1
|
Markin NS, Gordeev IS, Fu HE, Ivannikov SI, Kim YB, Samardak AY, Samardak AS, Kim YK, Ognev AV. Secondary electron dynamics in core-shell-satellite nanoparticles: a computational strategy for targeted cancer treatment. NANOSCALE 2025; 17:11691-11702. [PMID: 40260843 DOI: 10.1039/d5nr00270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
As the global incidence of cancer escalates, there exists an urgent necessity for innovative therapeutic modalities. While radiation therapy is indispensable in oncology, it faces significant challenges in achieving an optimal equilibrium between tumour ablation and the preservation of surrounding healthy tissues. Noteworthy advancements such as intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D-CRT) have enhanced the precision of treatment; however, their efficacy is still constrained by the accuracy of tumour delineation. The utilization of radiosensitizers, with a particular emphasis on metal nanoparticles, presents a promising avenue for augmenting the susceptibility of neoplastic cells to ionizing radiation. This research examines the potential of core-shell-satellite Fe3O4-SiO2-Au nanoparticles as effective radiosensitizers. By investigating the interaction of individual nanoparticles situated within a water phantom of 20 micrometers in diameter with monochromatic photon beams at energies of 50, 100, and 150 keV, we analyse how variations in the structural composition of Au nanoparticles and their concentrations within these multifaceted nanoparticles influence the efficacy of radiation therapy, employing Monte Carlo simulations corroborated by the general-purpose radiation transport code PHITS. Our investigation aspires to refine nanoparticle-based methodologies to enhance cancer treatment outcomes, potentially facilitating the development of more targeted therapeutic interventions that minimize adverse effects while improving patient survival rates.
Collapse
Affiliation(s)
- Nikita Sergeevich Markin
- Laboratory of Thin Film Technologies, ITAM, Far Eastern Federal University, Vladivostok 690922, Russia
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Ivan Sergeevich Gordeev
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna 141980, Russia
- Dubna State University, Dubna 141982, Russia
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | | - Yeon Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Alexey Yurievich Samardak
- Laboratory of Thin Film Technologies, ITAM, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Alexander Sergeevich Samardak
- Laboratory of Thin Film Technologies, ITAM, Far Eastern Federal University, Vladivostok 690922, Russia
- Sakhalin State University, Yuzhno-Sakhalinsk 693000, Russia
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Alexey Vyacheslavovich Ognev
- Laboratory of Thin Film Technologies, ITAM, Far Eastern Federal University, Vladivostok 690922, Russia
- Sakhalin State University, Yuzhno-Sakhalinsk 693000, Russia
| |
Collapse
|
2
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
3
|
Chattaraj A, Selvam TP. Radiation-induced DNA damage by proton, helium and carbon ions in human fibroblast cell: Geant4-DNA and MCDS-based study. Biomed Phys Eng Express 2024; 10:045059. [PMID: 38870909 DOI: 10.1088/2057-1976/ad57ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Background. Radiation-induced DNA damages such as Single Strand Break (SSB), Double Strand Break (DSB) and Complex DSB (cDSB) are critical aspects of radiobiology with implications in radiotherapy and radiation protection applications.Materials and Methods. This study presents a thorough investigation into the effects of protons (0.1-100 MeV/u), helium ions (0.13-100 MeV/u) and carbon ions (0.5-480 MeV/u) on DNA of human fibroblast cells using Geant4-DNA track structure code coupled with DBSCAN algorithm and Monte Carlo Damage Simulations (MCDS) code. Geant4-DNA-based simulations consider 1μm × 1μm × 0.5μm water box as the target to calculate energy deposition on event-by-event basis and the three-dimensional coordinates of the interaction location, and then DBSCAN algorithm is used to calculate yields of SSB, DSB and cDSB in human fibroblast cell. The study investigated the influence of Linear Energy Transfer (LET) of protons, helium ions and carbon ions on the yields of DNA damages. Influence of cellular oxygenation on DNA damage patterns is investigated using MCDS code.Results. The study shows that DSB and SSB yields are influenced by the LET of the particles, with distinct trends observed for different particles. The cellular oxygenation is a key factor, with anoxic cells exhibiting reduced SSB and DSB yields, underscoring the intricate relationship between cellular oxygen levels and DNA damage. The study introduced DSB/SSB ratio as an informative metric for evaluating the severity of radiation-induced DNA damage, particularly in higher LET regions.Conclusions. The study highlights the importance of considering particle type, LET, and cellular oxygenation in assessing the biological effects of ionizing radiation.
Collapse
Affiliation(s)
- Arghya Chattaraj
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
4
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
5
|
Kolovi S, Fois GR, Lanouar S, Chardon P, Miallier D, Baker LA, Bailly C, Beauger A, Biron DG, David K, Montavon G, Pilleyre T, Schoefs B, Breton V, Maigne L, with the TIRAMISU Collaboration. Assessing radiation dosimetry for microorganisms in naturally radioactive mineral springs using GATE and Geant4-DNA Monte Carlo simulations. PLoS One 2023; 18:e0292608. [PMID: 37824461 PMCID: PMC10569590 DOI: 10.1371/journal.pone.0292608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Mineral springs in Massif Central, France can be characterized by higher levels of natural radioactivity in comparison to the background. The biota in these waters is constantly under radiation exposure mainly from the α-emitters of the natural decay chains, with 226Ra in sediments ranging from 21 Bq/g to 43 Bq/g and 222Rn activity concentrations in water up to 4600 Bq/L. This study couples for the first time micro- and nanodosimetric approaches to radioecology by combining GATE and Geant4-DNA to assess the dose rates and DNA damages to microorganisms living in these naturally radioactive ecosystems. It focuses on unicellular eukaryotic microalgae (diatoms) which display an exceptional abundance of teratological forms in the most radioactive mineral springs in Auvergne. Using spherical geometries for the microorganisms and based on γ-spectrometric analyses, we evaluate the impact of the external exposure to 1000 Bq/L 222Rn dissolved in the water and 30 Bq/g 226Ra in the sediments. Our results show that the external dose rates for diatoms are significant (9.7 μGy/h) and comparable to the threshold (10 μGy/h) for the protection of the ecosystems suggested by the literature. In a first attempt of simulating the radiation induced DNA damage on this species, the rate of DNA Double Strand Breaks per day is estimated to 1.11E-04. Our study confirms the significant mutational pressure from natural radioactivity to which microbial biodiversity has been exposed since Earth origin in hydrothermal springs.
Collapse
Affiliation(s)
- Sofia Kolovi
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Giovanna-Rosa Fois
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
| | - Sarra Lanouar
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
| | - Patrick Chardon
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Didier Miallier
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Lory-Anne Baker
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
- Laboratoire de Géographie Physique et Environnementale (GEOLAB) - UMR6042, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Bailly
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Aude Beauger
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
| | - David G. Biron
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
| | - Karine David
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Gilles Montavon
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Thierry Pilleyre
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Benoît Schoefs
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratoire de Biologie des Organismes, Stress, Santé Environnement, IUML FR3473, CNRS, Le Mans University, Le Mans, France
| | - Vincent Breton
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Lydia Maigne
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | | |
Collapse
|
6
|
Rumiantcev M, Li WB, Lindner S, Liubchenko G, Resch S, Bartenstein P, Ziegler SI, Böning G, Delker A. Estimation of relative biological effectiveness of 225Ac compared to 177Lu during [ 225Ac]Ac-PSMA and [ 177Lu]Lu-PSMA radiopharmaceutical therapy using TOPAS/TOPAS-nBio/MEDRAS. EJNMMI Phys 2023; 10:53. [PMID: 37695374 PMCID: PMC10495309 DOI: 10.1186/s40658-023-00567-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
AIM Over recent years, [225Ac]Ac-PSMA and [177Lu]Lu-PSMA radiopharmaceutical therapy have evolved as a promising treatment option for advanced prostate cancer. Especially for alpha particle emitter treatments, there is still a need for improving dosimetry, which requires accurate values of relative biological effectiveness (RBE). To achieve that, consideration of DNA damages in the cell nucleus and knowledge of the energy deposition in the location of the DNA at the nanometer scale are required. Monte Carlo particle track structure simulations provide access to interactions at this level. The aim of this study was to estimate the RBE of 225Ac compared to 177Lu. The initial damage distribution after radionuclide decay and the residual damage after DNA repair were considered. METHODS This study employed the TOol for PArtcile Simulation (TOPAS) based on the Geant4 simulation toolkit. Simulation of the nuclear DNA and damage scoring were performed using the TOPAS-nBio extension of TOPAS. DNA repair was modeled utilizing the Python-based program MEDRAS (Mechanistic DNA Repair and Survival). Five different cell geometries of equal volume and two radionuclide internalization assumptions as well as two cell arrangement scenarios were investigated. The radionuclide activity (number of source points) was adopted based on SPECT images of patients undergoing the above-mentioned therapies. RESULTS Based on the simulated dose-effect curves, the RBE of 225Ac compared to 177Lu was determined in a wide range of absorbed doses to the nucleus. In the case of spherical geometry, 3D cell arrangement and full radionuclide internalization, the RBE based on the initial damage had a constant value of approximately 2.14. Accounting for damage repair resulted in RBE values ranging between 9.38 and 1.46 for 225Ac absorbed doses to the nucleus between 0 and 50 Gy, respectively. CONCLUSION In this work, the consideration of DNA repair of the damage from [225Ac]Ac-PSMA and [177Lu]Lu-PSMA revealed a dose dependency of the RBE. Hence, this work suggested that DNA repair is an important aspect to understand response to different radiation qualities.
Collapse
Affiliation(s)
- Mikhail Rumiantcev
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Wei Bo Li
- Federal Office for Radiation Protection, Medical and Occupational Radiation Protection, Oberschleißheim, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Grigory Liubchenko
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sandra Resch
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Han Y, Geng C, Liu Y, Wu R, Li M, Yu C, Altieri S, Tang X. Calculation of the DNA damage yield and relative biological effectiveness in boron neutron capture therapy via the Monte Carlo track structure simulation. Phys Med Biol 2023; 68:175028. [PMID: 37524085 DOI: 10.1088/1361-6560/acec2a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Boron neutron capture therapy (BNCT) is an advanced cellular-level hadron therapy that has exhibited remarkable therapeutic efficacy in the treatment of locally invasive malignancies. Despite its clinical success, the intricate nature of relative biological effectiveness (RBE) and mechanisms responsible for DNA damage remains elusive. This work aims to quantify the RBE of compound particles (i.e. alpha and lithium) in BNCT based on the calculation of DNA damage yields via the Monte Carlo track structure (MCTS) simulation.Approach. The TOPAS-nBio toolkit was employed to conduct MCTS simulations. The calculations encompassed four steps: determination of the angle and energy spectra on the nuclear membrane, quantification of the database containing DNA damage yields for ions with specific angle and energy, accumulation of the database and spectra to obtain the DNA damage yields of compound particles, and calculation of the RBE by comparison yields of double-strand break (DSB) with the reference gamma-ray. Furthermore, the impact of cell size and microscopic boron distribution was thoroughly discussed.Main results. The DSB yields induced by compound particles in three types of spherical cells (radius equal to 10, 8, and 6μm) were found to be 13.28, 17.34, 22.15 Gy Gbp-1for boronophenylalanine (BPA), and 1.07, 3.45, 8.32 Gy Gbp-1for sodium borocaptate (BSH). The corresponding DSB-based RBE values were determined to be 1.90, 2.48, 3.16 for BPA and 0.15, 0.49, 1.19 for BSH. The calculated DSB-based RBE showed agreement with experimentally values of compound biological effectiveness for melanoma and gliosarcoma. Besides, the DNA damage yield and DSB-based RBE value exhibited an increasing trend as the cell radius decreased. The impact of the boron concentration ratio on RBE diminished once the drug enrichment surpasses a certain threshold.Significance. This work is potential to provide valuable guidance for accurate biological-weighted dose evaluation in BNCT.
Collapse
Affiliation(s)
- Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Neuboron Medtech. Ltd, Nanjing, People's Republic of China
| | - Renyao Wu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Mingzhu Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Chenxi Yu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), the section of Pavia, Pavia, Italy
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Monte-Carlo techniques for radiotherapy applications I: introduction and overview of the different Monte-Carlo codes. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Introduction:
The dose calculation plays a crucial role in many aspects of contemporary clinical radiotherapy treatment planning process. It therefore goes without saying that the accuracy of the dose calculation is of very high importance. The gold standard for absorbed dose calculation is the Monte-Carlo algorithm.
Methods:
This first of two papers gives an overview of the main openly available and supported codes that have been widely used for radiotherapy simulations.
Results:
The paper aims to provide an overview of Monte-Carlo in the field of radiotherapy and point the reader in the right direction of work that could help them get started or develop their existing understanding and use of Monte-Carlo algorithms in their practice.
Conclusions:
It also serves as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Collapse
|
9
|
Monte-Carlo techniques for radiotherapy applications II: equipment and source modelling, dose calculations and radiobiology. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Abstract
Introduction:
This is the second of two papers giving an overview of the use of Monte-Carlo techniques for radiotherapy applications.
Methods:
The first paper gave an introduction and introduced some of the codes that are available to the user wishing to model the different aspects of radiotherapy treatment. It also aims to serve as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Results and Conclusions:
This paper focuses on the application of Monte-Carlo to specific problems in radiotherapy. These include radiotherapy and imaging beam production, brachytherapy, phantom and patient dosimetry, detector modelling and track structure calculations for micro-dosimetry, nano-dosimetry and radiobiology.
Collapse
|
10
|
Sitmukhambetov S, Dinh B, Lai Y, Banigan EJ, Pan Z, Jia X, Chi Y. Development and implementation of a metaphase DNA model for ionizing radiation induced DNA damage calculation. Phys Med Biol 2022; 68:10.1088/1361-6560/aca5ea. [PMID: 36533598 PMCID: PMC9969557 DOI: 10.1088/1361-6560/aca5ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Objective. To develop a metaphase chromosome model representing the complete genome of a human lymphocyte cell to support microscopic Monte Carlo (MMC) simulation-based radiation-induced DNA damage studies.Approach. We first employed coarse-grained polymer physics simulation to obtain a rod-shaped chromatid segment of 730 nm in diameter and 460 nm in height to match Hi-C data. We then voxelized the segment with a voxel size of 11 nm per side and connected the chromatid with 30 types of pre-constructed nucleosomes and 6 types of linker DNAs in base pair (bp) resolutions. Afterward, we piled different numbers of voxelized chromatid segments to create 23 pairs of chromosomes of 1-5μm long. Finally, we arranged the chromosomes at the cell metaphase plate of 5.5μm in radius to create the complete set of metaphase chromosomes. We implemented the model in gMicroMC simulation by denoting the DNA structure in a four-level hierarchical tree: nucleotide pairs, nucleosomes and linker DNAs, chromatid segments, and chromosomes. We applied the model to compute DNA damage under different radiation conditions and compared the results to those obtained with G0/G1 model and experimental measurements. We also performed uncertainty analysis for relevant simulation parameters.Main results. The chromatid segment was successfully voxelized and connected in bps resolution, containing 26.8 mega bps (Mbps) of DNA. With 466 segments, we obtained the metaphase chromosome containing 12.5 Gbps of DNA. Applying it to compute the radiation-induced DNA damage, the obtained results were self-consistent and agreed with experimental measurements. Through the parameter uncertainty study, we found that the DNA damage ratio between metaphase and G0/G1 phase models was not sensitive to the chemical simulation time. The damage was also not sensitive to the specific parameter settings in the polymer physics simulation, as long as the produced metaphase model followed a similar contact map distribution.Significance. Experimental data reveal that ionizing radiation induced DNA damage is cell cycle dependent. Yet, DNA chromosome models, except for the G0/G1 phase, are not available in the state-of-the-art MMC simulation. For the first time, we successfully built a metaphase chromosome model and implemented it into MMC simulation for radiation-induced DNA damage computation.
Collapse
Affiliation(s)
| | - Bryan Dinh
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Youfang Lai
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Edward J. Banigan
- Institute for Medical Engineering & Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zui Pan
- Graduate Nursing, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, MD 21231, USA
| | - Yujie Chi
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
11
|
Cordoni FG, Missiaggia M, La Tessa C, Scifoni E. Multiple levels of stochasticity accounted for in different radiation biophysical models: from physics to biology. Int J Radiat Biol 2022; 99:807-822. [PMID: 36448923 DOI: 10.1080/09553002.2023.2146230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
PURPOSE In the present paper we investigate how some stochastic effects are included in a class of radiobiological models with particular emphasis on how such randomnesses reflect into the predicted cell survival curve. MATERIALS AND METHODS We consider four different models, namely the Generalized Stochastic Microdosimetric Model GSM2, in its original full form, the Dirac GSM2 the Poisson GSM2 and the Repair-Misrepair Model (RMR). While GSM2 and the RMR models are known in literature, the Dirac and the Poisson GSM2 have been newly introduced in this work. We further numerically investigate via Monte Carlo simulation of four different particle beams, how the proposed stochastic approximations reflect into the predicted survival curves. To achieve these results, we consider different ion species at energies of interest for therapeutic applications, also including a mixed field scenario. RESULTS We show how the Dirac GSM2, the Poisson GSM2 and the RMR can be obtained from the GSM2 under suitable approximations on the stochasticity considered. We analytically derive the cell survival curve predicted by the four models, characterizing rigorously the high and low dose limits. We further study how the theoretical findings emerge also using Monte Carlo numerical simulations. CONCLUSIONS We show how different models include different levels of stochasticity in the description of cellular response to radiation. This translates into different cell survival predictions depending on the radiation quality.
Collapse
Affiliation(s)
- Francesco G. Cordoni
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- TIFPA-INFN, Trento, Italy
| | - Marta Missiaggia
- TIFPA-INFN, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Chiara La Tessa
- TIFPA-INFN, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | | |
Collapse
|
12
|
Zou W, Kim H, Diffenderfer ES, Carlson DJ, Koch CJ, Xiao Y, Teo BK, Kim MM, Metz JM, Fan Y, Maity A, Koumenis C, Busch TM, Wiersma R, Cengel KA, Dong L. A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supply. Front Oncol 2022; 12:1004121. [PMID: 36518319 PMCID: PMC9742361 DOI: 10.3389/fonc.2022.1004121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Radiation-induced oxygen depletion in tissue is assumed as a contributor to the FLASH sparing effects. In this study, we simulated the heterogeneous oxygen depletion in the tissue surrounding the vessels and calculated the proton FLASH effective-dose-modifying factor (FEDMF), which could be used for biology-based treatment planning. Methods The dose and dose-weighted linear energy transfer (LET) of a small animal proton irradiator was simulated with Monte Carlo simulation. We deployed a parabolic partial differential equation to account for the generalized radiation oxygen depletion, tissue oxygen diffusion, and metabolic processes to investigate oxygen distribution in 1D, 2D, and 3D solution space. Dose and dose rates, particle LET, vasculature spacing, and blood oxygen supplies were considered. Using a similar framework for the hypoxic reduction factor (HRF) developed previously, the FEDMF was derived as the ratio of the cumulative normoxic-equivalent dose (CNED) between CONV and UHDR deliveries. Results Dynamic equilibrium between oxygen diffusion and tissue metabolism can result in tissue hypoxia. The hypoxic region displayed enhanced radio-resistance and resulted in lower CNED under UHDR deliveries. In 1D solution, comparing 15 Gy proton dose delivered at CONV 0.5 and UHDR 125 Gy/s, 61.5% of the tissue exhibited ≥20% FEDMF at 175 μm vasculature spacing and 18.9 μM boundary condition. This percentage reduced to 34.5% and 0% for 8 and 2 Gy deliveries, respectively. Similar trends were observed in the 3D solution space. The FLASH versus CONV differential effect remained at larger vasculature spacings. A higher FLASH dose rate showed an increased region with ≥20% FEDMF. A higher LET near the proton Bragg peak region did not appear to alter the FLASH effect. Conclusion We developed 1D, 2D, and 3D oxygen depletion simulation process to obtain the dynamic HRF and derive the proton FEDMF related to the dose delivery parameters and the local tissue vasculature information. The phenomenological model can be used to simulate or predict FLASH effects based on tissue vasculature and oxygen concentration data obtained from other experiments.
Collapse
|
13
|
Bertolet A, Ramos-Méndez J, McNamara A, Yoo D, Ingram S, Henthorn N, Warmenhoven JW, Faddegon B, Merchant M, McMahon SJ, Paganetti H, Schuemann J. Impact of DNA Geometry and Scoring on Monte Carlo Track-Structure Simulations of Initial Radiation-Induced Damage. Radiat Res 2022; 198:207-220. [PMID: 35767729 PMCID: PMC9458623 DOI: 10.1667/rade-21-00179.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
Track structure Monte Carlo simulations are a useful tool to investigate the damage induced to DNA by ionizing radiation. These simulations usually rely on simplified geometrical representations of the DNA subcomponents. DNA damage is determined by the physical and physicochemical processes occurring within these volumes. In particular, damage to the DNA backbone is generally assumed to result in strand breaks. DNA damage can be categorized as direct (ionization of an atom part of the DNA molecule) or indirect (damage from reactive chemical species following water radiolysis). We also consider quasi-direct effects, i.e., damage originated by charge transfers after ionization of the hydration shell surrounding the DNA. DNA geometries are needed to account for the damage induced by ionizing radiation, and different geometry models can be used for speed or accuracy reasons. In this work, we use the Monte Carlo track structure tool TOPAS-nBio, built on top of Geant4-DNA, for simulation at the nanometer scale to evaluate differences among three DNA geometrical models in an entire cell nucleus, including a sphere/spheroid model specifically designed for this work. In addition to strand breaks, we explicitly consider the direct, quasi-direct, and indirect damage induced to DNA base moieties. We use results from the literature to determine the best values for the relevant parameters. For example, the proportion of hydroxyl radical reactions between base moieties was 80%, and between backbone, moieties was 20%, the proportion of radical attacks leading to a strand break was 11%, and the expected ratio of base damages and strand breaks was 2.5-3. Our results show that failure to update parameters for new geometric models can lead to significant differences in predicted damage yields.
Collapse
Affiliation(s)
- Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dohyeon Yoo
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Ingram
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicholas Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John-William Warmenhoven
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Michael Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Crapanzano R, Villa I, Mostoni S, D'Arienzo M, Di Credico B, Fasoli M, Lorenzi R, Scotti R, Vedda A. Photo- and radio-luminescence of porphyrin functionalized ZnO/SiO 2 nanoparticles. Phys Chem Chem Phys 2022; 24:21198-21209. [PMID: 36040124 DOI: 10.1039/d2cp00884j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hybrid nanoscintillators is hunted for the implementation of modern detection technologies, like in high energy physics, homeland security, radioactive gas sensing, and medical imaging, as well as of the established therapies in radiation oncology, such as in X-ray activated photodynamic therapy. Engineering of the physico-chemical properties of nanoparticles (NPs) enables the manufacture of hybrids in which the conjugation of inorganic/organic components leads to increased multifunctionality and performance. However, the optimization of the properties of nanoparticles in combination with the use of ionizing radiation is not trivial: a complete knowledge on the structure, composition, physico-chemical features, and scintillation property relationships in hybrid nanomaterials is pivotal for any applications exploiting X-rays. In this paper, the design of hybrid nanoscintillators based on ZnO grown onto porous SiO2 substrates (ZnO/SiO2) has been performed in the view to create nanosystems potentially suitable in X-ray activated photodynamic therapy. Indeed, cytotoxic porphyrin dyes with increasing concentrations have been anchored on ZnO/SiO2 nanoparticles through amino-silane moieties. Chemical and structural analyses correlated with photoluminescence reveal that radiative energy transfer between ZnO and porphyrins is the principal mechanism prompting the excitation of photosensitizers. The use of soft X-ray excitation results in a further sensitization of the porphyrin emission, due to augmented energy deposition promoted by ZnO in the surroundings of the chemically bound porphyrin. This finding unveils the cruciality of the design of hybrid nanoparticles in ruling the efficacy of the interaction between ionizing radiation and inorganic/organic moieties, and thus of the final nanomaterial performances towards the foreseen application.
Collapse
Affiliation(s)
- Roberta Crapanzano
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Irene Villa
- Institute of Physics of the Czech Academy of Sciences (FZU), Cukrovarnická 10/112, 162 00 Prague, Czech Republic.
| | - Silvia Mostoni
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Barbara Di Credico
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Mauro Fasoli
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Roberto Scotti
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy.,INSTM, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| | - Anna Vedda
- Department of Materials Science, University of Milano - Bicocca, Via Cozzi 55, I-20125, Milano, Italy
| |
Collapse
|
15
|
Salim R, Taherparvar P. Dosimetry assessment of theranostic Auger-emitting radionuclides in a micron-sized multicellular cluster model: A Monte Carlo study using Geant4-DNA simulations. Appl Radiat Isot 2022; 188:110380. [PMID: 35868198 DOI: 10.1016/j.apradiso.2022.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
The present work is aimed at improving the multicellular dosimetry of several Auger radionuclides of interest for targeted cancer therapy, including 99mTc, 111In, 123I, 125I, and 201Tl. For this purpose, using the Geant4-DNA Monte Carlo code, a cluster of 13 similar spherical cells with a hexagonal packed arrangement was modeled, and the mean absorbed doses per unit cumulated activity (S-values) were calculated by considering two target←source configurations, cell←cell and nucleus←nucleus. The obtained ratios of cross-dose to self-dose S-value in terms of the distance between the source and target regions were evaluated and also compared to those estimated by the Medical Internal Radiation Dose (MIRD) method. Besides, the contribution of the Coster-Kronig, Auger and internal conversion electrons to the S-values was provided for each radionuclide. According to the results, it can be concluded that in contrast to self-absorption, the cross-absorption due to the Auger-emitters has not a significant role in the total energy deposition within a cell in the cluster.
Collapse
Affiliation(s)
- R Salim
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
| | - P Taherparvar
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
16
|
Salim R, Taherparvar P. A Monte Carlo study on the effects of a static uniform magnetic field on micro-scale dosimetry of Auger-emitters using Geant4-DNA. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Kolovi S, Fois GR, Lanouar S, Chardon P, Miallier D, Rivrais G, Allain E, Baker LA, Bailly C, Beauger A, Biron DG, He Y, Holub G, Le Jeune AH, Mallet C, Michel H, Montavon G, Schoefs B, Sergeant C, Maigne L, Breton V. Radiation exposure of microorganisms living in radioactive mineral springs. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The TIRAMISU collaboration gathers expertise from biologists, physicists, radiochemists and geologists within the Zone-Atelier Territoires Uranifères (ZATU) in France to analyze the radiation exposure of microorganisms living in naturally radioactive mineral springs. These springs are small waterbodies that are extremely stable over geological time scales and display different physicochemical and radiological parameters compared to their surroundings. Water and sediment samples collected in 27 mineral springs of the volcanic Auvergne region (Massif Central, France) have been studied for their microbial biodiversity and their radionuclide content. Among the microorganisms present, microalgae (diatoms), widely used as environmental indicators of water quality, have shown to display an exceptional abundance of teratogenic forms in the most radioactive springs studied (radon activity up to 3700 Bq/L). The current work presents a first assessment of the dose received by the diatoms inhabiting these ecosystems. According to ERICA tool, microorganisms living in most of the sampled mineral springs were exposed to dose rates above 10 μGy/h due to the large concentration of radium in the sediments (up to 50 Bq/g). Radiological analyses of water and sediments were used as inputs to Monte Carlo simulations at micro-(GATE) and nano- (Geant4-DNA) scale in order to assess the direct and indirect damages on the diatom DNA.
Collapse
|
18
|
Windows-Yule CRK, Herald MT, Nicuşan AL, Wiggins CS, Pratx G, Manger S, Odo AE, Leadbeater T, Pellico J, de Rosales RTM, Renaud A, Govender I, Carasik LB, Ruggles AE, Kokalova-Wheldon T, Seville JPK, Parker DJ. Recent advances in positron emission particle tracking: a comparative review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:016101. [PMID: 34814127 DOI: 10.1088/1361-6633/ac3c4c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Positron emission particle tracking (PEPT) is a technique which allows the high-resolution, three-dimensional imaging of particulate and multiphase systems, including systems which are large, dense, and/or optically opaque, and thus difficult to study using other methodologies. In this work, we bring together researchers from the world's foremost PEPT facilities not only to give a balanced and detailed overview and review of the technique but, for the first time, provide a rigorous, direct, quantitative assessment of the relative strengths and weaknesses of all contemporary PEPT methodologies. We provide detailed explanations of the methodologies explored, including also interactive code examples allowing the reader to actively explore, edit and apply the algorithms discussed. The suite of benchmarking tests performed and described within the document is made available in an open-source repository for future researchers.
Collapse
Affiliation(s)
- C R K Windows-Yule
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - M T Herald
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - A L Nicuşan
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - C S Wiggins
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Box 843015, Richmond, Virginia 23284, United States of America
- Department of Physics and Astronomy, University of Tennessee, Knoxville, 1408 Circle Drive, Knoxville, TN 37996, United States of America
| | - G Pratx
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford University, Stanford, CA, United States of America
- Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA, United States of America
| | - S Manger
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - A E Odo
- Department of Physics, Federal University Oye-Ekiti, Nigeria
- Department of Physics, University of Cape Town, Rondebosch 7701, South Africa
| | - T Leadbeater
- Department of Physics, University of Cape Town, Rondebosch 7701, South Africa
| | - J Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - R T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - A Renaud
- School of Mathematics, The University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, United Kingdom
| | - I Govender
- Mintek, P/Bag X3015, Ranburg, Gauteng 2121, South Africa
- Centre for Minerals Research, University of Cape Town, P/Bag Rondebosch 7701, South Africa
- School of Engineering, University of KwaZulu Natal, Glenwood 4041, South Africa
| | - L B Carasik
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Box 843015, Richmond, Virginia 23284, United States of America
| | - A E Ruggles
- Department of Nuclear Engineering, University of Tennessee, Knoxville, 1412 Circle Drive, Knoxville, TN 37996, United States of America
| | - Tz Kokalova-Wheldon
- School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - J P K Seville
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - D J Parker
- School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
19
|
Auditore L, Pistone D, Amato E, Italiano A. Monte Carlo methods in nuclear medicine. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Development and validation of proton track-structure model applicable to arbitrary materials. Sci Rep 2021; 11:24401. [PMID: 34934066 PMCID: PMC8692440 DOI: 10.1038/s41598-021-01822-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
A novel transport algorithm performing proton track-structure calculations in arbitrary materials was developed. Unlike conventional algorithms, which are based on the dielectric function of the target material, our algorithm uses a total stopping power formula and single-differential cross sections of secondary electron production. The former was used to simulate energy dissipation of incident protons and the latter was used to consider secondary electron production. In this algorithm, the incident proton was transmitted freely in matter until the proton produced a secondary electron. The corresponding ionising energy loss was calculated as the sum of the ionisation energy and the kinetic energy of the secondary electron whereas the non-ionising energy loss was obtained by subtracting the ionising energy loss from the total stopping power. The most remarkable attribute of this model is its applicability to arbitrary materials, i.e. the model utilises the total stopping power and the single-differential cross sections for secondary electron production rather than the material-specific dielectric functions. Benchmarking of the stopping range, radial dose distribution, secondary electron energy spectra in liquid water, and lineal energy in tissue-equivalent gas, against the experimental data taken from literature agreed well. This indicated the accuracy of the present model even for materials other than liquid water. Regarding microscopic energy deposition, this model will be a robust tool for analysing the irradiation effects of cells, semiconductors and detectors.
Collapse
|
21
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
22
|
Abstract
The accuracy of the most recent recommended cross sections dataset for electron scattering from gaseous H2O (J. Phys. Chem. Ref. Data 2021, 50, 023103) is probed in a joint experimental and computational study. Simulations of the magnetically confined electron transport through a gas cell containing H2O for different beam energies (3, 10 and 70 eV) and pressures (2.5 to 20.0 mTorr) have been performed by using a specifically designed Monte Carlo code. The simulated results have been compared with the corresponding experimental data as well as with simulations performed with Geant4DNA. The comparison made between the experiment and simulation provides insight into possible improvement of the recommended dataset.
Collapse
|
23
|
Montgomery L, Lund CM, Landry A, Kildea J. Towards the characterization of neutron carcinogenesis through direct action simulations of clustered DNA damage. Phys Med Biol 2021; 66. [PMID: 34555818 DOI: 10.1088/1361-6560/ac2998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Neutron exposure poses a unique radiation protection concern because neutrons have a large, energy-dependent relative biological effectiveness (RBE) for stochastic effects. Recent computational studies on the microdosimetric properties of neutron dose deposition have implicated clustered DNA damage as a likely contributor to this marked energy dependence. So far, publications have focused solely on neutron RBE for inducing clusters of DNA damage containing two or more DNA double strand breaks (DSBs). In this study, we have conducted a novel assessment of neutron RBE for inducing all types of clustered DNA damage that contain two or more lesions, stratified by whether the clusters contain DSBs (complex DSB clusters) or not (non-DSB clusters). This assessment was conducted for eighteen initial neutron energies between 1 eV and 10 MeV as well as a reference radiation of 250 keV x-rays. We also examined the energy dependence of cluster length and cluster complexity because these factors are believed to impact the DNA repair process. To carry out our investigation, we developed a user-friendly TOPAS-nBio application that includes a custom nuclear DNA model and a novel algorithm for recording clustered DNA damage. We found that neutron RBE for inducing complex DSB clusters exhibited similar energy dependence to the canonical neutron RBE for stochastic radiobiological effects, at multiple depths in human tissue. Qualitatively similar results were obtained for non-DSB clusters, although the quantitative agreement was lower. Additionally we identified a significant neutron energy dependence in the average length and complexity of clustered lesions. These results support the idea that many types of clustered DNA damage contribute to the energy dependence of neutron RBE for stochastic radiobiological effects and imply that the size and constituent lesions of individual clusters should be taken into account when modeling DNA repair. Our results were qualitatively consistent for (i) multiple radiation doses (including a low-dose 0.1 Gy irradiation), (ii) variations in the maximal lesion separation distance used to define a cluster, and (iii) two distinct collections of physics models used to govern particle transport. Our complete TOPAS-nBio application has been released under an open-source license to enable others to independently validate our work and to expand upon it.
Collapse
Affiliation(s)
- Logan Montgomery
- Medical Physics Unit, McGill University, Montreal, QC, H4A3J1, Canada
| | | | - Anthony Landry
- Prince Edward Island Cancer Treatment Centre, Charlottetown, PE, C1A8T5, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, NS, B3H4RZ, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC, H4A3J1, Canada
| |
Collapse
|
24
|
Anh LT, Cuong PV, Ha NH, Thao HT. Intercomparison of Geant4 low energy electromagnetic models in 90Y dosimetry. Appl Radiat Isot 2021; 178:109938. [PMID: 34560513 DOI: 10.1016/j.apradiso.2021.109938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
This work shows the comparison between Geant4 low energy electromagnetic physics lists G4EmLi-vermorePhysics, G4EmPenelopePhysics, G4EmLowEPPhysics, and G4EmDNAPhysics_option2 when simulating the energy deposition of low mono-energetic electrons and β- emitted from 90Y isotope. The simulation time and influence of production cut were considered. In the sense of balance between the accuracy and computer resource, G4EmPenelopePhysics can be proposed as the best physics model for our future Treatment Planning System (TPS) for treating liver cancer using 90Y microsphere radioembolization therapy.
Collapse
Affiliation(s)
- L T Anh
- Institute for Nuclear Science and Technology, Vietnam Atomic Energy Institute, Viet Nam
| | - P V Cuong
- Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, Viet Nam.
| | - N H Ha
- Centre of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Viet Nam; M1 General Physics, Paris-Saclay University, 91405 Orsay Cedex, France
| | - H T Thao
- School of Mechanical Engineering, Kyungpook National University, South Korea
| |
Collapse
|
25
|
Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021; 97:1229-1240. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
Collapse
Affiliation(s)
- Otilija Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Pablo Cirrone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
- Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Institute of Physics (IoP) of the Czech Academy of Science (CAS), ELI-Beamlines, Prague, Czech Republic
| | - Giacomo Cuttone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, NIRS, Chiba, QST, Japan
| | - Wook-Geun Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | | | - Ivan Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
26
|
Bakr S, Kibédi T, Tee B, Bolst D, Vos M, Alotiby M, Desorgher L, Wright DH, Mantero A, Rosenfeld A, Ivanchenko V, Incerti S, Guatelli S. A benchmarking study of Geant4 for Auger electrons emitted by medical radioisotopes. Appl Radiat Isot 2021; 174:109777. [PMID: 34051528 DOI: 10.1016/j.apradiso.2021.109777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
Auger emitting radioisotopes are of great interest in targeted radiotherapy because, once internalised in the tumour cells, they can deliver dose locally to the radiation sensitive targets, while not affecting surrounding cells. Geant4 is a Monte Carlo code widely used to characterise the physics mechanism at the basis of targeted radiotherapy. In this work, we benchmarked the modelling of the emission of Auger electrons in Geant4 deriving from the decay of 123I, 124I, 125I radionuclides against existing theoretical approaches. We also compared Geant4 against reference data in the case of 131Cs, which is of interest for brachytherapy. In the case of 125I and 131Cs, the simulation results are compared to experimental measurements as well. Good agreement was found between Geant4 and the reference data. As far as we know, this is the first study aimed to benchmark against experimental measurements the emission of Auger electrons in Geant4 for radiotherapy applications.
Collapse
Affiliation(s)
- Samer Bakr
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
| | - Tibor Kibédi
- Department of Nuclear Physics, Research School of Physics, The Australian National University, Canberra, Australia
| | - Bryan Tee
- Department of Nuclear Physics, Research School of Physics, The Australian National University, Canberra, Australia
| | - David Bolst
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Maarten Vos
- Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australia
| | - Mohammed Alotiby
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Dennis Herbert Wright
- International Space Elevator Consortium, California, USA; SLAC National Accelerator Laboratory, California, USA
| | | | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Vladimir Ivanchenko
- Geant4 Associates International Ltd., United Kingdom; Tomsk State University, Tomsk, Russia
| | - Sebastien Incerti
- CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
27
|
Jiang L, Li W, Nie J, Wang R, Chen X, Fan W, Hu L. Fluorescent Nanogel Sensors for X-ray Dosimetry. ACS Sens 2021; 6:1643-1648. [PMID: 33761245 DOI: 10.1021/acssensors.1c00204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray dosimeters are of significance for detecting the levels of ionizing radiation exposure in cells and phantoms; thus, they can further optimize X-ray radiotherapy in the clinic. In this paper, we designed a polyacrylamide-based nanogel sensor that is capable of measuring X-ray doses. The dosimeters were prepared by anchoring an X-ray-responsive probe (aminophenyl fluorescein, APF) to poly(acrylamide-co-N-(3-aminopropyl) methyl acrylamide) nanogels. The premise behind the dose measurement is the transition of APF to fluorescence in the presence of hydroxyl radicals that are caused by the radiolysis of water molecules under X-rays. Therefore, the dose of X-rays can be readily detected by measuring the fluorescence intensity of the resultant nanogel immediately after irradiation using fluorescence spectroscopy principles. Using an RS2000 X-ray biological irradiator, our dosimeters showed good linearity responsivity at X-ray doses ranging from 0 to 15 Gy, with a limit of detection (LOD) of 0.5 Gy. Additionally, the signals showed temperature stability (25-65 °C), durability (5 weeks), and dose-rate (1.177 and 6 Gy/min) and energy independence (160 kVp and 6 MV). As a proof-of-concept, we used our sensors to fluorescently detect X-ray doses in A549 tumor cells and 3D-printed eye phantoms. The results showed that our dosimeters were able to accurately predict doses similar to those used by treatment plan systems.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| | - Wenxiang Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| | - Rensheng Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| | - Xinjian Chen
- School of Electronics and Information Engineering, Soochow University, Suzhou 215006, China
| | - Wenhui Fan
- Radiotherapy Division, Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- National Clinical Research Center for Oral Diseases, Shanghai 200025, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200025, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| |
Collapse
|
28
|
On the Equivalence of the Biological Effect Induced by Irradiation of Clusters of Heavy Atom Nanoparticles and Homogeneous Heavy Atom-Water Mixtures. Cancers (Basel) 2021; 13:cancers13092034. [PMID: 33922478 PMCID: PMC8122863 DOI: 10.3390/cancers13092034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
A multiscale local effect model (LEM)-based framework was implemented to study the cell damage caused by the irradiation of clusters of gold nanoparticles (GNPs) under clinically relevant conditions. The results were compared with those obtained by a homogeneous mixture of water and gold (MixNP) irradiated under similar conditions. To that end, Monte Carlo simulations were performed for the irradiation of GNP clusters of different sizes and MixNPs with a 6 MV Linac spectrum to calculate the dose enhancement factor in water. The capabilities of our framework for the prediction of cell damage trends are examined and discussed. We found that the difference of the main parameter driving the cell damage between a cluster of GNPs and the MixNP was less than 1.6% for all cluster sizes. Our results demonstrate for the first time a simple route to intuit the radiobiological effects of clusters of nanoparticles through the consideration of an equivalent homogenous gold/water mixture. Furthermore, the negligible difference on cell damage between a cluster of GNPs and MixNP simplifies the modelling for the complex geometries of nanoparticle aggregations and saves computational resources.
Collapse
|
29
|
Chegeni N, Kouhkan E, Hussain A, Hassanvand M. The effect of the nucleus random location on the cellular S-values - Based on Geant4-DNA. Appl Radiat Isot 2021; 168:109427. [PMID: 33097380 DOI: 10.1016/j.apradiso.2020.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The nucleus is the most crucial target in cell micro-dosimetry. At cell division time, cells do not have concentric geometry synchronously. This issue will be more essential for the low-energy electron emitters. This study investigates the variety of mean absorbed dose (S-value) in the non-concentric cell-nucleus model and random nucleus location within the cell. METHODS The S-values were calculated by Geant4-DNA for the cell and nucleus with different radius (with the RC/RN ratio = 1.2, 2, 3) and the cell geometry contains nuclei with varying positions inside the cell. Two important components, cytoplasm to the nucleus (N←Cy) and the cell surface to the nucleus (N←Cs) are considered in this work for mono energetic electrons (10-100 keV). To eliminate the effect of the nucleus position (during cell division) on the S-value, the nucleus location in each run was randomly selected inside the cell to represent the cell in a floating state. RESULTS As the nucleus becomes closer to the cell membrane the differences are more noticeable especially for electrons with energy less than 20 keV as for RN/RC = 1.2, 2, and 3 about 18, 70, and 200%, respectively. CONCLUSION Due to the variable position of the nucleus in cell division, using a random place defined in Geant4, the calculations are getting closer to the reality while there is not such possibility for analytical method used by MIRD.
Collapse
Affiliation(s)
- N Chegeni
- Departments of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - E Kouhkan
- Departments of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Hussain
- MCCPM, Medical Physics Department, 675 McDermott Ave, Winnipeg, MB, R3E 0V9, Cancer Care Manitoba, MB, Canada.
| | - M Hassanvand
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
30
|
Ahmadi Ganjeh Z, Eslami-Kalantari M, Ebrahimi Loushab M, Mowlavi AA. Calculation of direct DNA damages by a new approach for carbon ions and protons using Geant4-DNA. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Monte Carlo studies in Gold Nanoparticles enhanced radiotherapy: The impact of modelled parameters in dose enhancement. Phys Med 2020; 80:57-64. [DOI: 10.1016/j.ejmp.2020.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
|
32
|
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH, Gargioni E, Hainfeld JF, Hespeels F, Heuskin AC, Ibeh UM, Kuncic Z, Kunjachan S, Lacombe S, Lucas S, Lux F, McMahon S, Nevozhay D, Ngwa W, Payne JD, Penninckx S, Porcel E, Prise KM, Rabus H, Ridwan SM, Rudek B, Sanche L, Singh B, Smilowitz HM, Sokolov KV, Sridhar S, Stanishevskiy Y, Sung W, Tillement O, Virani N, Yantasee W, Krishnan S. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 2020; 65:21RM02. [PMID: 32380492 DOI: 10.1088/1361-6560/ab9159] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.
Collapse
Affiliation(s)
- Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang EG, Sachs RK. Commentary on "Simulating galactic cosmic ray effects: Synergy modeling of murine tumor prevalence after exposure to two one-ion beams in rapid sequence". LIFE SCIENCES IN SPACE RESEARCH 2020; 26:173-174. [PMID: 32718683 DOI: 10.1016/j.lssr.2020.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Edward Greg Huang
- Department of Mathematics, University of California at Berkeley, United States.
| | - Rainer K Sachs
- Department of Mathematics, University of California at Berkeley, United States
| |
Collapse
|
34
|
Cellular S values in spindle-shaped cells: a dosimetry study on more realistic cell geometries using Geant4-DNA Monte Carlo simulation toolkit. Ann Nucl Med 2020; 34:742-756. [PMID: 32632563 DOI: 10.1007/s12149-020-01498-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/01/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cellular dosimetry plays a crucial role in radiobiology and evaluation of the relative merits of radiopharmaceuticals used for targeted radionuclide therapy. The present study aims to investigate the effects of various cell geometries on dosimetric characteristics of several Auger emitters distributed in different subcellular compartments using Monte Carlo simulation. METHODS The Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit was employed to calculate the mean absorbed dose per unit cumulated activity (S value) for different subcellular distributions of several Auger electron-emitting theranostic radionuclides including 99mTc, 111In, 123I, 125I, and 201Tl. The simulations were carried out in various single-cell models of liquid water including spherical, ellipsoidal, spherical spindle, and ellipsoidal spindle cell models. The latter two models which are generalized from the first two models were inspired by the morphologies of spindle-shaped (fusiform) cells, and were developed to provide more realistic modeling of this common geometry observed in many healthy and cancerous cells. RESULTS Evaluation of the S values calculated for the examined cell models reveals that the differences are small (less than 9%) for the cell ← cell, cell ← cell surface, and nucleus ← nucleus source-target combinations. However, moderate discrepancies are seen (up to 28%) when the nucleus is considered as the target, as well as the radioactivity is either internalized into the cytoplasm or bound to the cell membrane. CONCLUSIONS The findings of the present work suggest that the assumption of spherical cell geometry may provide reasonably accurate estimates of the cellular/nuclear dose for the considered Auger emitters, even for spindle-shaped cells. Of course, this approximation should be used with caution for the nucleus ← cytoplasm and nucleus ← cell surface configurations, since the S-value sensitivity to the cell geometry is somewhat significant in these cases.
Collapse
|
35
|
Ertugrul I. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology. MICROMACHINES 2020; 11:mi11050518. [PMID: 32443757 PMCID: PMC7281471 DOI: 10.3390/mi11050518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/26/2020] [Accepted: 05/09/2020] [Indexed: 01/19/2023]
Abstract
3D printing has lately received considerable critical attention for the fast fabrication of 3D structures to be utilized in various industrial applications. This study aimed to fabricate a micro beam with digital light processing (DLP) based 3D printing technology. Compound technology and essential coefficients of the 3D printing operation were applied. To observe the success of the DLP method, it was compared with another fabrication method, called projection micro-stereolithography (PμSL). Evaluation experiments showed that the 3D printer could print materials with smaller than 86.7 µm dimension properties. The micro beam that moves in one direction (y-axis) was designed using the determined criteria. Though the same design was used for the DLP and PμSL methods, the supporting structures were not manufactured with PμSL. The micro beam was fabricated by removing the supports from the original design in PμSL. Though 3 μm diameter supports could be produced with the DLP, it was not possible to fabricate them with PμSL. Besides, DLP was found to be better than PμSL for the fabrication of complex, non-symmetric support structures. The presented results in this study demonstrate the efficiency of 3D printing technology and the simplicity of manufacturing a micro beam using the DLP method with speed and high sensitivity.
Collapse
Affiliation(s)
- Ishak Ertugrul
- Department of Mechatronics, Mus Alparslan University, 49250 Mus, Turkey
| |
Collapse
|
36
|
Lund CM, Famulari G, Montgomery L, Kildea J. A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue. Phys Med 2020; 73:29-42. [PMID: 32283505 DOI: 10.1016/j.ejmp.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022] Open
Abstract
Nuclear reactions induced during high-energy radiotherapy produce secondary neutrons that, due to their carcinogenic potential, constitute an important risk for the development of iatrogenic cancer. Experimental and epidemiological findings indicate a marked energy dependence of neutron relative biological effectiveness (RBE) for carcinogenesis, but little is reported on its physical basis. While the exact mechanism of radiation carcinogenesis is yet to be fully elucidated, numerical microdosimetry can be used to predict the biological consequences of a given irradiation based on its microscopic pattern of energy depositions. Building on recent studies, this work investigated the physics underlying neutron RBE by using the microdosimetric quantity dose-mean lineal energy (y‾D) as a proxy. A simulation pipeline was constructed to explicitly calculate the y‾D of radiation fields that consisted of (i) the open source Monte Carlo toolkit Geant4, (ii) its radiobiological extension Geant4-DNA, and (iii) a weighted track-sampling algorithm. This approach was used to study mono-energetic neutrons with initial kinetic energies between 1 eV and 10 MeV at multiple depths in a tissue-equivalent phantom. Spherical sampling volumes with diameters between 2 nm and 1 μm were considered. To obtain a measure of RBE, the neutron y‾D values were divided by those of 250 keV X-rays that were calculated in the same way. Qualitative agreement was found with published radiation protection factors and simulation data, allowing for the dependencies of neutron RBE on depth and energy to be discussed in the context of the neutron interaction cross sections and secondary particle distributions in human tissue.
Collapse
Affiliation(s)
- C M Lund
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada.
| | - G Famulari
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada
| | - L Montgomery
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada
| | - J Kildea
- Medical Physics Unit, McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
37
|
Kouhkan E, Chegeni N, Hussain A. The Effect of Nucleus Size on the Cell Dose in Targeted Radionuclide Therapy - A Monte Carlo Study. JOURNAL OF MEDICAL SIGNALS & SENSORS 2020; 10:113-118. [PMID: 32676447 PMCID: PMC7359958 DOI: 10.4103/jmss.jmss_21_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/04/2019] [Accepted: 12/25/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Nowadays, the use of radiopharmaceuticals in medicine is unavoidable. Depending on the distribution of the radiopharmaceutical in the cells, the nucleus absorbed dose changes by the variations in their geometry size. Therefore, this study aims to investigate the S-value by the variation of nucleus size using Geant4 toolkit. METHODS Two spherical cells with a variety of nucleus size have been considered as the cancerous cell. Monoenergetic electrons ranging from 5 to 300 keV are distributed uniformly. The S-value for four target-source components (including Nucleus←Cytoplasm, Nucleus←Cell surface, Nucleus←Nucleus, and Nucleus←Nucleus surface) is computed and plotted. Then, the obtained data are compared with analytical Medical Internal Radiation Dose (MIRD) data. RESULTS In Nucleus←Cytoplasm compartment for electrons below 10 keV, obtained S-values show a slight decrease for the nucleus in the radii of around half of the cell radius and then S-values increase with the increase in the nucleus radii. In the S-value of Nucleus←Cell surface, for all electron energy levels, a slight decrease observed with the increase of nucleus radii. For Nucleus←Nucleus and Nucleus←Nucleus surface cases, with an increase in the size of the cell nucleus, a sharp reduction in the S-values is detected. CONCLUSION It can be concluded that for the beta emitters with low-energy radiation (<40 keV), the S-value is heavily dependent on the nucleus size which may affect the treatment of small tumors. While for the beta emitters with higher-energy radiation (>100 keV), the size of the nucleus is not very noticeable in the induced S-value.
Collapse
Affiliation(s)
- Ebrahim Kouhkan
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Chegeni
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amjad Hussain
- Department of Medical Physics, Cancer Care Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
38
|
Margis S, Magouni M, Kyriakou I, Georgakilas AG, Incerti S, Emfietzoglou D. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code. Phys Med Biol 2020; 65:045007. [PMID: 31935692 DOI: 10.1088/1361-6560/ab6b47] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To calculate the yield of direct DNA damage induced by low energy electrons using Monte Carlo generated microdosimetric spectra at the nanometer scale and examine the influence of various simulation inputs. The potential of classical microdosimetry to offer a viable and simpler alternative to more elaborate mechanistic approaches for practical applications is discussed. Track-structure simulations with the Geant4-DNA low-energy extension of the Geant4 Monte Carlo toolkit were used for calculating lineal energy spectra in spherical volumes with dimensions relevant to double-strand-break (DSB) induction. The microdosimetric spectra were then used to calculate the yield of simple and clustered DSB based on literature values of the threshold energy of DNA damage. The influence of the different implementations of the dielectric function of liquid water available in Geant4-DNA (Option 2 and Option 4 constructors), as well as the effect of particle tracking cutoff energy and target size are examined. Frequency- and dose-mean lineal energies in liquid-water spheres of 2, 2.3, 2.6, and 3.4 nm diameter, as well as, number of simple and clustered DSB/Gy/cell are presented for electrons over the 100 eV to 100 keV energy range. Results are presented for both the 'default' (Option 2) and 'Ioannina' (Option 4) physics models of Geant4-DNA applying several commonly used tracking cutoff energies (10, 20, 50, 100 eV). Overall, the choice of the physics model and target diameter has a moderate effect (up to ~10%-30%) on the DSB yield whereas the effect of the tracking cutoff energy may be significant (>100%). Importantly, the yield of both simple and clustered DSB was found to vary significantly (by a factor of 2 or more) with electron energy over the examined range. The yields of electron-induced simple and clustered DSB exhibit a strong energy dependence over the 100 eV-100 keV range with implications to radiation quality issues. It is shown that a classical microdosimetry approach for the calculation of DNA damage based on lineal energy spectra in nanometer-size targets predicts comparable results to computationally intensive mechanistic approaches which use detailed atomistic DNA geometries, thus, offering a relatively simple and robust alternative for some practical applications.
Collapse
Affiliation(s)
- Stefanos Margis
- Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
39
|
Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci Rep 2020; 10:1443. [PMID: 31996740 PMCID: PMC6989695 DOI: 10.1038/s41598-020-58084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 01/17/2023] Open
Abstract
DNA double-strand break (DSB) repair is crucial to maintain genomic stability. The fidelity of the repair depends on the complexity of the lesion, with clustered DSBs being more difficult to repair than isolated breaks. Using live cell imaging of heavy ion tracks produced at a high-energy particle accelerator we visualised simultaneously the recruitment of different proteins at individual sites of complex and simple DSBs in human cells. NBS1 and 53BP1 were recruited in a few seconds to complex DSBs, but in 40% of the isolated DSBs the recruitment was delayed approximately 5 min. Using base excision repair (BER) inhibitors we demonstrate that some simple DSBs are generated by enzymatic processing of base damage, while BER did not affect the complex DSBs. The results show that DSB processing and repair kinetics are dependent on the complexity of the breaks and can be different even for the same clastogenic agent.
Collapse
|
40
|
Zabihi A, Incerti S, Francis Z, Forozani G, Semsarha F, Moslehi A, Rezaeian P, Bernal MA. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank. Phys Rev E 2019; 99:052404. [PMID: 31212425 DOI: 10.1103/physreve.99.052404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/07/2022]
Abstract
This study proposes an innovative approach to estimate relative biological effectiveness (RBE) of fast neutrons using the Geant4 toolkit. The Geant4-DNA version cannot track heavy ions below 0.5 MeV/nucleon. In order to explore the impact of this issue, secondary particles are simulated instead of the primary low-energy neutrons. The Evaluated Nuclear Data File library is used to determine the cross sections for the elastic and inelastic interactions of neutrons with water and to find the contribution of each secondary particle spectrum. Two strategies are investigated in order to find the best possible approach and results. The first one takes into account only light particles, protons produced from elastic scattering, and α particles from inelastic scattering. Geantino particles are shot instead of heavy ions; hence all heavy ions are considered in the simulations, though their physical effects on DNA not. The second strategy takes into account all the heavy and light ions, although heavy ions cannot be tracked down to very low energies (E<0.5 MeV/nucleon). Our model is based on the combination of an atomic resolution DNA geometrical model and a Monte Carlo simulation toolkit for tracking particles. The atomic coordinates of the DNA double helix are extracted from the Protein Data Bank. Since secondary particle spectra are used instead of simulating the interaction of neutrons explicitly, this method reduces the computation times dramatically. Double-strand break induction is used as the end point for the estimation of the RBE of fast neutrons. ^{60}Co γ rays are used as the reference radiation quality. Both strategies succeed in reproducing the behavior of the RBE_{max} as a function of the incident neutron energy ranging from 0.1 to 14 MeV, including the position of its peak. A comparison of the behavior of the two strategies shows that for neutrons with energies less than 0.7 MeV, the effect of heavy ions would not be very significant, but above 0.7 MeV, heavy ions have an important role in neutron RBE.
Collapse
Affiliation(s)
- Azam Zabihi
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 651744161, Iran
| | - Sebastien Incerti
- University of Bordeaux, CENBG, UMR No. 5797, 33170 Gradignan, France CNRS, IN2P3, CENBG, UMR No. 5797, 33170 Gradignan, France
| | - Ziad Francis
- Department of Physics, Faculty of Sciences, Université Saint Joseph, 2020 1104 Beirut, Lebanon
| | - Ghasem Forozani
- Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Farid Semsarha
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amir Moslehi
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| | - Peiman Rezaeian
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| | - Mario A Bernal
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo, Brazil
| |
Collapse
|
41
|
Salado-Leza D, Traore A, Porcel E, Dragoe D, Muñoz A, Remita H, García G, Lacombe S. Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence. Int J Mol Sci 2019; 20:ijms20225648. [PMID: 31718091 PMCID: PMC6888691 DOI: 10.3390/ijms20225648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The use of nanoparticles, in combination with ionizing radiation, is considered a promising method to improve the performance of radiation therapies. In this work, we engineered mono- and bimetallic core-shell gold–platinum nanoparticles (NPs) grafted with poly (ethylene glycol) (PEG). Their radio-enhancing properties were investigated using plasmids as bio-nanomolecular probes and gamma radiation. We found that the presence of bimetallic Au:Pt-PEG NPs increased by 90% the induction of double-strand breaks, the signature of nanosize biodamage, and the most difficult cell lesion to repair. The radio-enhancement of Au:Pt-PEG NPs were found three times higher than that of Au-PEG NPs. This effect was scavenged by 80% in the presence of dimethyl sulfoxide, demonstrating the major role of hydroxyl radicals in the damage induction. Geant4-DNA Monte Carlo simulations were used to elucidate the physical processes involved in the radio-enhancement. We predicted enhancement factors of 40% and 45% for the induction of nanosize damage, respectively, for mono- and bimetallic nanoparticles, which is attributed to secondary electron impact processes. This work contributed to a better understanding of the interplay between energy deposition and the induction of nanosize biomolecular damage, being Monte Carlo simulations a simple method to guide the synthesis of new radio-enhancing agents.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, S.L.P., Mexico
| | - Ali Traore
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Erika Porcel
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR 8182) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Antonio Muñoz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 22, 28040 Madrid, Spain;
| | - Hynd Remita
- Laboratoire de Chimie Physique (UMR 8000) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Correspondence: ; Tel.: +33-(1)-6915-8263
| |
Collapse
|
42
|
Papadimitroulas P, Balomenos A, Kopsinis Y, Loudos G, Alexakos C, Karnabatidis D, Kagadis GC, Kostou T, Chatzipapas K, Visvikis D, Mountris KA, Jaouen V, Katsanos K, Diamantopoulos A, Apostolopoulos D. A Review on Personalized Pediatric Dosimetry Applications Using Advanced Computational Tools. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2876562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Ivanchenko V, Bagulya A, Bakr S, Bandieramonte M, Bernard D, Bordage MC, Brown J, Burkhardt H, Dondero P, Elles S, Grichine V, Guatelli S, Hariri F, Howard A, Incerti S, Yung Jun S, Kadri O, Kyriakou I, Maire M, Mantero A, Novak M, Sawkey D, Sawkey D, Semeniouk I, Sokolov A, Urban L. Progress of Geant4 electromagnetic physics developments and applications. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921402046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report on developments of the Geant4 electromagnetic physics sub-libraries of Geant4 release 10.4 and beyond. Modifications are introduced to the models of photoelectric effect, bremsstrahlung, gamma conversion, single and multiple scattering. The theory-based Goudsmit-Saunderson model of electron/positron multiple scattering has been recently reviewed and a new improved version, providing the most accurate results for scattering of electrons and positrons, was made available. The updated interfaces, models and configurations have already been integrated into LHC applications and may be useful for any type of simulations.
Collapse
|
44
|
Salim R, Taherparvar P. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:353-371. [PMID: 30927051 DOI: 10.1007/s00411-019-00788-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Investigation of biological effects of low-dose ionizing radiation at the (sub-) cellular level, which is referred to as microdosimetry, remains a major challenge of today's radiobiology research. Monte Carlo simulation of radiation tracks can provide a detailed description of the physical processes involved in dimensions as small as the critical substructures of the cell. Hereby, in the present study, microdosimetric calculations of cellular S values for mono-energetic electrons and six Auger-emitting radionuclides were performed in single-cell models of liquid water using Geant4-DNA. The effects of displacement and rotation of the nucleus within the cell on the cellular S values were studied in spherical and ellipsoidal geometries. It was found that for the examined electron energies and radionuclides, in the case of nucleus cross-absorption where the radioactivity is either localized in the cytoplasm of the cell or distributed on the cell surface, rotation of the nucleus within the cell affects cellular S values less than displacement of the nucleus. Especially, the considerable differences observed in S(nucleus ← cell surface) values between an eccentric and a concentric cell-nucleus configuration in spherical and ellipsoidal geometries (up to 63% and up to 44%, respectively) suggests that the approximation of concentricity should be used with caution, at least for localized irradiation of the cell membrane by an Auger-emitter in targeted radionuclide cancer therapy. The obtained results, which are based on a more realistic modeling of the cell than was done before, provide more accurate information about nuclear dose. This can be useful for theranostic applications.
Collapse
Affiliation(s)
- Ramak Salim
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41335-19141, Rasht, 4193833697, Iran
| | - Payvand Taherparvar
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41335-19141, Rasht, 4193833697, Iran.
| |
Collapse
|
45
|
Liu R, Zhao T, Swat MH, Reynoso FJ, Higley KA. Development of computational model for cell dose and DNA damage quantification of multicellular system. Int J Radiat Biol 2019; 95:1484-1497. [DOI: 10.1080/09553002.2019.1642537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ruirui Liu
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maciej H. Swat
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
46
|
Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Phys Med 2019; 63:98-104. [DOI: 10.1016/j.ejmp.2019.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/09/2019] [Accepted: 05/25/2019] [Indexed: 01/30/2023] Open
|
47
|
Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement Effects Around Clinically Relevant Clusters of Nanoagents in Biological Systems. Sci Rep 2019; 9:8156. [PMID: 31148555 PMCID: PMC6544818 DOI: 10.1038/s41598-019-44482-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Here we show that the determining factor for physical radiation enhancement effects for a clinically realistic cluster of heavy-atom bearing nanoparticles is the total number of heavy atoms packed into the cluster. We do this through a multiscale Monte Carlo approach which permits the consideration of radiation transport through clusters of millions of nanoparticles. The finding is in contrast to that predicted when isolated nanoparticles are considered and is a direct consequence of the Auger electrons playing less of a role for clusters compared to isolate nanoparticles. We further show that this result is agnostic to selection of the subcellular region considered to be sensitive to the effects of radiation, provided the inside the cluster of nanoparticles is not considered to be biologically active.
Collapse
Affiliation(s)
| | - F J Currell
- The University of Manchester The Dalton Cumbrian Facility, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, UK. .,School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
48
|
Perales Á, Baratto-Roldán A, Kimstrand P, Cortés-Giraldo MA, Carabe A. Parameterising microdosimetric distributions of mono-energetic proton beams for fast estimates of y
D
and y*. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab236a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Baldacchino G, Brun E, Denden I, Bouhadoun S, Roux R, Khodja H, Sicard-Roselli C. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0047-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Villagrasa C, Bordage MC, Bueno M, Bug M, Chiriotti S, Gargioni E, Heide B, Nettelbeck H, Parisi A, Rabus H. ASSESSING THE CONTRIBUTION OF CROSS-SECTIONS TO THE UNCERTAINTY OF MONTE CARLO CALCULATIONS IN MICRO- AND NANODOSIMETRY. RADIATION PROTECTION DOSIMETRY 2019; 183:11-16. [PMID: 30544197 DOI: 10.1093/rpd/ncy240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 05/25/2023]
Abstract
Within EURADOS Working Group 6 'Computational Dosimetry', the micro and nanodosimetry task group 6.2 has recently conducted a Monte Carlo (MC) exercise open to participants around the world. The aim of this exercise is to quantify the contribution to the uncertainty of micro and nanodosimetric simulation results arising from the use of different electron-impact cross-sections, and hence physical models, employed by different MC codes (GEANT4-DNA, PENELOPE, MCNP6, FLUKA, NASIC and PHITS). Comparison of the participants' simulation results for both micro and nanodosimetric quantities using different MC codes was the first step of the exercise. The deviation between results is due to different cross-sections but also different tracking methods and particle transport cut-off energies. The second step of the exercise will involve using identical cross-section datasets to account only for the other variations in the first step, thus enabling the determination of the uncertainty contribution due to different cross-sections. This paper presents a comparison of the MC simulation results obtained in the first part of the exercise. For the microdosimetric simulations, particularly in the configuration where the electron source is contained within the micrometric target, the choice of MC code has a small influence on the results. For the nanodosimetric results, on the other hand, the mean ionisation cluster size distribution (ICSD) was sensitive to the physical models used in the MC codes. The ICSD was therefore chosen to study the influence of different cross-section data on the uncertainty of simulation results.
Collapse
Affiliation(s)
- C Villagrasa
- Institut de Radioprotection et Sûreté nucléaire (IRSN), BP-17, Fontenay-aux-Roses, France
| | - M-C Bordage
- CRCT, UMR 1037 INSERM, Université Toulouse III-Paul Sabatier, UMR 1037 CRCT, Toulouse, France
| | - M Bueno
- Institut de Radioprotection et Sûreté nucléaire (IRSN), BP-17, Fontenay-aux-Roses, France
| | - M Bug
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - S Chiriotti
- Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, Mol, Belgium
| | - E Gargioni
- Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistrasse 52, Hamburg, Germany
| | - B Heide
- Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Karlsruhe, Germany
| | - H Nettelbeck
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - A Parisi
- Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, Mol, Belgium
| | - H Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| |
Collapse
|