285927 DOI: 10.1016/j.gene.2012.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
We describe a female patient with developmental delay, dysmorphic features and multiple congenital anomalies who presented a normal G-banded karyotype at the 550-band resolution. Array and multiplex-ligation probe amplification (MLPA) techniques identified an unexpected large unbalanced genomic aberration: a 17.6Mb deletion of 9p associated to a 14.8 Mb duplication of 20p. The deleted 9p genes, especially CER1 and FREM1, seem to be more relevant to the phenotype than the duplicated 20p genes. This study also shows the relevance of using molecular techniques to make an accurate diagnosis in patients with dysmorphic features and multiple anomalies suggestive of chromosome aberration, even if on G-banding their karyotype appears to be normal. Fluorescence in situ hybridization (FISH) was necessary to identify a masked balanced translocation in the patient's mother, indicating the importance of associating cytogenetic and molecular techniques in clinical genetics, given the implications for patient management and genetic counseling.
Collapse
|
34
|
Galizia EC, Srikantha M, Palmer R, Waters JJ, Lench N, Ogilvie CM, Kasperavičiūtė D, Nashef L, Sisodiya SM. Array comparative genomic hybridization: results from an adult population with drug-resistant epilepsy and co-morbidities. Eur J Med Genet 2012; 55:342-8. [PMID: 22342432 PMCID: PMC3526772 DOI: 10.1016/j.ejmg.2011.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/27/2011] [Indexed: 01/15/2023]
Abstract
Background The emergence of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated recognition of microdeletions and microduplications as risk factors for both generalised and focal epilepsies. Furthermore, there is evidence that some microdeletions/duplications, such as the 15q13.3 deletion predispose to a range of neuropsychiatric disorders, including intellectual disability (ID), autism, schizophrenia and epilepsy. We hypothesised that array CGH would reveal relevant findings in an adult patient group with epilepsy and complex phenotypes. Methods 82 patients (54 from the National Hospital for Neurology and Neurosurgery and 28 from King’s College Hospital) with drug-resistant epilepsy and co-morbidities had array CGH. Separate clinicians ordered array CGH and separate platforms were used at the two sites. Results In the two independent groups we identified copy number variants judged to be of pathogenic significance in 13.5% (7/52) and 20% (5/25) respectively, noting that slightly different selection criteria were used, giving an overall yield of 15.6%. Sixty-nine variants of unknown significance were also identified in the group from the National Hospital for Neurology and Neurosurgery and 5 from the King’s College Hospital patient group. Conclusion We conclude that array CGH be considered an important investigation in adults with complicated epilepsy and, at least at present for selected patients, should join the diagnostic repertoire of clinical history and examination, neuroimaging, electroencephalography and other indicated investigations in generating a more complete formulation of an individual’s epilepsy.
Collapse
Affiliation(s)
- Elizabeth C Galizia
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Faletra F, D'Adamo AP, Santa Rocca M, Carrozzi M, Perrone MD, Pecile V, Gasparini P. Does the 1.5 Mb microduplication in chromosome band Xp22.31 have a pathogenetic role? New contribution and a review of the literature. Am J Med Genet A 2011; 158A:461-4. [PMID: 22140086 DOI: 10.1002/ajmg.a.34398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/31/2011] [Indexed: 02/05/2023]
|
36
|
Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics. Eur J Hum Genet 2011; 20:161-5. [PMID: 21934709 DOI: 10.1038/ejhg.2011.174] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P < 0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient.
Collapse
|
37
|
Park SJ, Jung EH, Ryu RS, Kang HW, Ko JM, Kim HJ, Cheon CK, Hwang SH, Kang HY. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases. Mol Cytogenet 2011; 4:12. [PMID: 21549014 PMCID: PMC3114015 DOI: 10.1186/1755-8166-4-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023] Open
Abstract
Background Array comparative genomic hybridization (CGH) is currently the most powerful method for detecting chromosomal alterations in pre and postnatal clinical cases. In this study, we developed a BAC based array CGH analysis platform for detecting whole genome DNA copy number changes including specific micro deletion and duplication chromosomal disorders. Additionally, we report our experience with the clinical implementation of our array CGH analysis platform. Array CGH was performed on 5080 pre and postnatal clinical samples from patients referred with a variety of clinical phenotypes. Results A total of 4073 prenatal cases (4033 amniotic fluid and 40 chorionic villi specimens) and 1007 postnatal cases (407 peripheral blood and 600 cord blood) were studied with complete concordance between array CGH, karyotype and fluorescence in situ hybridization results. Among 75 positive prenatal cases with DNA copy number variations, 60 had an aneuploidy, seven had a deletion, and eight had a duplication. Among 39 positive postnatal cases samples, five had an aneuploidy, 23 had a deletion, and 11 had a duplication. Conclusions This study demonstrates the utility of using our newly developed whole-genome array CGH as first-tier test in 5080 pre and postnatal cases. Array CGH has increased the ability to detect segmental deletion and duplication in patients with variable clinical features and is becoming a more powerful tool in pre and postnatal diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Min Ko
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Hyon J Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, School of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Gyeonggi-do, Korea
| | | |
Collapse
|
38
|
Palka C, Alfonsi M, Morizio E, Soranno A, La Rovere D, Matarrelli B, Rullo AL, Zori R, Chiarelli F, Calabrese G. Array-CGH characterization of a prenatally detected de novo 46,X,der(Y)t(X;Y)(p22.3;q11.2) in a male fetus. Eur J Med Genet 2011; 54:333-6. [PMID: 21354345 DOI: 10.1016/j.ejmg.2011.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/01/2011] [Indexed: 01/18/2023]
Abstract
We report on an apparently normal 5-month-old boy with a X;Y complex rearrangement identified first on prenatal diagnosis and found on array-CGH to have a 7.6 Mb duplication of Xp22.3 chromosome and a deletion of Yq chromosome, distal to the AZFa locus. Karyotype analysis on amniotic fluid cell cultures revealed a de novo homogenous chromosome marker that we interpreted as an isochromosome Yp. FISH analysis using SRY probe revealed only one signal on the derivative Y chromosome. The final karyotype was interpreted as 46,X,der(Y)t(X;Y)(p22.31;q11.22). Translocation Xp22;Yq11 in male are very rare event and only 4 cases have been published, all showing mental retardation and malformations. Herein we discussed some possible explanation for this apparent phenotypic variability.
Collapse
Affiliation(s)
- Chiara Palka
- Department of Oral Sciences, Nano and Biotechnologies, G. D'Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
We set out to review the extent to which molecular karyotyping has overtaken conventional cytogenetics in applications related to epilepsy. Multiplex ligase-dependent probe amplification (MLPA) targeted to predetermined regions such as SCN1A and KCNQ2 has been effectively applied over the last half a decade, and oligonucleotide array comparative genome hybridization (array CGH) is now well established for genome-wide exploration of microchromosomal variation. Array CGH is applicable to the characterization of lesions present in both sporadic and familial epilepsy, especially where clinical features of affected cases depart from established syndromes. Copy number variants (CNVs) associated with epilepsy and a range of other syndromes and conditions can be recurrent due to nonallelic homologous recombination in regions of segmental duplication. The most common of the recurrent microdeletions associated with generalized epilepsy are typically seen at a frequency of ∼ 1% at 15q13.3, 16p13.11, and 15q11.2, sites that also confer susceptibility for intellectual disability, autism, and schizophrenia. Incomplete penetrance and variable expressivity confound the established rules of cytogenetics for determining the pathogenicity for novel CNVs; however, as knowledge is gained for each of the recurrent CNVs, this is translated to genetic counseling. CNVs play a significant role in the susceptibility profile for epilepsies, with complex genetics and their comorbidities both from the "hotspots" defined by segmental duplication and elsewhere in the genome where their location and size are often novel.
Collapse
Affiliation(s)
- John C Mulley
- Department of Genetic Medicine, Directorate of Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, South Australia, Australia.
| | | |
Collapse
|
40
|
Zarate YA, Dwivedi A, Bartel FO, Corning K, Dupont BR. 47, XY, +der(Y),t(X;Y)(p21.1;p11.2): a unique case of XY sex reversal. Am J Med Genet A 2010; 155A:386-91. [PMID: 21271659 DOI: 10.1002/ajmg.a.33799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/18/2010] [Indexed: 11/06/2022]
Abstract
Translocations involving the short arms of the X and Y chromosomes are rare and can result in a functional disomy of the short arm of the X chromosome, including the dosage-sensitive sex reversal (DSS) locus. A result of such imbalance may be sex reversal with multiple congenital anomalies. We present the clinical and cytogenetic evaluation of a newborn infant with DSS and additional clinical findings of minor facial anomalies, left abdominal mass, 5th finger clinodactyly, and mild hypotonia. The external genitalia appeared to be normal female. The infant had bilateral corneal opacities and findings suggestive of anterior segment dysgenesis. Ultrasonography showed a small uterus with undetectable ovaries, and a left multicystic dysplastic kidney. High-resolution chromosome analysis identified the presence of a derivative Y chromosome, 47,XY, +der(Y)t(X;Y)(p21.1;p11.2), which was confirmed by fluorescence in situ hybridization studies. Array CGH showed a 35.1 Mb copy number gain of chromosome region Xp22.33-p21.1 and a 52.2 Mb copy number gain of Yp11.2-qter, in addition to the intact X and Y chromosomes. Previously reported patients with XY sex reversal have not had DSS with corneal opacities, dysgenesis of the anterior segment of the eye, and unilateral multicystic dysplastic kidney. These findings represent a new form of XY sex reversal due to an Xp duplication.
Collapse
Affiliation(s)
- Yuri A Zarate
- Greenwood Genetic Center, Greenwood, South Carolina, USA.
| | | | | | | | | |
Collapse
|
41
|
Pericentric inversion, inv(14)(p11.2q22.3), in a 9-month old with features of Goldenhar syndrome. Clin Dysmorphol 2010; 19:185-189. [DOI: 10.1097/mcd.0b013e3283359386] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
A 12.4 Mb duplication of 17q11.2q12 in a patient with psychomotor developmental delay and minor anomalies. Eur J Med Genet 2010; 53:325-8. [DOI: 10.1016/j.ejmg.2010.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/24/2010] [Indexed: 11/24/2022]
|
43
|
Loirat C, Bellanné-Chantelot C, Husson I, Deschênes G, Guigonis V, Chabane N. Autism in three patients with cystic or hyperechogenic kidneys and chromosome 17q12 deletion. Nephrol Dial Transplant 2010; 25:3430-3. [DOI: 10.1093/ndt/gfq380] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
44
|
Genomic and clinical characteristics of microduplications in chromosome 17. Am J Med Genet A 2010; 152A:1101-10. [DOI: 10.1002/ajmg.a.33248] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Yu S, Kielt M, Stegner AL, Kibiryeva N, Bittel DC, Cooley LD. Quantitative real-time polymerase chain reaction for the verification of genomic imbalances detected by microarray-based comparative genomic hybridization. Genet Test Mol Biomarkers 2010; 13:751-60. [PMID: 20001581 DOI: 10.1089/gtmb.2009.0056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The American College of Medical Genetics guidelines for microarray analysis for constitutional cytogenetic abnormalities require abnormal or ambiguous results from microarray-based comparative genomic hybridization (aCGH) analysis be confirmed by an alternative method. We employed quantitative real-time polymerase chain reaction (qPCR) technology using SYBR Green I reagents for confirmation of 93 abnormal aCGH results (50 deletions and 43 duplications) and 54 parental samples. A novel qPCR protocol using DNA sequences coding for X-linked lethal diseases in males for designing reference primers was established. Of the 81 sets of test primers used for confirmation of 93 abnormal copy number variants (CNVs) in 80 patients, 71 sets worked after the initial primer design (88%), 9 sets were redesigned once, and 1 set twice because of poor amplification. Fifty-four parental samples were tested using 33 sets of test primers to follow up 34 CNVs in 30 patients. Nineteen CNVs were confirmed as inherited, 13 were negative in both parents, and 2 were inconclusive due to a negative result in a single parent. The qPCR assessment clarified aCGH results in two cases and corrected a fluorescence in situ hybridization result in one case. Our data illustrate that qPCR methodology using SYBR Green I reagents is accurate, highly sensitive, specific, rapid, and cost-effective for verification of chromosomal imbalances detected by aCGH in the clinical setting.
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pathology, Children's Mercy Hospitals and Clinics, and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | | | | | | | | | | |
Collapse
|
46
|
Li F, Shen Y, Köhler U, Sharkey FH, Menon D, Coulleaux L, Malan V, Rio M, McMullan DJ, Cox H, Fagan KA, Gaunt L, Metcalfe K, Heinrich U, Hislop G, Maye U, Sutcliffe M, Wu BL, Thiel BD, Mulchandani S, Conlin LK, Spinner NB, Murphy KM, Batista DAS. Interstitial microduplication of Xp22.31: Causative of intellectual disability or benign copy number variant? Eur J Med Genet 2010; 53:93-9. [PMID: 20132918 DOI: 10.1016/j.ejmg.2010.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/23/2010] [Indexed: 12/16/2022]
Abstract
The use of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays has dramatically altered the approach to identification of genetic alterations that can explain intellectual disability and /or congenital anomalies. However, the discovery of numerous copy number changes with benign or unknown clinical significance has made interpretation problematic. Submicroscopic duplication of Xp22.31 has been reported as either a possible cause of intellectual disability and/or developmental delay or a benign variant. Here we report 29 individuals with the microduplication found as part of microarray analysis of 7793 samples submitted to an international group of 13 clinical laboratories. The referral reasons varied and included developmental delay, intellectual disability, autism, dysmorphic features and/or multiple congenital anomalies. The size of the Xp22.31 duplication varied between 149 kb and 1.74 Mb and included the steroid sulfatase (STS) gene with the male to female ratio of 0.7. Duplication within this segment is seen at a frequency of 0.15% in a healthy control population, whereas a frequency of 0.37% was observed in our cohort of individuals with abnormal phenotypes. We present a detailed comparison of the breakpoints, inheritance, X-inactivation and clinical phenotype in our cohort and a review of the literature for a total of 41 patients. To date, this report is the largest compilation of clinical and array data regarding the microduplication of Xp22.31 and will serve to broaden the knowledge of regions involving copy number variation (CNV).
Collapse
Affiliation(s)
- Feng Li
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Genotype to phenotype—discovery and characterization of novel genomic disorders in a “genotype-first” era. Genet Med 2009; 11:836-42. [DOI: 10.1097/gim.0b013e3181c175d2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
48
|
Buysse K, Delle Chiaie B, Van Coster R, Loeys B, De Paepe A, Mortier G, Speleman F, Menten B. Challenges for CNV interpretation in clinical molecular karyotyping: Lessons learned from a 1001 sample experience. Eur J Med Genet 2009; 52:398-403. [DOI: 10.1016/j.ejmg.2009.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/09/2009] [Indexed: 12/11/2022]
|
49
|
Jaillard S, Drunat S, Bendavid C, Aboura A, Etcheverry A, Journel H, Delahaye A, Pasquier L, Bonneau D, Toutain A, Burglen L, Guichet A, Pipiras E, Gilbert-Dussardier B, Benzacken B, Martin-Coignard D, Henry C, David A, Lucas J, Mosser J, David V, Odent S, Verloes A, Dubourg C. Identification of gene copy number variations in patients with mental retardation using array-CGH: Novel syndromes in a large French series. Eur J Med Genet 2009; 53:66-75. [PMID: 19878743 DOI: 10.1016/j.ejmg.2009.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/17/2009] [Indexed: 12/16/2022]
Abstract
Array-CGH has revealed a large number of copy number variations (CNVs) in patients with multiple congenital anomalies and/or mental retardation (MCA/MR). According to criteria recently listed, pathogenicity was clearly suspected for some CNVs but benign CNVs, considered as polymorphisms, have complicated the interpretation of the results. In this study, genomic DNAs from 132 French patients with unexplained mental retardation were analysed by genome wide high-resolution Agilent 44K oligonucleotide arrays. The results were in accordance with those observed in previous studies: the detection rate of pathogenic CNVs was 14.4%. A non-random involvement of several chromosomal regions was observed. Some of the microimbalances recurrently involved regions (1q21.1, 2q23.1, 2q32q33, 7p13, 17p13.3, 17p11.2, 17q21.31) corresponding to known or novel syndromes. For all the pathogenic CNVs, further cases are needed to allow more accurate genotype-phenotype correlations underscoring the importance of databases to group patients with similar molecular data.
Collapse
Affiliation(s)
- Sylvie Jaillard
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU Pontchaillou, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12. Eur J Hum Genet 2009; 18:278-84. [PMID: 19844256 DOI: 10.1038/ejhg.2009.174] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Deletions in chromosome 17q12 encompassing the HNF1 beta gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with an increased risk of epilepsy and mental retardation. We conducted a detailed clinical and molecular characterization of four patients with a deletion and five patients with a reciprocal duplication of this region. Our patients with deletion of 17q12 presented with cognitive impairment, cystic renal disease, seizures, and structural abnormalities of the brain. Patients with reciprocal duplications manifest with cognitive impairment and behavioral abnormalities, but not with seizures. Our findings expand the phenotypic spectrum associated with rearrangements of 17q12 and show that cognitive impairment is a part of the phenotype of individuals with deletions of 17q12.
Collapse
|