1
|
Rashed HR, Milone M. The spectrum of rippling muscle disease. Muscle Nerve 2025; 71:9-21. [PMID: 39370631 DOI: 10.1002/mus.28270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Rippling muscle disease (RMD) is a rare disorder of muscle hyperexcitability. It is characterized by rippling wave-like muscle contractions induced by mechanical stretch or voluntary contraction followed by sudden stretch, painful muscle stiffness, percussion-induced rapid muscle contraction (PIRC), and percussion-induced muscle mounding (PIMM). RMD can be hereditary (hRMD) or immune-mediated (iRMD). hRMD is caused by pathogenic variants in caveolin-3 (CAV3) or caveolae-associated protein 1/ polymerase I and transcript release factor (CAVIN1/PTRF). CAV3 pathogenic variants are autosomal dominant or less frequently recessive while CAVIN1/PTRF pathogenic variants are autosomal recessive. CAV3-RMD manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic creatine kinase elevation to severe muscle weakness. Overlapping phenotypes are common. Muscle caveolin-3 immunoreactivity is often absent or diffusely reduced in CAV3-RMD. CAVIN1/PTRF-RMD is characterized by congenital generalized lipodystrophy (CGL, type 4) and often accompanied by several extra-skeletal muscle manifestations. Muscle cavin-1/PTRF immunoreactivity is absent or reduced while caveolin-3 immunoreactivity is reduced, often in a patchy way, in CAVIN1/PTRF-RMD. iRMD is often accompanied by other autoimmune disorders, including myasthenia gravis. Anti-cavin-4 antibodies are the serological marker while the mosaic expression of caveolin-3 and cavin-4 is the pathological feature of iRMD. Most patients with iRMD respond to immunotherapy. Rippling, PIRC, and PIMM are usually electrically silent. Different pathogenic mechanisms have been postulated to explain the disease mechanisms. In this article, we review the spectrum of hRMD and iRMD, including clinical phenotypes, electrophysiological characteristics, myopathological findings, and pathogenesis.
Collapse
|
2
|
Aboy-Pardal MCM, Guadamillas MC, Guerrero CR, Català-Montoro M, Toledano-Donado M, Terrés-Domínguez S, Pavón DM, Jiménez-Jiménez V, Jimenez-Carretero D, Zamai M, Folgueira C, Cerezo A, Lolo FN, Nogueiras R, Sabio G, Sánchez-Álvarez M, Echarri A, Garcia R, Del Pozo MA. Plasma membrane remodeling determines adipocyte expansion and mechanical adaptability. Nat Commun 2024; 15:10102. [PMID: 39609408 PMCID: PMC11605069 DOI: 10.1038/s41467-024-54224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Adipocytes expand massively to accommodate excess energy stores and protect the organism from lipotoxicity. Adipose tissue expandability is at the center of disorders such as obesity and lipodystrophy; however, little is known about the relevance of adipocyte biomechanics on the etiology of these conditions. Here, we show in male mice in vivo that the adipocyte plasma membrane undergoes caveolar domain reorganization upon lipid droplet expansion. As the lipid droplet grows, caveolae disassemble to release their membrane reservoir and increase cell surface area, and transfer specific caveolar components to the LD surface. Adipose tissue null for caveolae is stiffer, shows compromised deformability, and is prone to rupture under mechanical compression. Mechanistically, phosphoacceptor Cav1 Tyr14 is required for caveolae disassembly: adipocytes bearing a Tyr14Phe mutation at this residue are stiffer and smaller, leading to decreased adiposity in vivo; exhibit deficient transfer of Cav1 and EHD2 to the LD surface, and show distinct Cav1 molecular dynamics and tension adaptation. These results indicate that Cav1 phosphoregulation modulates caveolar dynamics as a relevant component of the homeostatic mechanoadaptation of the differentiated adipocyte.
Collapse
Affiliation(s)
- María C M Aboy-Pardal
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta C Guadamillas
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Science and Agroforestal Technology and Genetics, Faculty of Biochemistry and Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain
| | - Carlos R Guerrero
- ForceTool group, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Mauro Català-Montoro
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mónica Toledano-Donado
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sara Terrés-Domínguez
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Dácil M Pavón
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Allergy Therapeutics, Avenida Punto Es, 12, 28805 Alcalá de Henares, Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Health Science, Universidad Católica Santa Teresa de Jesús de Ávila, Ávila, Spain
| | - Daniel Jimenez-Carretero
- Cellomics Unit, Cell and Developmental Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Moreno Zamai
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cintia Folgueira
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas CIMUS, Santiago de Compostela, Spain
- Stress kinases in Diabetes, Cancer and Cardiovascular Disease lab. Cardiovascular risk factors & brain function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Cerezo
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Pharmacology, Lilly Research Laboratories, Alcobendas, Spain
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rubén Nogueiras
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas CIMUS, Santiago de Compostela, Spain
| | - Guadalupe Sabio
- Stress kinases in Diabetes, Cancer and Cardiovascular Disease lab. Cardiovascular risk factors & brain function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cell Compartmentalization, Homeostasis and Inflammation lab, Department of Metabolic and Inflammatory Diseases. Instituto de Investigaciones Biomédicas "Sols-Morreale"-CSIC, Madrid, Spain
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Mechanobiology of Organelles lab. Department of Cellular and Molecular Biology. Centro de Investigaciones Biológicas Margarita Salas - CSIC, Madrid, Spain
| | - Ricardo Garcia
- ForceTool group, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology lab, Novel mechanisms in atherosclerosis program. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
3
|
Al Yaarubi S, Alsagheir A, Al Shidhani A, Alzelaye S, Alghazir N, Brema I, Alsaffar H, Al Dubayee M, Alshahrani A, Abdelmeguid Y, Omar OM, Attia N, Al Amiri E, Al Jubeh J, Algethami A, Alkhayyat H, Haleem A, Al Yahyaei M, Khochtali I, Babli S, Nugud A, Thalange N, Albalushi S, Hergli N, Deeb A, Alfadhel M. Analysis of disease characteristics of a large patient cohort with congenital generalized lipodystrophy from the Middle East and North Africa. Orphanet J Rare Dis 2024; 19:118. [PMID: 38481246 PMCID: PMC10935864 DOI: 10.1186/s13023-024-03084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Congenital generalized lipodystrophy (CGL) is a rare inherited disease characterized by a near-total absence of adipose tissue and is associated with organ system abnormalities and severe metabolic complications. Here, we have analyzed the disease characteristics of the largest CGL cohort from the Middle East and North Africa (MENA) who have not received lipodystrophy-specific treatment. METHODS CGL was diagnosed clinically by treating physicians through physical assessment and supported by genetic analysis, fat loss patterns, family history, and the presence of parental consanguinity. Data were obtained at the time of patient diagnosis and during leptin-replacement naïve follow-up visits as permitted by available medical records. RESULTS Data from 43 patients with CGL (37 females, 86%) were collected from centers located in eight countries. The mean (median, range) age at diagnosis was 5.1 (1.0, at birth-37) years. Genetic analysis of the overall cohort showed that CGL1 (n = 14, 33%) and CGL2 (n = 18, 42%) were the predominant CGL subtypes followed by CGL4 (n = 10, 23%); a genetic diagnosis was unavailable for one patient (2%). There was a high prevalence of parental consanguinity (93%) and family history (67%) of lipodystrophy, with 64% (n = 25/39) and 51% (n = 20/39) of patients presenting with acromegaloid features and acanthosis nigricans, respectively. Eighty-one percent (n = 35/43) of patients had at least one organ abnormality; the most frequently affected organs were the liver (70%, n = 30/43), the cardiovascular system (37%, n = 16/43) and the spleen (33%, n = 14/43). Thirteen out of 28 (46%) patients had HbA1c > 5.7% and 20/33 (61%) had triglyceride levels > 2.26 mmol/L (200 mg/dl). Generally, patients diagnosed in adolescence or later had a greater severity of metabolic disease versus those diagnosed during childhood; however, metabolic and organ system abnormalities were observed in a subset of patients diagnosed before or at 1 year of age. CONCLUSIONS This analysis suggests that in addition to the early onset of fat loss, family history and high consanguinity enable the identification of young patients with CGL in the MENA region. In patients with CGL who have not received lipodystrophy-specific treatment, severe metabolic disease and organ abnormalities can develop by late childhood and worsen with age.
Collapse
Affiliation(s)
| | - Afaf Alsagheir
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Azza Al Shidhani
- Department of Child Health, Division of Endocrinology, Sultan Qaboos University Hospital, Al-Khod, Muscat, Oman
| | - Somaya Alzelaye
- Center of Endocrinology and Diabetes Mellitus, Al-Qunfudah General Hospital, Makkah Province, Al-Qunfudah, Saudi Arabia
| | - Nadia Alghazir
- Department of Pediatrics, Faculty of Medicine, Tripoli University Hospital, University of Tripoli, Tripoli, Libya
| | - Imad Brema
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hussain Alsaffar
- Department of Child Health, Division of Endocrinology, Sultan Qaboos University Hospital, Al-Khod, Muscat, Oman
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Medicine, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Medicine, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Omneya M Omar
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Najya Attia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Elham Al Amiri
- Al Qassimi Women & Children Hospital, Sharjah, United Arab Emirates
| | - Jamal Al Jubeh
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | | | - Haya Alkhayyat
- Bahrain Defence Force Royal Medical Services, Riffa, Bahrain
| | - Azad Haleem
- University of Duhok/College of Medicine, Duhok, Iraq
| | - Mouza Al Yahyaei
- National Diabetes and Endocrine Center, Royal Hospital, Muscat, Oman
| | - Ines Khochtali
- Internal Medicine and Endocrinology Department, Fattouma Bourguiba University Hospital, University of Monastir, Monastir, Tunisia, Monastir, Tunisia
| | - Saleha Babli
- Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed Nugud
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Nandu Thalange
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
- Department of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | | | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City & College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Majid Alfadhel
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- College of Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Abuzenadah A, Alganmi N, AlQurashi R, Hawsa E, AlOtibi A, Hummadi A, Nahari AA, AlZelaye S, Aljuhani NR, Al-Attas M, Abusamra H, Turkistany S, Karim S, Mirza Z, Al-Qahtani M, Chaudhary A, Al Eissa MM. Familial Screening for the Prevention of Rare Diseases: A Focus on Lipodystrophy in Southern Saudi Arabia. J Epidemiol Glob Health 2024; 14:162-168. [PMID: 38231342 PMCID: PMC11043304 DOI: 10.1007/s44197-023-00182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Lipodystrophy is a relatively rare, complex disease characterised by a deficiency of adipose tissue and can present as either generalised lipodystrophy (GLD) or partial lipodystrophy (PLD). The prevalence of this disease varies by region. This study aimed to identify the genetic variations associated with lipodystrophy in the southern part of Saudi Arabia. METHODOLOGY We conducted a retrospective study by recruiting nine patients from six families, recruiting the proband whole exome sequencing results or any other genetic test results, screening other family members using Sanger sequencing and analysing the carrier status of the latter. These patients were recruited from the Endocrinology and Diabetes Clinic at Jazan General Hospital and East Jeddah Hospital, both in the Kingdom of Saudi Arabia. RESULT Eight patients were diagnosed with GLD, and one was diagnosed with PLD. Of the six families, four were consanguineously married from the same tribe, while the remaining belonged to the same clan. The majority of GLD patients had an AGPAT2 c.158del mutation, but some had a BSCL2 c.942dup mutation. The single PLD case had a PPARG c.1024C > T mutation but no family history of the disease. In all families evaluated in this study, some family members were confirmed to be carriers of the mutation observed in the corresponding patient. CONCLUSION Familial screening of relatives of patients with rare, autosomal recessive diseases, such as lipodystrophy, especially when there is a family history, allows the implementation of measures to prevent the onset or reduced severity of disease and reduces the chances of the pathogenic allele being passed onto future generations. Creating a national registry of patients with genetic diseases and carriers of familial pathogenic alleles will allow the assessment of preventive measures and accelerate disease intervention via gene therapy.
Collapse
Affiliation(s)
- Adel Abuzenadah
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Nofe Alganmi
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Raghad AlQurashi
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Esraa Hawsa
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdullah AlOtibi
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdulrahman Hummadi
- Jazan Endocrinology and Diabetes Center, Ministry of Health, Jazan, Saudi Arabia
| | - Ahmed Ali Nahari
- Jazan Endocrinology and Diabetes Center, Ministry of Health, Jazan, Saudi Arabia
- Pediatric Department, King Fahd Hospital, Jazan, Saudi Arabia
| | - Somaya AlZelaye
- Centre of Endocrinology and Diabetes Mellitus, Al-Qunfudah General Hospital, Al-Qunfudah, Makkah Province, Saudi Arabia
| | - Nasser R Aljuhani
- Department of Medicine Endocrinology and Diabetes, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Manal Al-Attas
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Heba Abusamra
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shereen Turkistany
- Center of Innovation in Personalized Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Adeel Chaudhary
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mariam M Al Eissa
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia.
- Medical School, AlFaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Mancioppi V, Daffara T, Romanisio M, Ceccarini G, Pelosini C, Santini F, Bellone S, Mellone S, Baricich A, Rabbone I, Aimaretti G, Akinci B, Giordano M, Prodam F. A new mutation in the CAVIN1/PTRF gene in two siblings with congenital generalized lipodystrophy type 4: case reports and review of the literature. Front Endocrinol (Lausanne) 2023; 14:1212729. [PMID: 37501786 PMCID: PMC10369054 DOI: 10.3389/fendo.2023.1212729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Lipodystrophy syndromes are characterized by a progressive metabolic impairment secondary to adipose tissue dysfunction and may have a genetic background. Congenital generalized lipodystrophy type 4 (CGL4) is an extremely rare subtype, caused by mutations in the polymerase I and transcript release factor (PTRF) gene. It encodes for a cytoplasmatic protein called caveolae-associated protein 1 (Cavin-1), which, together with caveolin 1, is responsible for the biogenesis of caveolae, being a master regulator of adipose tissue expandability. Cavin-1 is expressed in several tissues, including muscles, thus resulting, when dysfunctional, in a clinical phenotype characterized by the absence of adipose tissue and muscular dystrophy. We herein describe the clinical phenotypes of two siblings in their early childhood, with a phenotype characterized by a generalized reduction of subcutaneous fat, muscular hypertrophy, distinct facial features, myopathy, and atlantoaxial instability. One of the siblings developed paroxysmal supraventricular tachycardia leading to cardiac arrest at 3 months of age. Height and BMI were normal. Blood tests showed elevated CK, a mild increase in liver enzymes and triglycerides levels, and undetectable leptin and adiponectin concentrations. Fasting glucose and HbA1c were normal, while Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was mildly elevated. Both patients were hyperphagic and had cravings for foods rich in fats and sugars. Genetic testing revealed a novel pathogenic mutation of the CAVIN1/PTRF gene (NM_012232 exon1:c T21A:p.Y7X) at the homozygous state. The diagnosis of lipodystrophy can be challenging, often requiring a multidisciplinary approach, given the pleiotropic effect, involving several tissues. The coexistence of generalized lack of fat, myopathy with elevated CK levels, arrhythmias, gastrointestinal dysmotility, and skeletal abnormalities should prompt the suspicion for the diagnosis of CGL4, although phenotypic variability may occur.
Collapse
Affiliation(s)
- Valentina Mancioppi
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Tommaso Daffara
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Martina Romanisio
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, Struttura Complessa a Direzione Universitaria (SCDU) Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Alessio Baricich
- Physical Medicine and Rehabilitation, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Baris Akinci
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Mara Giordano
- Laboratory of Genetics, Struttura Complessa a Direzione Universitaria (SCDU) Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Li X, Zhong Z, Zhang R, Zhang J, Zhang Y, Zeng S, Du Q, Wang H, Zhang S, Lu L, Li M, Long K. Decoding the transcriptome of muscular dystrophy due to Ptrf deficiency using single-nucleus RNA sequencing. FASEB J 2023; 37:e22993. [PMID: 37235502 DOI: 10.1096/fj.202201949rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.
Collapse
Affiliation(s)
- Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhining Zhong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruowei Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qinjiao Du
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haoming Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Songling Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Aboy-Pardal MC, Jimenez-Carretero D, Terrés-Domínguez S, Pavón DM, Sotodosos-Alonso L, Jiménez-Jiménez V, Sánchez-Cabo F, Del Pozo MA. A deep learning-based tool for the automated detection and analysis of caveolae in transmission electron microscopy images. Comput Struct Biotechnol J 2022; 21:224-237. [PMID: 36544477 PMCID: PMC9755247 DOI: 10.1016/j.csbj.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Caveolae are nanoscopic and mechanosensitive invaginations of the plasma membrane, essential for adipocyte biology. Transmission electron microscopy (TEM) offers the highest resolution for caveolae visualization, but provides complicated images that are difficult to classify or segment using traditional automated algorithms such as threshold-based methods. As a result, the time-consuming tasks of localization and quantification of caveolae are currently performed manually. We used the Keras library in R to train a convolutional neural network with a total of 36,000 TEM image crops obtained from adipocytes previously annotated manually by an expert. The resulting model can differentiate caveolae from non-caveolae regions with a 97.44% accuracy. The predictions of this model are further processed to obtain caveolae central coordinate detection and cytoplasm boundary delimitation. The model correctly finds negligible caveolae predictions in images from caveolae depleted Cav1-/- adipocytes. In large reconstructions of adipocyte sections, model and human performances are comparable. We thus provide a new tool for accurate caveolae automated analysis that could speed up and assist in the characterization of the cellular mechanical response.
Collapse
Affiliation(s)
- María C.M. Aboy-Pardal
- Mechanoadaptation and Caveolae Biology lab, Cell and Developmental
Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029
Madrid, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares
(CNIC), 28029 Madrid, Spain
| | - Sara Terrés-Domínguez
- Mechanoadaptation and Caveolae Biology lab, Cell and Developmental
Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029
Madrid, Spain
| | - Dácil M. Pavón
- Mechanoadaptation and Caveolae Biology lab, Cell and Developmental
Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029
Madrid, Spain
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology lab, Cell and Developmental
Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029
Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology lab, Cell and Developmental
Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029
Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares
(CNIC), 28029 Madrid, Spain
| | - Miguel A. Del Pozo
- Mechanoadaptation and Caveolae Biology lab, Cell and Developmental
Biology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029
Madrid, Spain
| |
Collapse
|
8
|
Adiyaman SC, V Schnurbein J, De Laffolie J, Hahn A, Siebert R, Wabitsch M, Kamrath C. Congenital generalized lipodystrophy type 4 due to a novel PTRF/CAVIN1 pathogenic variant in a child: effects of metreleptin substitution. J Pediatr Endocrinol Metab 2022; 35:946-952. [PMID: 35405042 DOI: 10.1515/jpem-2022-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Congenital generalized lipodystrophies (CGLs) are a heterogeneous group of rare autosomal recessive disorders characterized by near/total absence of body fat. Pathogenic variants in polymerase-I and transcript release factor gene (PTRF), or CAVIN1, is responsible for CGL4. In addition to generalized fat loss, patients with CGL4 were reported to suffer from myopathy, malignant cardiac arrhythmias, gastrointestinal disorders, and skeletal abnormalities. Here we describe the phenotype of a child with CGL4 due to a rare, novel pathogenic variant in the PTRF/CAVIN1 gene and the long-term effects of metreleptin substitution on comorbidities. CASE PRESENTATION We describe a now 20-year-old female patient. At the age of 14-years, she was referred to the University Clinic because of uncontrolled diabetes with an HbA1c of 9.3%, requiring 2.4 IU insulin/kg total-body-weight to normalize blood glucose, hepatomegaly, and hypertriglyceridemia of 515 mg/dL. Additionally, she was suffering from malignant cardiac arrhythmia, myopathy, and hyperCKemia. In light of these clinical findings, she was diagnosed with CGL due to a rare, novel variant in the PTRF gene, and was started on metreleptin, a synthetic analog of human leptin. After the initiation of metreleptin treatment, insulin therapy could be stopped and improvement of sonographically assessed liver size was observed, even though serum liver function test stayed mildly elevated. Furthermore, a noticeable improvement of the serum triglyceride levels was also seen. Medical care and regular follow-up visits are being carried out by a multi-disciplinary team. CONCLUSIONS Although CGL4 is rare, due to its life-threatening comorbidities and the opportunity for an early intervention, it is important that the clinicians should recognise these patients.
Collapse
Affiliation(s)
- Suleyman Cem Adiyaman
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, Germany
| | - Julia V Schnurbein
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, Germany
| | - Jan De Laffolie
- Department of General Pediatrics and Neonatology, Centre of Child and Adolescent Medicine, Justus-Liebig-University Gießen, Giessen, Germany
| | - Andreas Hahn
- Department of Neuropediatrics, Centre of Child and Adolescent Medicine, Justus-Liebig-University Gießen, Giessen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, Germany
| | - Clemens Kamrath
- Department of General Pediatrics and Neonatology, Centre of Child and Adolescent Medicine, Justus-Liebig-University Gießen, Giessen, Germany
| |
Collapse
|
9
|
Hummadi A, Nahari AA, Alhagawy AJ, Zakri I, Abutaleb R, Yafei S. Congenital generalized lipodystrophy in two siblings from Saudi Arabia: A case report. Clin Case Rep 2022; 10:e05720. [PMID: 35474974 PMCID: PMC9020436 DOI: 10.1002/ccr3.5720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital generalized lipodystrophy type 1 (CGL1) is a very rare autosomal recessive genetic mutation with generalized lipoatrophy and metabolic complications. We report CGL1 in two Saudi female siblings with lipoatrophy, diabetes mellitus, hypertriglyceridemia, steatohepatitis, and acanthosis due to very rare homozygous 1‐acylglycerol‐3‐phosphate O‐acyltransferase β (AGPAT2) genetic variant.
Collapse
Affiliation(s)
| | - Ahmed Ali Nahari
- Jazan Endocrinology and Diabetes Center Ministry of Health Jazan Saudi Arabia
- King Fahd Diabetes and Endocrinology Center King Fahd hospital Jazan Saudi Arabia
| | - Ali Jaber Alhagawy
- Jazan Endocrinology and Diabetes Center Ministry of Health Jazan Saudi Arabia
- Jazan Health Affairs Ministry of Health Jazan Saudi Arabia
| | - Ibrahim Zakri
- Jazan Endocrinology and Diabetes Center Ministry of Health Jazan Saudi Arabia
| | - Raed Abutaleb
- Jazan Endocrinology and Diabetes Center Ministry of Health Jazan Saudi Arabia
- Jazan Health Affairs Ministry of Health Jazan Saudi Arabia
| | - Saeed Yafei
- Jazan Endocrinology and Diabetes Center Ministry of Health Jazan Saudi Arabia
- Faculty of Medicine and Health Sciences Internal Medicine Department Taiz University Taiz Yemen
| |
Collapse
|
10
|
Iqbal J, Jiang HL, Wu HX, Li L, Zhou YH, Hu N, Xiao F, Wang T, Xu SN, Zhou HD. Hereditary severe insulin resistance syndrome: Pathogenesis, pathophysiology, and clinical management. Genes Dis 2022. [PMID: 37492723 PMCID: PMC10363564 DOI: 10.1016/j.gendis.2022.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Severe insulin resistance has been linked to some of the most globally prevalent disorders, such as diabetes mellitus, nonalcoholic fatty liver disease, polycystic ovarian syndrome, and hypertension. Hereditary severe insulin resistance syndrome (H-SIRS) is a rare disorder classified into four principal categories: primary insulin receptor defects, lipodystrophies, complex syndromes, and obesity-related H-SIRS. Genes such as INSR, AKT2, TBC1D4, AGPAT2, BSCL2, CAV1, PTRF, LMNA, PPARG, PLIN1, CIDEC, LIPE, PCYT1A, MC4R, LEP, POMC, SH2B1, RECQL2, RECQL3, ALMS1, PCNT, ZMPSTE24, PIK3R1, and POLD1 have been linked to H-SIRS. Its clinical features include insulin resistance, hyperglycemia, hyperandrogenism, severe dyslipidemia, fatty liver, abnormal topography of adipose tissue, and low serum leptin and adiponectin levels. Diagnosis of H-SIRS is based on the presence of typical clinical features associated with the various H-SIRS forms and the identification of mutations in H-SIRS-linked genes by genetic testing. Diet therapy, insulin sensitization, exogenous insulin therapy, and leptin replacement therapy have widely been adopted to manage H-SIRS. The rarity of H-SIRS, its highly variable clinical presentation, refusal to be tested for genetic mutations by patients' family members who are not severely sick, unavailability of genetic testing, and testing expenses contribute to the delayed or underdiagnoses of H-SIRS. Early diagnosis facilitates early management of the condition, which results in improved glycemic control and delayed onset of diabetes and other complications related to severe insulin resistance. The use of updated genetic sequencing technologies is recommended, and long-term studies are required for genotype-phenotype differentiation and formulation of diagnostic and treatment protocols.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Obesity and diabetes have already become the second largest risk factor for cardiovascular disease. During the last decade, remarkable advances have been made in understanding the human genome's contribution to glucose homeostasis disorders and obesity. A few studies on rare mutations of candidate genes provide potential genetic targets for the treatment of diabetes and obesity. In this review, we discussed the detailed findings of these studies and the possible causalities between specific genetic variations and dysfunctions in energy or glucose homeostasis. We are optimistic that novel therapeutic strategies targeting these specific mutants for treating and preventing diabetes and obesity will be developed in the near future. RECENT FINDINGS Studies on rare genetic mutation-caused obesity or diabetes have identified potential genetic targets to decrease body weight or reduce the risk of diabetes. Rare mutations observed in lipodystrophy, obese, or diabetic human patients are promising targets in the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic And Metabolism Control Department, Louisiana State University, 6400 Perkins Rd, Basic Science Building L2024, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic And Metabolism Control Department, Louisiana State University, 6400 Perkins Rd, Basic Science Building L2024, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
12
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
14
|
Sorkina E, Makarova P, Bolotskaya L, Ulyanova I, Chernova T, Tiulpakov A. Unusual clinical features associated with congenital generalized lipodystrophy type 4 in a patient with a novel E211X CAVIN1 gene variant. Clin Diabetes Endocrinol 2020; 6:7. [PMID: 32467771 PMCID: PMC7227336 DOI: 10.1186/s40842-020-00095-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background Congenital generalized lipodystrophy (CGL) is a rare disorder characterized by the lack of adipose tissue and metabolic complications with predominantly autosomal recessive inheritance. There are 6 different genes known to cause CGL with 4 main types recognized to date, which differ by the degree of fat loss, association with mental retardation and metabolic disorders, with CGL type 1 and 2 being the most common. Twenty seven cases of СGL type 4 from Japan, Oman, UK, Turkey, Mexico, Saudi Arabia, USA were reported previously. This report details our clinical experience with the first patient from Russia with CGL type 4. Case presentation A 36-year-old patient, who has been suffering from generalized lipoatrophy since the first months of life and myopathy and gastrointestinal dysmotility since early childhood, developed dysmenorrhea and diabetes mellitus at the age of 19, bilateral cataracts when she was only 22 y.o., osteoporosis with vitamin D deficiency and hypocalcemia at the age of 28, diabetic foot syndrome and hyperuricemia when she was 35 y.o. Sequencing of lipodystrophy candidate genes detected a novel pathogenic homozygous variant p.631G < T: p.E211X in the CAVIN1 gene, confirming the diagnosis of CGL type 4. Conclusions In comparison with previously reported patients with CGL type 4, our patient has diabetes mellitus, vitamin D deficiency, hypocalcemia, bilateral cataracts and hyperuricemia. All these manifestations are known to be associated with other lipodystrophy syndromes, but to our knowledge it is the first time they have been reported to be associated with CGL type 4.
Collapse
Affiliation(s)
- Ekaterina Sorkina
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, Moscow, Russian Federation 117036 Russia
| | - Polina Makarova
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, Moscow, Russian Federation 117036 Russia
| | - Liubov Bolotskaya
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, Moscow, Russian Federation 117036 Russia
| | - Irina Ulyanova
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, Moscow, Russian Federation 117036 Russia
| | - Tatyana Chernova
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, Moscow, Russian Federation 117036 Russia
| | - Anatoly Tiulpakov
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, Moscow, Russian Federation 117036 Russia
| |
Collapse
|
15
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Rubaie KA, Raef H, Stone DU, Kozak I. Retinopathy and Uveitis in Congenital Generalized Lipodystrophy with Hypertriglyceridemia and Uncontrolled Diabetes (Berardinelli-Seip Syndrome). Middle East Afr J Ophthalmol 2020; 26:250-252. [PMID: 32153340 PMCID: PMC7034154 DOI: 10.4103/meajo.meajo_94_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/17/2019] [Accepted: 11/16/2019] [Indexed: 11/24/2022] Open
Abstract
Congenital lipodystrophy syndromes are characterized by a paucity of adipose tissue and are associated with metabolic abnormalities including insulin resistance, diabetes mellitus, and severe hypertriglyceridemia. Herein, we present a case of proliferative diabetic retinopathy with an attack of anterior uveitis in a young female with congenital generalized lipodystrophy – Berardinelli-Seip syndrome. To the best of our knowledge, this is the first description of ocular involvement in Berardinelli–Seip syndrome.
Collapse
Affiliation(s)
- Khaled A Rubaie
- Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Hussein Raef
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Donald U Stone
- Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Igor Kozak
- Vitreoretinal and Uveitis Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Moorfields Eye Hospitals, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Foss-Freitas MC, Akinci B, Luo Y, Stratton A, Oral EA. Diagnostic strategies and clinical management of lipodystrophy. Expert Rev Endocrinol Metab 2020; 15:95-114. [PMID: 32368944 DOI: 10.1080/17446651.2020.1735360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Introduction: Lipodystrophy is a heterogeneous group of rare diseases characterized by various degrees of fat loss which leads to serious morbidity due to metabolic abnormalities associated with insulin resistance and subtype-specific clinical features associated with underlying molecular etiology.Areas covered: This article aims to help physicians address challenges in diagnosing and managing lipodystrophy. We systematically reviewed the literature on PubMed and Google Scholar databases to summarize the current knowledge in lipodystrophy management.Expert opinion: Adipose tissue is a highly active endocrine organ that regulates metabolic homeostasis in the human body through a comprehensive communication network with other organ systems such as the central nervous system, liver, digestive system, and the immune system. The adipose tissue is capable of producing and secreting numerous factors with important endocrine functions such as leptin that regulates energy homeostasis. Recent developments in the field have helped to solve some of the mysteries behind lipodystrophy that allowed us to get a better understanding of adipocyte function and differentiation. From a clinical standpoint, physicians who suspect lipodystrophy should distinguish the disease from several others that may present with similar clinical features. It is also important for physicians to carefully interpret clinical features, laboratory, and imaging results before moving to more sophisticated tests and making decisions about therapy.
Collapse
Affiliation(s)
- Maria C Foss-Freitas
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ribeirao Preto Medical School, Sao Paulo University, Ribeirao Preto, Brazil
| | - Baris Akinci
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Yingying Luo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | | | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Mohapatra A, Lokappa SB, Chaudhary N. Interaction of cavin-1/PTRF leucine zipper domain 2 and its congenital generalized lipodystrophy mutant with model membranes. Biochem Biophys Res Commun 2020; 521:732-738. [PMID: 31706570 DOI: 10.1016/j.bbrc.2019.10.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
The organization of caveolae ultrastructures in the plasma membrane and the functions they dictate are mediated by membrane-embedded caveolins (caveolin-1, 2, 3) and peripherally attached cavins (cavin-1, 2, 3, 4). Mutations in caveolin and cavin genes are associated with a variety of human diseases. Cavin-1/PTRF mutations are known to contribute to several human pathologies, including muscular dystrophy and congenital generalized lipodystrophy (CGL). In the present study, we investigated the membrane interaction of the second leucine zipper domain (LZD2) of cavin-1 and the analogous peptide stretch in its CGL frameshift mutant (p.Glu176Argfs). The fluorescence data from the Trp-tagged peptides suggest binding of both wild-type and mutant peptide with negatively-charged membranes. The mutant peptide displayed a rather enhanced interaction compared to the wild-type peptide. In addition, the mutant peptide displayed appreciable binding to the lipid raft-mimicking cholesterol/sphingomyelin-rich vesicles as well. The alteration in the dynamics of peptide-lipid interaction is attributed to increased charge and hydrophilicity of the mutant peptides. Overall, these results suggest that the frameshift mutation in cavin-1/PTRF (p.Glu176Argfs) imparts high membrane-binding propensity to the region corresponding to LZD2, which is hitherto unknown to interact with membranes. Such interaction in the disease condition, in turn, could either alter the native membrane interaction dynamics of cavin-1/PTRF or possibly result in interaction with non-target membranes.
Collapse
Affiliation(s)
- Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India
| | - Sowmya Bekshe Lokappa
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, 90033, USA; Department of Bioinformatics, Karunya University, Coimbatore, 641 114, India.
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India.
| |
Collapse
|
19
|
Craveiro Sarmento AS, Ferreira LC, Lima JG, de Azevedo Medeiros LB, Barbosa Cunha PT, Agnez-Lima LF, Galvão Ururahy MA, de Melo Campos JTA. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:30-52. [PMID: 31416577 DOI: 10.1016/j.mrrev.2019.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/26/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare disease characterized by the near total absence of body fat at birth. BSCL etiology involves genetic variations in four different genes: AGPAT2, BSCL2, CAV1, and CAVIN1. The four different biochemical subtypes of the disease are distinguished depending on which gene is mutated. The diagnosis of lipodystrophy can be based on clinical criteria, but the gold standard remains genetic testing. Since many different mutations have already been correlated with the onset of the disease, the most indicative method is DNA sequencing. However, not all laboratories have the resources to perform sequencing. Thus, less expensive techniques that include narrow gene regions may be applied. In such cases, the target mutations to be tested must be carefully determined taking into account the frequency of the description of the mutations in the literature, the nationality of the patient, as well as their phenotype. This review considers the molecular basis of BSCL, including the manual count of the majority of mutations reported in the literature up to the year 2018. Ninety different genetic mutations in 332 cases were reported at different frequencies. Some mutations were distributed homogeneously and others were specific to geographic regions. Type 2 BSCL was mentioned most often in the literature (50.3% of the cases), followed by Type 1 (38.0%), Type 4 (10.2%), and Type 3 (1.5%). The mutations comprised frameshifts (34.4%), nonsense (26.6%), and missense (21.1%). The c.517dupA in the BSCL2 gene was the most frequent (13.3%), followed by c.589-2A>G in the AGPAT2 gene (11.5%), c.507_511delGTATC in the BSCL2 gene (9.7%), c.317-588del in the AGPAT2 gene (7.3%), and c.202C>T in the AGPAT2 gene (4.5%). This information should prove valuable for analysts in making decisions regarding the best therapeutic targets in a population-specific context, which will benefit patients and enable faster and less expensive treatment.
Collapse
Affiliation(s)
- Aquiles Sales Craveiro Sarmento
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Leonardo Capistrano Ferreira
- Instituto de Medicina Tropical, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Lázaro Batista de Azevedo Medeiros
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marcela Abbott Galvão Ururahy
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
20
|
Patni N, Vuitch F, Garg A. Postmortem Findings in a Young Man With Congenital Generalized Lipodystrophy, Type 4 Due to CAVIN1 Mutations. J Clin Endocrinol Metab 2019; 104:957-960. [PMID: 30476128 PMCID: PMC6364506 DOI: 10.1210/jc.2018-01331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT Congenital generalized lipodystrophy, type 4 (CGL4) is a rare autosomal recessive disorder caused by mutations in caveolae-associated protein 1. Patients with CGL4 also have myopathy and cardiomyopathy with a predisposition for sudden death due to ventricular arrhythmias. However, the underlying pathology for these morbidities remains unknown. Therefore, we report on an autopsy of a Hispanic boy with CGL4. CASE DESCRIPTION Our patient had early-onset generalized lipodystrophy, feeding difficulties, myopathy, atlanto-axial dislocation, and learning disabilities. He was diagnosed with catecholaminergic polymorphic ventricular tachycardia (CPVT) at age 8 years, had poor compliance with medications, and died suddenly at age 15.3 years. Autopsy showed marked loss of subcutaneous and omental fat with no inflammatory cells in adipose tissue and normal adipocytes in the parathyroid glands. There were adipocytes interdigitating cardiac muscle fibers, with fibro-fatty infiltration in the right ventricle, near coronary sinus, and atrioventricular node. There was no evidence of coronary heart disease. The quadriceps femoris muscle did not show adipocyte infiltration, inflammation, or fibrosis. The muscularis mucosa layer was thickened in the esophagus and at the gastro-duodenal junction, and the esophagus had prominent, large nerves in the subserosa. The liver weighed 3000 g, with minimal chronic inflammation and steatosis in 40% of parenchyma, primarily in zones 2 and 3. There was no spermatogenesis in the spermatic tubules. CONCLUSIONS Our data suggest that fibro-fatty infiltration of the right ventricle may contribute to CPVT in patients with CGL4. Thick muscularis mucosa and large nerves in the esophagus likely contributed to dysphagia and dysmotility. A lack of spermatids suggests infertility in affected male patients.
Collapse
Affiliation(s)
- Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics and Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas
| | - Frank Vuitch
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition; UT Southwestern Medical Center, Dallas, Texas
- Correspondence and Reprint Requests: Abhimanyu Garg, MD, Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8537. E-mail:
| |
Collapse
|
21
|
Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology 2019; 51:202-212. [PMID: 30595509 PMCID: PMC6402807 DOI: 10.1016/j.pathol.2018.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 01/09/2023]
Abstract
Lipodystrophies are rare, heterogeneous, genetic or acquired, disorders characterised by varying degrees of body fat loss and associated metabolic complications, including insulin resistance, dyslipidaemias, hepatic steatosis and predisposition to atherosclerotic cardiovascular disease (ASCVD). The four main types of lipodystrophy, excluding antiretroviral therapy-induced lipodystrophy in HIV-infected patients, are congenital generalised lipodystrophy (CGL), familial partial lipodystrophy (FPLD), acquired generalised lipodystrophy (AGL) and acquired partial lipodystrophy (APL). This paper reviews the literature related to the prevalence of dyslipidaemias and ASCVD in patients with lipodystrophies. Patients with CGL, AGL and FPLD have increased prevalence of dyslipidaemia but those with APL do not. Patients with CGL as well as AGL present in childhood, and have severe dyslipidaemias (mainly hypertriglyceridaemia) and early onset diabetes mellitus as a consequence of extreme fat loss. However, only a few patients with CGL and AGL have been reported to develop coronary heart disease. In contrast, data from some small cohorts of FPLD patients reveal increased prevalence of ASCVD especially among women. Patients with APL have a relatively low prevalence of hypertriglyceridaemia and diabetes mellitus. Overall, patients with lipodystrophies appear to be at high risk of ASCVD due to increased prevalence of dyslipidaemia and diabetes and efforts should be made to manage these metabolic complications aggressively to prevent ASCVD.
Collapse
Affiliation(s)
- Iram Hussain
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, and Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Takeyari S, Takakuwa S, Miyata K, Yamamoto K, Nakayama H, Ohata Y, Fujiwara M, Kitaoka T, Kubota T, Namba N, Sakai N, Ozono K. Metreleptin treatment for congenital generalized lipodystrophy type 4 (CGL4): a case report. Clin Pediatr Endocrinol 2019; 28:1-7. [PMID: 30745727 PMCID: PMC6356095 DOI: 10.1297/cpe.28.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023] Open
Abstract
Congenital generalized lipodystrophy type 4 (CGL4) is a rare disease caused by mutations in the gene polymerase I and transcript release factor (PTRF), the main symptoms of which are systemic reductions in adipose tissue and muscular dystrophy. The strategy of treating CGL4 is to improve the insulin resistance and hypertriglyceridemia that result from systemic reductions in adipose tissue. Metreleptin, a synthetic analog of human leptin, is effective against generalized lipodystrophies; however, there are no reports of the use of metreleptin in the treatment of CGL4. Herein, we discuss the treatment of a six-year-old boy diagnosed with CGL4 due to a homozygous mutation in PTRF with metreleptin. His serum triglyceride level and homeostasis model assessment of insulin resistance (HOMA-IR) value decreased after two months of metreleptin treatment. However, the efficacy of metreleptin gradually decreased, and the treatment was suspended because anaphylaxis occurred after the dosage administered was increased. Subsequently, his serum triglyceride level and HOMA-IR value significantly increased. Anti-metreleptin-neutralizing antibodies were detected in his serum, which suggested that these antibodies reduced the efficacy of metreleptin and caused increased hypersensitivity. Thus, metreleptin appeared to be efficacious in the treatment of CGL4 in the short term, although an adverse immune response resulted in treatment suspension. Further studies are needed to evaluate metreleptin treatments for CGL4.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takakuwa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Pediatrics, Hyogo Prefectural Nishinomiya Hospital, Hyogo, Japan
| | - Kei Miyata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,The Japan Environment and Children's Study, Osaka Unit Center, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,The 1 Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
23
|
Li Q, Bai L, Shi G, Zhang L, Dai Y, Liu P, Cong YS, Wang M. Ptrf
transgenic mice exhibit obesity and fatty liver. Clin Exp Pharmacol Physiol 2018; 45:704-710. [DOI: 10.1111/1440-1681.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Qian Li
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine of the Ministry of Health; Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Comparative Medical Center; Peking Union Medical College; Beijing China
| | - Guiying Shi
- Key Laboratory of Human Disease Comparative Medicine of the Ministry of Health; Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Comparative Medical Center; Peking Union Medical College; Beijing China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine of the Ministry of Health; Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Comparative Medical Center; Peking Union Medical College; Beijing China
| | - Yifan Dai
- Center of Metabolic Disease Research; Nanjing Medical University; Nanjing China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| | - Yu-Sheng Cong
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou China
| | - Miao Wang
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou China
| |
Collapse
|
24
|
Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue. Mol Cell Biol 2017; 37:MCB.00058-17. [PMID: 28559430 DOI: 10.1128/mcb.00058-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 01/14/2023] Open
Abstract
White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT.
Collapse
|
25
|
Abstract
ice and humans lacking the caveolae component polymerase I transcription release factor (PTRF, also known as cavin-1) exhibit lipo- and muscular dystrophy. Here we describe the molecular features underlying the muscle phenotype for PTRF/cavin-1 null mice. These animals had a decreased ability to exercise, and exhibited muscle hypertrophy with increased muscle fiber size and muscle mass due, in part, to constitutive activation of the Akt pathway. Their muscles were fibrotic and exhibited impaired membrane integrity accompanied by an apparent compensatory activation of the dystrophin-glycoprotein complex along with elevated expression of proteins involved in muscle repair function. Ptrf deletion also caused decreased mitochondrial function, oxygen consumption, and altered myofiber composition. Thus, in addition to compromised adipocyte-related physiology, the absence of PTRF/cavin-1 in mice caused a unique form of muscular dystrophy with a phenotype similar or identical to that seen in humans lacking this protein. Further understanding of this muscular dystrophy model will provide information relevant to the human situation and guidance for potential therapies.
Collapse
Affiliation(s)
| | | | - Paul F Pilch
- Department of Biochemistry.,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Han B, Copeland CA, Kawano Y, Rosenzweig EB, Austin ED, Shahmirzadi L, Tang S, Raghunathan K, Chung WK, Kenworthy AK. Characterization of a caveolin-1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy. Traffic 2016; 17:1297-1312. [PMID: 27717241 PMCID: PMC5197452 DOI: 10.1111/tra.12452] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin-1 ( CAV1 ) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease. Here, we identify a heterozygous F160X CAV1 mutation predicted to generate a C-terminally truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing, and characterize the properties of CAV1 , caveolae-associated proteins and caveolae in skin fibroblasts isolated from the patient. We show that morphologically defined caveolae are present in patient fibroblasts and that they function in mechanoprotection. However, they exhibited several notable defects, including enhanced accessibility of the C-terminus of wild-type CAV1 in caveolae, reduced colocalization of cavin-1 with CAV1 and decreased stability of both 8S and 70S oligomeric CAV1 complexes that are necessary for caveolae formation. These results were verified independently in reconstituted CAV1 -/- mouse embryonic fibroblasts. These findings identify defects in caveolae that may serve as contributing factors to the development of PAH and CGL and broaden our knowledge of CAV1 mutations associated with human disease.
Collapse
Affiliation(s)
- Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Courtney A. Copeland
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Yumeko Kawano
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Erika Berman Rosenzweig
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Eric D. Austin
- Division of Allergy, Pulmonary and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Sha Tang
- Ambry Genetics, Aliso Viejo, California
| | - Krishnan Raghunathan
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
27
|
Dursun F, Mohamoud HSA, Karim N, Naeem M, Jelani M, Kırmızıbekmez H. A Novel Missense Mutation in the CLPP Gene Causing Perrault Syndrome Type 3 in a Turkish Family. J Clin Res Pediatr Endocrinol 2016; 8:472-477. [PMID: 27087618 PMCID: PMC5198008 DOI: 10.4274/jcrpe.2717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Perrault syndrome (PRLTS) is a heterogeneous group of clinical and genetic disorders characterized by sensory neuronal hearing loss in both sexes and premature ovarian failure or infertility in females. Neurological and hearing loss symptoms appear early in life, but female infertility cannot be detected before puberty. Spastic limbs, muscle weakness, delayed puberty and irregular menstrual cycles have also been observed in PRLTS patients. Mutations in five genes, i.e. HSD17B4, HARS2, CLPP, LARS2, and C10orf2, have been reported in five subtypes of PRLTS. Here, we report a milder phenotype of PRLTS in a Turkish family in which two affected patients had no neurological findings. However, both were characterized by sensory neuronal hearing loss and the female sibling had secondary amenorrhea and gonadal dysgenesis. Genome-wide homozygosity mapping using 300K single-nucleotide polymorphism microarray analysis together with iScan platform (Illumina, USA) followed by candidate gene Sanger sequencing with ABI 3500 Genetic Analyzer (Life Technologies, USA) were used for molecular diagnosis. We found a novel missense alteration c.624C>G; p.Ile208Met in exon 5 of the CLPP at chromosome 19p13.3. This study expands the mutation spectrum of CLPP pathogenicity in PRLTS type 3 phenotype.
Collapse
Affiliation(s)
- Fatma Dursun
- Ümraniye Training and Research Hospital, Clinic of Pediatric Endocrinology, İstanbul, Turkey
| | - Hussein Sheikh Ali Mohamoud
- King Abdulaziz University, Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
,
St. George’s University of London, Human Genetics Research Centre, Division of Biomedical Sciences, London, United Kingdom
| | - Noreen Karim
- Quaid-I-Azam University Faculty of Biological Sciences, Medical Genetics Research Laboratory, Department of Biotechnology, Islamabad, Pakistan
| | - Muhammad Naeem
- Quaid-I-Azam University Faculty of Biological Sciences, Medical Genetics Research Laboratory, Department of Biotechnology, Islamabad, Pakistan
| | - Musharraf Jelani
- King Abdulaziz University, Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
,
Khyber Medical University, Institute of Basic Medical Sciences, Department of Biochemistry, Medical Genetics and Molecular Biology Unit, Peshawar, Pakistan
| | - Heves Kırmızıbekmez
- Ümraniye Training and Research Hospital, Clinic of Pediatric Endocrinology, İstanbul, Turkey, Phone: +90 216 632 18 18 E-mail:
| |
Collapse
|
28
|
Liu L, Pilch PF. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. eLife 2016; 5:e17508. [PMID: 27528195 DOI: 10.7554/elife.17508.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/03/2025] Open
Abstract
Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae-independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism.
Collapse
Affiliation(s)
- Libin Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
- Department of Medicine, Boston University School of Medicine, Boston, United States
| |
Collapse
|
29
|
Liu L, Pilch PF. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. eLife 2016; 5. [PMID: 27528195 PMCID: PMC4987143 DOI: 10.7554/elife.17508] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI:http://dx.doi.org/10.7554/eLife.17508.001 Obesity can cause several other health conditions to develop. Type 2 diabetes is one such condition, which arises in part because fat cells become unable to store excess fats. This makes certain tissues in the body less sensitive to the hormone insulin, and so the individual is less able to adapt to changing nutrient levels. Without treatment or a change in lifestyle, this insulin resistance may develop into diabetes. However, “healthy obese” individuals also exist, who can accommodate an overabundance of fat without developing insulin resistance and diabetes. Some forms of rare genetic disorders called lipodystrophies, which result in an almost complete lack of body fat, can also lead to type 2 diabetes. This raises the question of whether lipodystrophy and obesity share some common mechanisms that cause fat cells to trigger insulin resistance. One possible player in such mechanisms is a protein called PTRF. In rare cases, individuals with lipodystrophy lack this protein, and mice that have been engineered to lack PTRF also largely lack body fat and develop insulin resistance. Fat cells can respond rapidly to changes in nutrients during feeding or fasting, and to do so, they must produce new proteins. Structures called ribosomes, which are made up of proteins and ribosomal RNA, build proteins; thus when the cell needs to make new proteins, it also has to produce more ribosomes. PTRF is thought to play a role in ribosome production, but it is not clear how it does so. Liu and Pilch analyzed normal mice as well as those that lacked the PTRF protein. This revealed that in response to cycles of fasting and feeding, PTRF increases the production of ribosomal RNA in fat cells, enabling the cells to produce more proteins. By contrast, the fat cells of mice that lack PTRF have much lower levels of ribosomal RNA and proteins. Liu and Pilch then examined mouse fat cells that were grown in the laboratory. Exposing these cells to insulin caused phosphate groups to be attached to the PTRF proteins inside the cells. This modification caused PTRF to move into the cell’s nucleus, where it increased the production of ribosomal RNA. Overall, the results show that fat cells that lack PTRF are unable to produce the proteins that they need to deal with changing nutrient levels, leading to an increased likelihood of diabetes. The next steps are to investigate the mechanism by which PTRF is modified, and to see whether the mechanisms uncovered in this study also apply to humans. DOI:http://dx.doi.org/10.7554/eLife.17508.002
Collapse
Affiliation(s)
- Libin Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, United States.,Department of Medicine, Boston University School of Medicine, Boston, United States
| |
Collapse
|
30
|
Clinical Utility Gene Card for: Congenital Generalized Lipodystrophy. Eur J Hum Genet 2016; 24:ejhg201653. [PMID: 27189019 DOI: 10.1038/ejhg.2016.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/04/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
|
31
|
Jelani M, Kang C, Mohamoud HSA, Al-Rehaili R, Almramhi MM, Serafi R, Yang H, Al-Aama JY, Naeem M, Alkhiary YM. A novel homozygous PTH1R variant identified through whole-exome sequencing further expands the clinical spectrum of primary failure of tooth eruption in a consanguineous Saudi family. Arch Oral Biol 2016; 67:28-33. [PMID: 27019138 DOI: 10.1016/j.archoralbio.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/28/2016] [Accepted: 03/22/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The present study aimed to identify the genetic cause of non-syndromic primary failure of tooth eruption in a five-generation consanguineous Saudi family using whole-exome sequencing (WES) analysis. DESIGN The family pedigree and phenotype were obtained from patient medical records. WES of all four affected family members was performed using the 51 Mb SureSelect V4 library kit and then sequenced using the Illumina HiSeq2000 sequencing system. Sequence alignment, variant calling, and the annotation of single nucleotide polymorphisms and indels were performed using standard bioinformatics pipelines. The genotype of candidate variants was confirmed in all available family members by Sanger sequencing. RESULTS Pedigree analysis suggested that the inheritance was autosomal recessive. WES of all affected individuals identified a novel homozygous variant in exon 8 of the parathyroid hormone 1 receptor gene (PTH1R) (NM_000316: c.611T>A: p.Val204Glu). CONCLUSION To the best of our knowledge, this is the first report of primary failure of eruption caused by a homozygous mutation in PTH1R. Our findings prove the application of WES as an efficient molecular diagnostics tool for this rare phenotype and further broaden the clinical spectrum of PTH1R pathogenicity.
Collapse
Affiliation(s)
- Musharraf Jelani
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Genetics and Molecular Biology Unit, Biochemistry Department, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Changsoo Kang
- Department of Biology and Institute of Basic Sciences, Sungshin Women's University, Seoul, Republic of Korea, Republic of Korea
| | - Hussein Sheikh Ali Mohamoud
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Human Genetics Research Centre, Division of Biomedical Sciences (BMS), St. George's University of London (SGUL), London SW17 0RE, United Kingdom, UK
| | - Rayan Al-Rehaili
- Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Mohammad Almramhi
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rehab Serafi
- Department of Dermatology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Huanming Yang
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; BGI-Shenzhen, Shenzhen, China
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Naeem
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yaser Mohammad Alkhiary
- Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
32
|
|