1
|
Duthoo E, Beyls E, Backers L, Gudjónsson T, Huang P, Jonckheere L, Riemann S, Parton B, Du L, Debacker V, De Bruyne M, Hoste L, Baeyens A, Vral A, Van Braeckel E, Staal J, Mortier G, Kerre T, Pan-Hammarström Q, Sørensen CS, Haerynck F, Claes KB, Tavernier SJ. Replication stress, microcephalic primordial dwarfism, and compromised immunity in ATRIP deficient patients. J Exp Med 2025; 222:e20241432. [PMID: 40029331 PMCID: PMC11874998 DOI: 10.1084/jem.20241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase and its interacting protein ATRIP orchestrate the replication stress response. Homozygous splice variants in the ATRIP gene, resulting in ATRIP deficiency, were identified in two patients of independent ancestry with microcephaly, primordial dwarfism, and recurrent infections. The c.829+5G>T patient exhibited lymphopenia, poor vaccine responses, autoimmune features with hemolytic anemia, and neutropenia. Immunophenotyping revealed reduced CD16+/CD56dim NK cells and absent naïve T cells, MAIT cells, and iNKT cells. Lymphocytic defects were characterized by TCR oligoclonality, abnormal class switch recombination, and impaired T cell proliferation. ATRIP deficiency resulted in low-grade ATR activation but impaired CHK1 phosphorylation under genotoxic stress. ATRIP-deficient cells inadequately regulated DNA replication, leading to chromosomal instability, compromised cell cycle control, and impaired cell viability. CRISPR-SelectTIME confirmed reduced cell fitness for both variants. This study establishes ATRIP deficiency as a monogenic cause of microcephalic primordial dwarfism, highlights ATRIP's critical role in protecting immune cells from replication stress, and offers new insights into its canonical functions.
Collapse
Affiliation(s)
- Evi Duthoo
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Elien Beyls
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Lynn Backers
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Thorkell Gudjónsson
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peiquan Huang
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leander Jonckheere
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sebastian Riemann
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bram Parton
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Veronique Debacker
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Levi Hoste
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Mortier
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tessa Kerre
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Claus S. Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Pediatric Respiratory and Infectious Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
2
|
Cole JJ, Sellitto AD, Baratta LR, Huecker JB, Balls-Berry JJE, Gurnett CA. Social Determinants of Genetics Referral and Completion Rates Among Pediatric Neurology Patients. Pediatr Neurol 2025; 165:78-86. [PMID: 39970807 PMCID: PMC11911075 DOI: 10.1016/j.pediatrneurol.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/18/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND To investigate clinical, social, and systems-level determinants predictive of genetics clinic referral and completion of genetics clinic visits among pediatric neurology patients. METHODS Electronic health record (EHR) data were extracted from pediatric patients (0-18 years) evaluated in pediatric neurology clinics at a single tertiary care institution between July 2018 and January 2020. Referral and referral completion rates to genetics clinics were compared among non-Hispanic single- or multiracial Black (Black) versus non-Hispanic White (White) patients using bivariablee analysis. Other ethnoracial identities were excluded due to small numbers. Variables associated with genetics clinic referral and visit completion were identified using logistic regressions. RESULTS In a cohort of 11,371 pediatric neurology patients, 304 were referred to genetics clinic and 229 (75.3%) completed genetics clinic visits. In multivariable analyses of Black and White patients (n = 10,601), genetics clinic referral rates did not differ by ethnoracial identity but were associated with younger age, rurality, neurodevelopmental disorder diagnosis, number of neurology clinic visits, and provider type. Genetics clinic visit completion rates were associated with number of neurology clinic visits and ethnoracial identity, with White patients twice as likely as Black patients to complete the visit (adjusted odds ratio=2.18; 95% confidence interval 1.06-4.48). CONCLUSIONS Although no disparity in genetics clinic referral rates was identified, White patients were twice as likely as Black patients to complete a genetics clinic visit after referral. Further work is needed to determine whether this is due to systemic/structural racism, differences in attitudes toward genetics, or other factors.
Collapse
Affiliation(s)
- Jordan J Cole
- Washington University School of Medicine in St. Louis, Department of Neurology, St. Louis, Missouri; University of Colorado Anschutz Medical Campus, Department of Pediatrics, Aurora, Colorado; Children's Hospital Colorado, Pediatric Neuroscience Institute, Aurora, Colorado.
| | - Angela D Sellitto
- Washington University School of Medicine in St. Louis, Department of Neurology, St. Louis, Missouri
| | - Laura Rosa Baratta
- Washington University School of Medicine in St. Louis, Institute for Informatics, Data Science, Biostatistics, St. Louis, Missouri
| | - Julia B Huecker
- Washington University School of Medicine in St. Louis, Institute for Informatics, Data Science, Biostatistics, St. Louis, Missouri
| | - Joyce Joy E Balls-Berry
- Washington University School of Medicine in St. Louis, Department of Neurology, St. Louis, Missouri
| | - Christina A Gurnett
- Washington University School of Medicine in St. Louis, Department of Neurology, St. Louis, Missouri
| |
Collapse
|
3
|
Shambhavi A, Moirangthem A, Mishra P, Phadke SR. Understanding and issues related to next-generation sequencing among educated laypersons in India. J Genet Couns 2025; 34:e2008. [PMID: 40110627 DOI: 10.1002/jgc4.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 03/22/2025]
Abstract
Next Generation Sequencing (NGS) is being widely used for preconception carrier screening of couples, newborn screening, and personalized and preventive treatments, although its knowledge is still limited in laypersons. In this study, we have assessed the understanding, attitudes, and concerns related to NGS in 103 educated laypersons in India. The study participants were contacted by a combination of methods, including offline and online platforms. An information sheet was provided to them detailing the basics of DNA and the use of NGS in identifying genetic disorders with the possible types of results. Those participants who answered all the questions were included in the study. The participants in this study demonstrated a good general understanding of the information sheet (80.3% average correct response). We also observed that the majority wished to know the results of secondary findings related to actionable and unactionable conditions. Most of them wanted to sequence all their genes in their body, given a chance, and they had a general willingness to share the results with their relatives. The majority also felt that they would be better prepared mentally if they had a genetic diagnosis and would take necessary health measures as directed by their physician. About half of them felt that knowing the result may cause them distress. About half of them also wished to undergo prenatal testing based on an uncertain result, which stresses the need for better education about the limitations of NGS.
Collapse
Affiliation(s)
- Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhaker Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Yu B, Chen J, Yang S, Wang H, Xiao Y, Liu S. Case Report: Whole exome sequencing identifies compound heterozygous variants in the TRAPPC9 gene in a child with developmental delay. Front Genet 2024; 15:1415194. [PMID: 39184350 PMCID: PMC11341409 DOI: 10.3389/fgene.2024.1415194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background Developmental delay in children under 5 years old, which occurs globally with an incidence of 10%-15%, is caused by multiple factors including genetics, prenatal conditions, perinatal complications, postnatal influences, social factors, and nutritional deficiencies. Gene variants such as EFNB1, MECP2 and TRAPPC9 play a significant role in protein deformation and downregulation of nuclear factor κB (NF-κB) activity. Methods A 3-year-old girl, who exhibits poor gross motor skills, personal-social development, auditory language, hand-eye coordination, and visual performance, was diagnosed with global developmental delay. Trio whole exome sequencing was conducted to identify the genetic etiology of her condition. The identified genetic etiology was then validated through Sanger sequencing and quantitative polymerase chain reaction (qPCR). Results Genetic analysis revealed that the patient had compound heterozygous variants in the TRAPPC9 gene. These include a c.1928del frameshift variant inherited from the unaffected father and a deletion in exon 12 inherited from the unaffected mother. According to the American College of Medical Genetics (ACMG) guidelines, these variants were classified as "likely pathogenic". Conclusion The study revealed that compound heterozygous TRAPPC9 gene variants cause developmental delay in a Chinese girl. These variants have been classified as having significant pathogenic effect according to the ACMG criteria, suggesting a recessive genetic pattern and highlighting the importance of prenatal testing for future offspring. Furthermore, our findings expand the genotype spectrum of the TRAPPC9 gene, and provide more comprehensive information regarding genetic counseling for children experiencing developmental delay.
Collapse
Affiliation(s)
- Bingxuan Yu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jing Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shuo Yang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuanyuan Xiao
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Tolezano GC, Bastos GC, da Costa SS, Scliar MDO, de Souza CFM, Van Der Linden H, Fernandes WLM, Otto PA, Vianna-Morgante AM, Haddad LA, Honjo RS, Yamamoto GL, Kim CA, Rosenberg C, Jorge AADL, Bertola DR, Krepischi ACV. Clinical Characterization and Underlying Genetic Findings in Brazilian Patients with Syndromic Microcephaly Associated with Neurodevelopmental Disorders. Mol Neurobiol 2024; 61:5230-5247. [PMID: 38180615 DOI: 10.1007/s12035-023-03894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Giovanna Civitate Bastos
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Carolina Fischinger Moura de Souza
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Paulo Alberto Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Angela M Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Chong Ae Kim
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Alexander Augusto de Lima Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
6
|
Duraisamy AJ, Liu R, Sureshkumar S, Rose R, Jagannathan L, da Silva C, Coovadia A, Ramachander V, Chandrasekar S, Raja I, Sajnani M, Selvaraj SM, Narang B, Darvishi K, Bhayal AC, Katikala L, Guo F, Chen-Deutsch X, Balciuniene J, Ma Z, Nallamilli BRR, Bean L, Collins C, Hegde M. Focused Exome Sequencing Gives a High Diagnostic Yield in the Indian Subcontinent. J Mol Diagn 2024; 26:510-519. [PMID: 38582400 DOI: 10.1016/j.jmoldx.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.
Collapse
Affiliation(s)
| | - Ruby Liu
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | - Rajiv Rose
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | - Indu Raja
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | | | - Fen Guo
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | | | | | | - Lora Bean
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
7
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
8
|
Cole JJ, Sellitto AD, Baratta LR, Huecker JB, Balls-Berry JE, Gurnett CA. Social Determinants of Genetics Referral and Completion Rates Among Child Neurology Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295450. [PMID: 37745339 PMCID: PMC10516043 DOI: 10.1101/2023.09.12.23295450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Objective To investigate clinical, social, and systems-level determinants predictive of genetics clinic referral and completion of genetics clinic visits among child neurology patients. Methods Electronic health record data were extracted from patients 0-18 years old who were evaluated in child neurology clinics at a single tertiary care institution between July 2018 to January 2020. Variables aligned with the Health Equity Implementation Framework. Referral and referral completion rates to genetics and cardiology clinics were compared among Black vs White patients using bivariate analysis. Demographic variables associated with genetics clinic referral and visit completion were identified using logistic regressions. Results In a cohort of 11,371 child neurology patients, 304 genetics clinic referrals and 82 cardiology clinic referrals were placed. In multivariate analysis of patients with Black or White ethnoracial identity (n=10,601), genetics clinic referral rates did not differ by race, but were significantly associated with younger age, rural address, neurodevelopmental disorder diagnosis, number of neurology clinic visits, and provider type. The only predictors of genetics clinic visit completion number of neurology clinic visits and race/ethnicity, with White patients being twice as likely as Black patients to complete the visit. Cardiology clinic referrals and visit completion did not differ by race/ethnicity. Interpretation Although race/ethnicity was not associated with differences in genetics clinic referral rates, White patients were twice as likely as Black patients to complete a genetics clinic visit after referral. Further work is needed to determine whether this is due to systemic/structural racism, differences in attitudes toward genetic testing, or other factors.
Collapse
Affiliation(s)
- Jordan J Cole
- Washington University in St. Louis, Department of Neurology
- University of Colorado, Department of Pediatrics
| | | | | | - Julia B Huecker
- Washington University in St. Louis, Center for Biostatistics & Data Science
| | | | | |
Collapse
|