1
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2025; 70:223-242. [PMID: 38692429 PMCID: PMC11976432 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Ge L, Yang Y, Gao Y, Xiao T, Chang W, Wang H, Xiao Z, Chen J, Li M, Yu M, Jin P, Zhang JV. Ovarian Endometrioma Disrupts Oocyte-Cumulus Communication and Mitochondrial Function, With Melatonin Mitigating the Effects. Cell Prolif 2025; 58:e13800. [PMID: 39837534 PMCID: PMC11969245 DOI: 10.1111/cpr.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Ovarian endometrioma (OEM), a particularly severe form of endometriosis, is an oestrogen-dependent condition often associated with pain and infertility. The mechanisms by which OEM impairs fertility, particularly through its direct impact on oocyte-cumulus cell (CC) communication and related pathways, remain poorly understood. This study investigates the impact of OEM on oocyte-CC communication and explores melatonin's therapeutic potential. We used a mouse model of OEM and employed ovarian transcriptome and gene set enrichment analyses to identify disrupted gene pathways, alongside phalloidin staining for cytoskeletal analysis, gap junction coupling analysis for intercellular communication, and mitochondrial function assessments for cellular metabolism. Our results showed that OEM significantly impairs steroidogenesis and cumulus cell function, leading to increased apoptosis, disrupted transzonal projections (TZPs), and impaired antioxidant transfer to oocytes. This culminates in oxidative stress, mitochondrial dysfunction, and compromised ATP production. OEM oocytes also exhibited severe abnormalities, including DNA damage, maturation defects, spindle assembly disruptions, and increased aneuploidy. This study identifies disrupted TZPs as a key pathological feature in OEM and highlights melatonin's potential to restore intercellular communication, mitigate oxidative damage, and improve reproductive outcomes.
Collapse
Affiliation(s)
- Lei Ge
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Yali Yang
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Yuqing Gao
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauMacauChina
| | - Tianxia Xiao
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauMacauChina
| | - Hefei Wang
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Zhonglin Xiao
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
- Faculty of Data ScienceCity University of MacauMacauChina
| | - Jie Chen
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Mengxia Li
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Ming Yu
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare HospitalShenzhenGuangdongChina
- The First School of Clinical MedicineSouthern Medical UniversityShenzhenGuangdongChina
| | - Jian V. Zhang
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
- Faculty of Pharmaceutical SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
- Sino‐European Center of Biomedicine and HealthShenzhenGuangdongChina
| |
Collapse
|
3
|
Zhou L, Liu B, Jian X, Jiang L, Liu K. Effect of dietary patterns and nutritional supplementation in the management of endometriosis: a review. Front Nutr 2025; 12:1539665. [PMID: 40144566 PMCID: PMC11937854 DOI: 10.3389/fnut.2025.1539665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory disease which causes dysmenorrhea, chronic pelvic pain, and infertility in women of childbearing age, significantly impacting their quality of life and physical and mental health. The etiology of endometriosis remains unclear, with oxidative stress and inflammation currently thought to play pivotal roles in its pathophysiology. Epidemiological studies and clinical trials indicate that varying dietary patterns and specific nutrient supplementation can influence oxidative stress markers and levels of inflammatory factors and related pathways, potentially impacting the progression of endometriosis. In this review, we summarize the roles of oxidative stress and inflammation in endometriosis and thoroughly examine the current understanding of the effect of dietary patterns and nutrient supplementation in treating endometriosis. This study suggests that nutrients may prevent the occurrence of endometriosis by modulating levels of inflammatory factors, regulating angiogenesis, and influencing the metabolism of estrogen pathways. The findings might provide new insights into the treatment of endometriosis patients and the potential benefits of dietary patterns and nutrient supplementation in patients with endometriosis.
Collapse
Affiliation(s)
| | | | | | - Lili Jiang
- *Correspondence: Lili Jiang, ; Kuiran Liu,
| | - Kuiran Liu
- *Correspondence: Lili Jiang, ; Kuiran Liu,
| |
Collapse
|
4
|
Therapeutic effects of melatonin on endometriosis, targeting molecular pathways: Current knowledge and future perspective. Pathol Res Pract 2023; 243:154368. [PMID: 36774757 DOI: 10.1016/j.prp.2023.154368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Endometriosis, the very serious disease in women creates a huge financial burden worldwide, which is comparable to diabetes mellitus. In addition to the typical pelvic pain, endometriosis is related to low life quality and decreased work efficiency; clinical consequences include mood complaints, metabolic impairments, inflammation, immunologic problems, and elevated malignancy risks. Several risk factors are correlated with endometriosis including elevated oxidative and nitrosative stress, long-lasting inflammation, raised immune tolerance, as well as autoimmunity. Melatonin is a natural molecule present throughout both the plant and animal kingdoms. It has numerous functions as an antioxidant and anti-inflammatory agent. Due to the anti-proliferative, antioxidant, anti-inflammatory, and anti-invasive features of melatonin, it performances as a beneficial agent to limit endometriosis; this involves several pathways including antiestrogenic, antioxidant, anti-inflammatory, and anti-apoptosis effects, as well as reducing the growth of E2-induced endometriotic tissue. Moreover, melatonin can favor sleep quality and decrease the unwanted signs in the patients. However, most of the data on melatonin accured from experimental works and additional clinical trials are needed. This review summarizes what is currently known regarding the influence of melatonin on endometriosis. AVAILABILITY OF DATA AND MATERIAL: Not applicable.
Collapse
|
5
|
Chen S, Liu Y, Zhong Z, Wei C, Liu Y, Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol 2023; 14:1134663. [PMID: 36865552 PMCID: PMC9971222 DOI: 10.3389/fimmu.2023.1134663] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory disease characterized by the growth of endometrium-like tissues outside the uterine cavity, affects 10% of reproductive-age women. Although the pathogenesis of endometriosis is uncertain, it is widely accepted that retrograde menstruation results in ectopic endometrial tissue implantation. Given that not all women with retrograde menstruation develop endometriosis, immune factors have been hypothesized to affect the pathogenesis of endometriosis. In this review, we demonstrate that the peritoneal immune microenvironment, including innate immunity and adaptive immunity, plays a central role in the pathogenesis of endometriosis. Current evidence supports the fact that immune cells, such as macrophages, natural killer (NK) cells, dendritic cells (DCs), neutrophils, T cells, and B cells, as well as cytokines and inflammatory mediators, contribute to the vascularization and fibrogenesis of endometriotic lesions, accelerating the implantation and development of ectopic endometrial lesions. Endocrine system dysfunction influences the immune microenvironment through overexpressed estrogen and progesterone resistance. In light of the limitations of hormonal therapy, we describe the prospects for potential diagnostic biomarkers and nonhormonal therapy based on the regulation of the immune microenvironment. Further studies are warranted to explore the available diagnostic biomarkers and immunological therapeutic strategies for endometriosis.
Collapse
Affiliation(s)
- Siman Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yukai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhiqi Zhong
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yuyin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China,*Correspondence: Xiaoyong Zhu,
| |
Collapse
|
6
|
Lu J, Ling X, Liu L, Jiang A, Ren C, Lu C, Yu Z. Emerging hallmarks of endometriosis metabolism: A promising target for the treatment of endometriosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119381. [PMID: 36265657 DOI: 10.1016/j.bbamcr.2022.119381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, characterized by ectopic endometrium growth in the extrauterine environment, is one of the most notable diseases of the female reproductive system. Worldwide, endometriosis affects nearly 10 % of women in their reproductive years and causes a significant decline in quality of life. Despite extensive investigations of endometriosis over the past years, the mechanisms of endometriosis pathogenesis remain unclear. In recent years, metabolic factors have increasingly been considered factors in endometriosis. There is compelling evidence regarding the progress of endometriosis in the context of severe metabolic dysfunction. Hence, the curative strategies and ongoing attempts to conquer endometriosis might start with metabolic pathways. This review focuses on metabolic mechanisms and summarizes current research progress. These findings provide valuable information for the non-intrusive diagnosis of the disease and may contribute to the understanding of the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
7
|
Cosme P, Rodríguez AB, Garrido M, Espino J. Coping with Oxidative Stress in Reproductive Pathophysiology and Assisted Reproduction: Melatonin as an Emerging Therapeutical Tool. Antioxidants (Basel) 2022; 12:antiox12010086. [PMID: 36670948 PMCID: PMC9854935 DOI: 10.3390/antiox12010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Infertility is an increasing global public health concern with socio-psychological implications for affected couples. Remarkable advances in reproductive medicine have led to successful treatments such as assisted reproductive techniques (ART). However, the search for new therapeutic tools to improve ART success rates has become a research hotspot. In the last few years, pineal indolamine melatonin has been investigated for its powerful antioxidant properties and its role in reproductive physiology. It is considered a promising therapeutical agent to counteract the detrimental effects associated with oxidative stress in fertility treatments. The aim of the present narrative review was to summarize the current state of the art on the importance of melatonin in reproductive physiology and to provide a critical evaluation of the data available encompassing basic, translational and clinical studies on its potential use in ART to improve fertility success rates.
Collapse
Affiliation(s)
| | | | - María Garrido
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| | - Javier Espino
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| |
Collapse
|
8
|
Li Y, Hung SW, Zhang R, Man GCW, Zhang T, Chung JPW, Fang L, Wang CC. Melatonin in Endometriosis: Mechanistic Understanding and Clinical Insight. Nutrients 2022; 14:nu14194087. [PMID: 36235740 PMCID: PMC9572886 DOI: 10.3390/nu14194087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is defined as the development of endometrial glands and stroma outside the uterine cavity. Pathophysiology of this disease includes abnormal hormone profiles, cell survival, migration, invasion, angiogenesis, oxidative stress, immunology, and inflammation. Melatonin is a neuroendocrine hormone that is synthesized and released primarily at night from the mammalian pineal gland. Increasing evidence has revealed that melatonin can be synthesized and secreted from multiple extra-pineal tissues where it regulates immune response, inflammation, and angiogenesis locally. Melatonin receptors are expressed in the uterus, and the therapeutic effects of melatonin on endometriosis and other reproductive disorders have been reported. In this review, key information related to the metabolism of melatonin and its biological effects is summarized. Furthermore, the latest in vitro and in vivo findings are highlighted to evaluate the pleiotropic functions of melatonin, as well as to summarize its physiological and pathological effects and treatment potential in endometriosis. Moreover, the pharmacological and therapeutic benefits derived from the administration of exogenous melatonin on reproductive system-related disease are discussed to support the potential of melatonin supplements toward the development of endometriosis. More clinical trials are needed to confirm its therapeutic effects and safety.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Sze-Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Gene Chi-Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Laboratory of Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| |
Collapse
|
9
|
Mosher AA, Tsoulis MW, Lim J, Tan C, Agarwal SK, Leyland NA, Foster WG. Melatonin activity and receptor expression in endometrial tissue and endometriosis. Hum Reprod 2020; 34:1215-1224. [PMID: 31211323 DOI: 10.1093/humrep/dez082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 01/21/2023] Open
Abstract
STUDY QUESTION Are melatonin receptors (melatonin receptor 1A (MR1A) and melatonin receptor 1B (MR1B)) expressed in human endometrium and endometriotic tissue, and does melatonin affect endometrial cell proliferation? SUMMARY ANSWER Melatonin receptors are expressed in human eutopic endometrium, endometriomas and peritoneal lesions, although to different extents, and melatonin treatment attenuated estradiol-induced endometrial epithelial cell proliferation in culture. WHAT IS KNOWN ALREADY Melatonin decreased endometriotic lesion volume in a rat model of endometriosis. Melatonin treatment reduced pain scores in and analgesic use by women with endometriosis. STUDY DESIGN, SIZE, DURATION Basic science study using human endometrial tissue and an endometrial epithelial cell line. PARTICIPANTS/MATERIALS, SETTING, METHODS Measurement of melatonin receptor expression (mRNA and protein) in women with surgically confirmed endometriosis (endometrioma (n = 20) or peritoneal lesion (n = 11) alone) and women without surgical evidence of endometriosis (control, n = 15). Collection of endometrial and endometriotic tissue samples, gynecologic history and demographic information. Quantification of estradiol (1.0 nM) and melatonin (0.1 nM-1.0 μM) ± estradiol-induced endometrial epithelial cell proliferation in cultures of endometrial epithelial cells (CRL-1671) following 24 and 48 hours of culture. MAIN RESULTS AND THE ROLE OF CHANCE MR1A and MR1B were localized by immunohistochemistry in glandular epithelial cells of endometrial biopsies from women with and without endometriosis. Both receptors were expressed in eutopic and ectopic endometrial tissue. mRNA expression of MR1A and MR1B was significantly greater in peritoneal lesions than in either endometriomas or eutopic endometrium. However, protein expression of MR1A was decreased in peritoneal lesions compared to control eutopic endometrium, whereas MR1B expression did not differ between the groups. Melatonin (0.1 nM-1.0 μM) treatment inhibited estradiol (1.0 nM)-induced endometrial epithelial cell proliferation at 48 hours but not 24 hours of culture. LIMITATIONS, REASONS FOR CAUTION Beneficial effects of melatonin seen in culture have yet to be comprehensively evaluated in women with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS Our data suggest that melatonin may be useful as an adjunct to current endometriosis treatments. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Canadian Institutes of Health Research (grant MOP142230 to W.G.F.). A.A.M. is supported by a resident research grant through the Physicians Services Incorporated Foundation. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- A A Mosher
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - M W Tsoulis
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - J Lim
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - C Tan
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - S K Agarwal
- Center for Endometriosis Research and Treatment, University of California San Diego, La Jolla, CA, USA
| | - N A Leyland
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada
| | - W G Foster
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON, Canada.,Center for Endometriosis Research and Treatment, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Vallée A, Lecarpentier Y. Curcumin and Endometriosis. Int J Mol Sci 2020; 21:E2440. [PMID: 32244563 PMCID: PMC7177778 DOI: 10.3390/ijms21072440] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is one of the main common gynecological disorders, which is characterized by the presence of glands and stroma outside the uterine cavity. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis and angiogenesis. Oxidative stress, an imbalance between reactive oxygen species and antioxidants, could have a key role in the initiation and progression of endometriosis by resulting in inflammatory responses in the peritoneal cavity. Nevertheless, the mechanisms underlying this disease are still unclear and therapies are not currently efficient. Curcumin is a major anti-inflammatory agent. Several findings have highlighted the anti-oxidant, anti-inflammatory and anti-angiogenic properties of curcumin. The purpose of this review is to summarize the potential action of curcumin in endometriosis by acting on inflammation, oxidative stress, invasion and adhesion, apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu Hospital, AP-HP, Paris-Descartes University, 75004 Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| |
Collapse
|
11
|
Melatonin Promotes Uterine and Placental Health: Potential Molecular Mechanisms. Int J Mol Sci 2019; 21:ijms21010300. [PMID: 31906255 PMCID: PMC6982088 DOI: 10.3390/ijms21010300] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
The development of the endometrium is a cyclic event tightly regulated by hormones and growth factors to coordinate the menstrual cycle while promoting a suitable microenvironment for embryo implantation during the “receptivity window”. Many women experience uterine failures that hamper the success of conception, such as endometrium thickness, endometriosis, luteal phase defects, endometrial polyps, adenomyosis, viral infection, and even endometrial cancer; most of these disturbances involve changes in endocrine components or cell damage. The emerging evidence has proven that circadian rhythm deregulation followed by low circulating melatonin is associated with low implantation rates and difficulties to maintain pregnancy. Given that melatonin is a circadian-regulating hormone also involved in the maintenance of uterine homeostasis through regulation of numerous pathways associated with uterine receptivity and gestation, the success of female reproduction may be dependent on the levels and activity of uterine and placental melatonin. Based on the fact that irregular production of maternal and placental melatonin is related to recurrent spontaneous abortion and maternal/fetal disturbances, melatonin replacement may offer an excellent opportunity to restore normal physiological function of the affected tissues. By alleviating oxidative damage in the placenta, melatonin favors nutrient transfer and improves vascular dynamics at the uterine–placental interface. This review focuses on the main in vivo and in vitro functions of melatonin on uterine physiological processes, such as decidualization and implantation, and also on the feto-maternal tissues, and reviews how exogenous melatonin functions from a mechanistic standpoint to preserve the organ health. New insights on the potential signaling pathways whereby melatonin resists preeclampsia and endometriosis are further emphasized in this review.
Collapse
|
12
|
Anderson G. Endometriosis Pathoetiology and Pathophysiology: Roles of Vitamin A, Estrogen, Immunity, Adipocytes, Gut Microbiome and Melatonergic Pathway on Mitochondria Regulation. Biomol Concepts 2019; 10:133-149. [DOI: 10.1515/bmc-2019-0017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractEndometriosis is a common, often painful, condition that has significant implications for a woman’s fertility. Classically, endometriosis has been conceptualized as a local estrogen-mediated uterine condition driven by retrograde menstruation. However, recent work suggests that endometriosis may be a systemic condition modulated, if not driven, by prenatal processes. Although a diverse array of factors have been associated with endometriosis pathophysiology, recent data indicate that the low body mass index and decreased adipogenesis may be indicative of an early developmental etiology with alterations in metabolic function crucial to endometriosis pathoetiology.The present article reviews the data on the pathoetiology and pathophysiology of endometriosis, suggesting key roles for alterations in mitochondria functioning across a number of cell types and body systems, including the immune system and gut microbiome. These changes are importantly regulated by decreases in vitamin A and its retinoic acid metabolites as well as increases in mitochondria estrogen receptor-beta and the N-acetylserotonin/melatonin ratio across development. This has treatment and future research implications for this still poorly managed condition, as well as for the association of endometriosis with a number of cancers.
Collapse
|
13
|
Qi S, Yan L, Liu Z, Mu YL, Li M, Zhao X, Chen ZJ, Zhang H. Melatonin inhibits 17β-estradiol-induced migration, invasion and epithelial-mesenchymal transition in normal and endometriotic endometrial epithelial cells. Reprod Biol Endocrinol 2018; 16:62. [PMID: 29935526 PMCID: PMC6015458 DOI: 10.1186/s12958-018-0375-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatonin is a potential therapeutic agent for endometriosis, but its molecular mechanism is unclear. Here, we investigated the effect of melatonin on the epithelial-mesenchymal transition (EMT) in endometriotic endometrial epithelial cells and explored the pathway that might be involved. METHODS This hospital-based study included 60 women of reproductive age using the endometrium for immunohistochemistry, 6 women of reproductive age undergoing bilateral tubal ligation and 6 patients with endometriosis for isolation of endometrial epithelial cells or subsequent analysis, respectively. We examined the expression of Notch1/Numb signaling and EMT markers by immunohistochemistry analysis and western blot analysis, the invasion and migration of endometrial epithelial cells by transwell assays, and the cell proliferation by CCK8 assays. RESULTS Compared with normal endometrium, the endometriotic eutopic endometrium showed increased expression of Notch1, Slug, Snail, and N-cadherin, and decreased expression of E-cadherin and Numb. Melatonin or Notch inhibition by specific inhibitor blocked 17β-estradiol-induced cell proliferation, invasion, migration and EMT-related markers in both normal and endometriotic epithelial cells. CONCLUSIONS Our data suggest that aberrant expression of Notch1/Numb signaling and the EMT is present in endometriotic endometrium. Melatonin may block 17β-estradiol-induced migration, invasion and EMT in normal and endometriotic epithelial cells by upregulating Numb expression and decreasing the activity of the Notch signaling pathway.
Collapse
Affiliation(s)
- Shasha Qi
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, People's Republic of China
- The Key laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250021, People's Republic of China
| | - Lei Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, People's Republic of China
- The Key laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250021, People's Republic of China
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Yu-Lan Mu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Mingjiang Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Xingbo Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, People's Republic of China
- The Key laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250021, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200030, People's Republic of China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
14
|
Yang HL, Zhou WJ, Gu CJ, Meng YH, Shao J, Li DJ, Li MQ. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am J Reprod Immunol 2018; 80:e12839. [PMID: 29493042 DOI: 10.1111/aji.12839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Melatonin is a neurohormone synthesized from the aromatic amino acid tryptophan mainly by the pineal gland of mammals. Melatonin acts as a broad-spectrum antioxidant, powerful free radical scavenger, anti-inflammatory agent, anticarcinogenic factor, sleep inducer and regulator of the circadian rhythm, and potential immunoregulator. Melatonin and reproductive system are interrelated under both physiological and pathological conditions. Oxidative stress, inflammation, and immune dysregulation are associated with the pathogenesis of the female reproductive system which causes endometriosis (EMS), recurrent spontaneous abortion (RSA), and polycystic ovary syndrome (PCOS). Accumulating studies have indicated that melatonin plays pleiotropic and essential roles in these obstetrical and gynecological disorders and would be a candidate therapeutic drug to regulate inflammation and immune function and protect special cells or organs. Here, we systematically review the pleiotropic roles of melatonin in EMS, RSA, and PCOS to explore its pathological implications and treatment potential.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Han Meng
- Reproductive Medical Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
15
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Iñigo-Gil P, Tan DX, García JJ, Reiter RJ. Potential benefits of melatonin in organ transplantation: a review. J Endocrinol 2016; 229:R129-R146. [PMID: 27068700 DOI: 10.1530/joe-16-0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Organ transplantation is a useful therapeutic tool for patients with end-stage organ failure; however, graft rejection is a major obstacle in terms of a successful treatment. Rejection is usually a consequence of a complex immunological and nonimmunological antigen-independent cascade of events, including free radical-mediated ischemia-reperfusion injury (IRI). To reduce the frequency of this outcome, continuing improvements in the efficacy of antirejection drugs are a top priority to enhance the long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) is a powerful antioxidant and ant-inflammatory agent synthesized from the essential amino acid l-tryptophan; it is produced by the pineal gland as well as by many other organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its benefits are based on its direct actions as a free radical scavenger as well as its indirect antioxidative actions in the stimulation of the cellular antioxidant defense system. Moreover, it has significant anti-inflammatory activity. Melatonin has been found to improve the beneficial effects of preservation fluids when they are enriched with the indoleamine. This article reviews the experimental evidence that melatonin is useful in reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, lung, pancreas, kidney, and liver transplantation.
Collapse
Affiliation(s)
| | | | - Laura López-Pingarrón
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Pablo Iñigo-Gil
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Joaquín García
- Department of Pharmacology and PhysiologyUniversity of Zaragoza, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Abstract
INTRODUCTION Endometriosis affects 10% of women of reproductive age. It is defined as the presence of implanted active endometrial tissue outside the uterine cavity. The exact pathophysiology of endometriosis is still uncertain, although several optional etiological theories have been suggested. Being so common, a novel treatment for endometriosis is widely quested. Recent studies addressing the pathological characteristics of endometriosis have revealed a vicious cycle in which oxidative stress (OS) is generated, which in turn facilitates the implantation of the ectopic endometrium. At the same time, the generation of high amounts of reactive oxygen species further triggers a state of OS. AREAS COVERED The author examined the evidence associating OS and endometriosis. After establishing an association, a search for antioxidant agents that were investigated specifically on endometriosis patients are described including Vitamins C and E, melatonin, resveratrol, xanthohumol and epigallocatechin-3-gallate. A significant effect of all the reviewed antioxidants on endometriosis is reported. EXPERT OPINION Aiming for the reduction of OS as the treatment goal for endometriosis looks promising. However, since most of the studies are either in vitro or are animal based, further studies on human subjects are deemed necessary to elucidate the impact of OS reduction on patients with endometriosis.
Collapse
Affiliation(s)
- Avi Harlev
- a 1 American Center for Reproductive Medicine, Cleveland Clinic, Cleveland , OH, USA.,b 2 Ben-Gurion University of the Negev, Faculty of Health Sciences, Soroka University Medical Center, Fertility and IVF Unit, Department of Obstetrics & Gynecology , Israel
| | - Sajal Gupta
- a 1 American Center for Reproductive Medicine, Cleveland Clinic, Cleveland , OH, USA
| | - Ashok Agarwal
- c 3 American Center for Reproductive Medicine, Cleveland Clinic , Mail Code: X-11, 10681 Carnegie Avenue, Cleveland, OH 44195, USA +1 216 444 9485 ; +1 216 445 6049;
| |
Collapse
|
17
|
Melatonin causes regression of endometriotic implants in rats by modulating angiogenesis, tissue levels of antioxidants and matrix metalloproteinases. Arch Gynecol Obstet 2014; 292:209-16. [DOI: 10.1007/s00404-014-3599-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 12/11/2014] [Indexed: 01/08/2023]
|
18
|
Relationship between urinary 6-sulfatoxymelatonin excretion and cancer antigen 125 in women with endometriosis. Gynecol Minim Invasive Ther 2014. [DOI: 10.1016/j.gmit.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Medical treatments for endometriosis-associated pelvic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191967. [PMID: 25165691 PMCID: PMC4140197 DOI: 10.1155/2014/191967] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
Abstract
The main sequelae of endometriosis are represented by infertility and chronic pelvic pain. Chronic pelvic pain causes disability and distress with a very high economic impact. In the last decades, an impressive amount of pharmacological agents have been tested for the treatment of endometriosis-associated pelvic pain. However, only a few of these have been introduced into clinical practice. Following the results of the controlled studies available, to date, the first-line treatment for endometriosis associated pain is still represented by oral contraceptives used continuously. Progestins represent an acceptable alternative. In women with rectovaginal lesions or colorectal endometriosis, norethisterone acetate at low dosage should be preferred. GnRH analogues may be used as second-line treatment, but significant side effects should be taken into account. Nonsteroidal anti-inflammatory drugs are widely used, but there is inconclusive evidence for their efficacy in relieving endometriosis-associated pelvic pain. Other agents such as GnRH antagonist, aromatase inhibitors, immunomodulators, selective progesterone receptor modulators, and histone deacetylase inhibitors seem to be very promising, but there is not enough evidence to support their introduction into routine clinical practice. Some other agents, such as peroxisome proliferator activated receptors-γ ligands, antiangiogenic agents, and melatonin have been proven to be efficacious in animal studies, but they have not yet been tested in clinical studies.
Collapse
|
20
|
Kocadal NÇ, Attar R, Yıldırım G, Fıçıcıoğlu C, Özkan F, Yılmaz B, Yesildaglar N. Melatonin treatment results in regression of endometriotic lesions in an ooferectomized rat endometriosis model. J Turk Ger Gynecol Assoc 2013; 14:81-6. [PMID: 24592080 PMCID: PMC3881748 DOI: 10.5152/jtgga.2013.53179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE We aimed to determine the effects of melatonin treatment on endometrial implants in an oopherectomized rat endometriosis model. MATERIAL AND METHODS This study is a prospective, randomised, controlled experimental study. It was carried out at the Experimental Research Center of Yeditepe University (YUDETAM). Twenty-two, female, non-pregnant, nulligravid Spraque-Dawley albino rats were included in our study. Endometriosis was surgically induced in oopherectomized rats. Rats were randomised into two groups: control group and melatonin group. In the melatonin group, rats were treated with melatonin (20 mg/kg/day) for two weeks. After the operations were performed to assess the regression of the endometriotic lesions, melatonin treatment was stopped. At the end of the sixth week necropsies were performed to assess the rate of recurrence. The volume and histopathological scores of endometriotic foci were examined. RESULTS Volumes of the endometriotic lesions significantly decreased in the melatonin group. Also, when the melatonin group was analysed within itself, endometriotic lesion volumes decreased and histopathological scores increased significantly. CONCLUSION Melatonin causes regression of the endometriotic lesions in rats and improvement in their histopathological scores.
Collapse
Affiliation(s)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Gazi Yıldırım
- Department of Obstetrics and Gynecology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Cem Fıçıcıoğlu
- Department of Obstetrics and Gynecology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Ferda Özkan
- Department of Pathology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Bayram Yılmaz
- Department of Physiology and Experimental Studies and Research Center, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Narter Yesildaglar
- Department of Obstetrics and Gynecology, Yeditepe University School of Medicine, İstanbul, Turkey
| |
Collapse
|
21
|
Pharmacologic therapies in endometriosis: a systematic review. Fertil Steril 2012; 98:529-55. [DOI: 10.1016/j.fertnstert.2012.07.1120] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/05/2023]
|