1
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
2
|
Omidian H, Wilson RL. PLGA-Based Strategies for Intranasal and Pulmonary Applications. Pharmaceutics 2025; 17:207. [PMID: 40006573 PMCID: PMC11859611 DOI: 10.3390/pharmaceutics17020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled drug release, PLGA formulations reduce dosing frequency, improve patient compliance, and enhance therapeutic efficacy. These systems demonstrate versatility, accommodating hydrophilic and hydrophobic drugs, biological molecules, and co-delivery of synergistic agents. Moreover, surface modifications and advanced preparation techniques enhance targeting, bioavailability, and stability, expanding PLGA's applications to treat complex diseases such as tuberculosis, cancer, pulmonary fibrosis, and CNS disorders. This manuscript provides an in-depth review of PLGA's materials, properties, preparation methods, and therapeutic applications, alongside a critical evaluation of challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | | |
Collapse
|
3
|
Lunt G, Hashemi N, Mahajan S, Tang T. Martini compatible coarse-grained model of polyethylenimine for pulmonary gene delivery. Sci Rep 2025; 15:4377. [PMID: 39910324 PMCID: PMC11799348 DOI: 10.1038/s41598-025-88848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Pulmonary gene delivery has demonstrated high specificity for respiratory diseases, offering great control on dosage of therapeutics and side effects. On the other hand, intrinsic barriers in pulmonary systems impose new challenges such as crossing the pulmonary surfactant and evading mucus entrapment. Differences in hydrophobicity of plasma membrane and pulmonary surfactant require different chemistries of gene carriers to improve efficacy. Large-scale coarse-grained (CG) molecular dynamics simulations would facilitate the screening of gene carriers and understanding of the molecular mechanisms involved in pulmonary delivery. Among non-viral carriers, polyethyleneimine (PEI) has been a promising candidate that can be synthesized with various molecular weight, degree of branching, and functionalization. In this work, CG models are developed for PEI and its lipid-functionalized form, within the Martini framework, to provide a platform for exploring structure-function relationships of PEI-based pulmonary delivery systems. Special attention is focused on parameterizing the non-bonded interactions associated with CG PEI, to ensure compatibility with Martini proteins, short interfering RNA, and phospholipids that are essential components in pulmonary gene delivery. The non-bonded parameters are validated by comparing all-atom (AA) and CG potential of mean force (PMF) curves, where the root-mean-square deviations between the AA and CG PMF curves are shown to be comparable to or smaller than those reported in Martini literature.
Collapse
Affiliation(s)
- Graham Lunt
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Niloofar Hashemi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
4
|
Du R, Li X, Fielding LA. Investigating the Formation of Polymer-Nanoparticle Complex Coacervate Hydrogels Using Polymerization-Induced Self-Assembly-Derived Nanogels with a Succinate-Functional Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20648-20656. [PMID: 39291829 PMCID: PMC11447913 DOI: 10.1021/acs.langmuir.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xueyuan Li
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Gonzalez-Melero L, Santos-Vizcaino E, Varela-Calvino R, Gomez-Tourino I, Asumendi A, Boyano MD, Igartua M, Hernandez RM. PLGA-PEI nanoparticle covered with poly(I:C) for personalised cancer immunotherapy. Drug Deliv Transl Res 2024; 14:2788-2803. [PMID: 38427275 PMCID: PMC11525302 DOI: 10.1007/s13346-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.
Collapse
Affiliation(s)
- Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruben Varela-Calvino
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Maria Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Bouqellah NA, Hussein ET, Abdel Razik AB, Ahmed MF, Faraag AHI. Development of transgenic Paulownia trees expressing antimicrobial thionin genes for enhanced resistance to fungal infections using chitosan nanoparticles. Microb Pathog 2024; 191:106659. [PMID: 38701959 DOI: 10.1016/j.micpath.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.
Collapse
Affiliation(s)
- Nahla Alsayd Bouqellah
- Taibah University, Science College, Biology Department, 42317- 8599, Al Madinah Al Munawwarah, Saudi Arabia.
| | - Eman Tawfik Hussein
- Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt
| | | | - Mohamed Fathy Ahmed
- Dry and Saline Farming Technology, Arid Land Agricultural Graduate Studies and Research Institute, Ain Shams University, 11566, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
7
|
Marquet F, Hagen H, Stanchieri M, Beinier VS, Grasso G, Danani A, Patrulea V, Borchard G. Clickable polyethyleneimine incorporated into triblock copolymeric micelles as an efficient platform in the delivery of siRNA to NSCLC cells. Int J Pharm 2024; 649:123632. [PMID: 38000648 DOI: 10.1016/j.ijpharm.2023.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Franck Marquet
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Harry Hagen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mattia Stanchieri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Véronique Serre Beinier
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
8
|
Lewis MM, Soto MR, Maier EY, Wulfe SD, Bakheet S, Obregon H, Ghosh D. Optimization of ionizable lipids for aerosolizable mRNA lipid nanoparticles. Bioeng Transl Med 2023; 8:e10580. [PMID: 38023707 PMCID: PMC10658486 DOI: 10.1002/btm2.10580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 12/01/2023] Open
Abstract
Although mRNA lipid nanoparticles (LNPs) are highly effective as vaccines, their efficacy for pulmonary delivery has not yet fully been established. A major barrier to this therapeutic goal is their instability during aerosolization for local delivery. This imparts a shear force that degrades the mRNA cargo and therefore reduces cell transfection. In addition to remaining stable upon aerosolization, mRNA LNPs must also possess the aerodynamic properties to achieve deposition in clinically relevant areas of the lungs. We addressed these challenges by formulating mRNA LNPs with SM-102, the clinically approved ionizable lipid in the Spikevax COVID-19 vaccine. Our lead candidate, B-1, had the highest mRNA expression in both a physiologically relevant air-liquid interface (ALI) human lung cell model and in healthy mice lungs upon aerosolization. Further, B-1 showed selective transfection in vivo of lung epithelial cells compared to immune cells and endothelial cells. These results show that the formulation can target therapeutically relevant cells in pulmonary diseases such as cystic fibrosis. Morphological studies of B-1 revealed differences in the surface structure compared to LNPs with lower transfection efficiency. Importantly, the formulation maintained critical aerodynamic properties in simulated human airways upon next generation impaction. Finally, structure-function analysis of SM-102 revealed that small changes in the number of carbons can improve upon mRNA delivery in ALI human lung cells. Overall, our study expands the application of SM-102 and its analogs to aerosolized pulmonary delivery and identifies a potent lead candidate for future therapeutically active mRNA therapies.
Collapse
Affiliation(s)
- Mae M. Lewis
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTexasUSA
| | - Melissa R. Soto
- Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - Esther Y. Maier
- Drug Dynamics InstituteThe University of Texas at AustinAustinTexasUSA
| | - Steven D. Wulfe
- Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - Sandy Bakheet
- Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - Hannah Obregon
- Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
9
|
Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci 2023; 68:213-226. [PMID: 37364379 PMCID: PMC10290423 DOI: 10.1016/j.advms.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19. METHODS PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023. RESULTS A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems. CONCLUSIONS The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
10
|
de Araujo MM, Borgheti-Cardoso LN, Praça FG, Marcato PD, Bentley MVLB. Solid Lipid-Polymer Hybrid Nanoplatform for Topical Delivery of siRNA: In Vitro Biological Activity and Permeation Studies. J Funct Biomater 2023; 14:374. [PMID: 37504869 PMCID: PMC10381295 DOI: 10.3390/jfb14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Small interfering RNA (siRNA) molecules have limited transfection efficiency and stability, necessitating the use of delivery systems to be effective in gene knockdown therapies. In this regard, lipid-polymeric nanocarriers have emerged as a promising class of nanoparticles for siRNA delivery, particularly for topical applications. We proposed the use of solid lipid-polymer hybrid nanoparticles (SLPHNs) as topical delivery systems for siRNA. This approach was evaluated by assessing the ability of SLPHNs-siRNA complexes to internalize siRNA molecules and both to penetrate skin layers in vitro and induce gene knocking down in a skin cell line. The SLPHNs were formed by a specific composition of solid lipids, a surfactant polymer as a dispersive agent, and a cationic polymer as a complexing agent for siRNA. The optimized nanocarriers exhibited a spherical shape with a smooth surface. The average diameter of the nanoparticles was found to be 200 nm, and the zeta potential was measured to be +20 mV. Furthermore, these nanocarriers demonstrated excellent stability when stored at 4 °C over a period of 90 days. In vitro and in vivo permeation studies showed that SLPHNs increased the cutaneous penetration of fluorescent-labeled siRNA, which reached deeper skin layers. Efficacy studies were conducted on keratinocytes and fibroblasts, showing that SLPHNs maintained cell viability and high cellular uptake. Furthermore, SLPHNs complexed with siRNA against Firefly luciferase (siLuc) reduced luciferase expression, proving the efficacy of this nanocarrier in providing adequate intracellular release of siRNA for silencing specific genes. Based on these results, the developed carriers are promising siRNA delivery systems for skin disease therapy.
Collapse
Affiliation(s)
- Margarete Moreno de Araujo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Livia Neves Borgheti-Cardoso
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
11
|
Das S, Harris JC, Winter EJ, Kao C, Day ES, Papoutsakis ET. Megakaryocyte membrane-wrapped nanoparticles for targeted cargo delivery to hematopoietic stem and progenitor cells. Bioeng Transl Med 2023; 8:e10456. [PMID: 37206243 PMCID: PMC10189472 DOI: 10.1002/btm2.10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are desirable targets for gene therapy but are notoriously difficult to target and transfect. Existing viral vector-based delivery methods are not effective in HSPCs due to their cytotoxicity, limited HSPC uptake and lack of target specificity (tropism). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are attractive, nontoxic carriers that can encapsulate various cargo and enable its controlled release. To engineer PLGA NP tropism for HSPCs, megakaryocyte (Mk) membranes, which possess HSPC-targeting moieties, were extracted and wrapped around PLGA NPs, producing MkNPs. In vitro, fluorophore-labeled MkNPs are internalized by HSPCs within 24 h and were selectively taken up by HSPCs versus other physiologically related cell types. Using membranes from megakaryoblastic CHRF-288 cells containing the same HSPC-targeting moieties as Mks, CHRF-wrapped NPs (CHNPs) loaded with small interfering RNA facilitated efficient RNA interference upon delivery to HSPCs in vitro. HSPC targeting was conserved in vivo, as poly(ethylene glycol)-PLGA NPs wrapped in CHRF membranes specifically targeted and were taken up by murine bone marrow HSPCs following intravenous administration. These findings suggest that MkNPs and CHNPs are effective and promising vehicles for targeted cargo delivery to HSPCs.
Collapse
Affiliation(s)
- Samik Das
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Delaware Biotechnology InstituteUniversity of DelawareNewarkDelawareUSA
| | - Jenna C. Harris
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erica J. Winter
- Delaware Biotechnology InstituteUniversity of DelawareNewarkDelawareUSA
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - Chen‐Yuan Kao
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Delaware Biotechnology InstituteUniversity of DelawareNewarkDelawareUSA
| | - Emily S. Day
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Helen F. Graham Cancer Center and Research InstituteNewarkDelawareUSA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Delaware Biotechnology InstituteUniversity of DelawareNewarkDelawareUSA
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
12
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
13
|
Overcoming the non-kinetic activity of EGFR1 using multi-functionalized mesoporous silica nanocarrier for in vitro delivery of siRNA. Sci Rep 2022; 12:17208. [PMID: 36241668 PMCID: PMC9568566 DOI: 10.1038/s41598-022-21601-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) does not respond to HER2-targeted and hormone-based medicines. Epidermal growth factor receptor 1 (EGFR1) is commonly overexpressed in up to 70% of TNBC cases, so targeting cancer cells via this receptor could emerge as a favored modality for TNBC therapy due to its target specificity. The development of mesoporous silica nanoparticles (MSNs) as carriers for siRNAs remains a rapidly growing area of research. For this purpose, a multi-functionalized KIT-6 containing the guanidinium ionic liquid (GuIL), PEI and PEGylated folic acid (FA-PEG) was designed. Accordingly, KIT-6 was fabricated and modified with FA-PEG and PEI polymers attached on the surface and the GuIL placed in the mesopores. Subsequent to confirming the structure of this multi-functionalized KIT-6- based nanocarrier using TEM, SEM, AFM, BET, BJH, DLS and Zeta Potential, it was investigated for uploading and transferring the anti-EGFR1 siRNAs to the MD-MBA-231 cell line. The rate of cellular uptake, cellular localization and endolysosomal escape was evaluated based on the fluorescent intensity of FAM-labelled siRNA using flowcytometry analysis and confocal laser scanning microscopy (CLSM). The 64% cellular uptake after 4 h incubation, clearly suggested the successful delivery of siRNA into the cells and, CLSM demonstrated that siRNA@[FA-PEGylated/PEI@GuIL@KIT-6] may escape endosomal entrapment after 6 h incubation. Using qPCR, quantitative evaluation of EGFR1 gene expression, a knockdown of 82% was found, which resulted in a functional change in the expression of EGFR1 targets. Co-treatment of chemotherapy drug "carboplatin" in combination with siRNA@[FA-PEGylated/PEI@GuIL@KIT-6] exhibited a remarkable cytotoxic effect in comparison to carboplatin alone.
Collapse
|
14
|
Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. NANOMATERIALS 2022; 12:nano12020226. [PMID: 35055244 PMCID: PMC8777913 DOI: 10.3390/nano12020226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Si Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| | - Shan Guan
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| |
Collapse
|
15
|
Production of transgenic Allium cepa by nanoparticles to resist Aspergillus niger infection. Mol Biol Rep 2021; 49:1783-1790. [PMID: 34837626 DOI: 10.1007/s11033-021-06988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Transgenic plants are becoming a more powerful tool in modern biotechnology. Genetic engineering was used in biotech-derived products to create genetically modified (GM) plants resistant to diseases. The onion (Allium cepa, L.) is a common, important perennial vegetable crop grown in Egypt for food and economic value. Onions are susceptible to a variety of fungal infections and diseases. Aspergillus niger is a common onion phytopathogen that causes diseases such as black mould (or black rot), which is a major issue, particularly when exporting onions. A. niger grows between the bulb's outer (dead, flaky) skin and the first fleshy scales, which become water-soaked. Thionin genes produce thionin proteins, which have antimicrobial properties against a variety of phytopathogens, including A. niger. Chitosan nanoparticles act as a carrier for the thionin gene, which allows A. cepa to resist infection by A. niger. METHODS AND RESULTS Thionin gene (Thio-60) was transformed into A. cepa to be resistance to fungal infection. The gene was loaded on chitosan nanoparticles to be transformed into plants. Transgenic A. cepa had a 27% weight inhibition compared to non-transgenic one, which had a 69% inhibition. The expressed thionin protein has a 52% inhibitory effect on A. niger spore germination. All these findings supported thionin protein's antifungal activity as an antimicrobial peptide. Furthermore, the data presented here demonstrated the efficacy of chitosan nanoparticles in gene transformation. CONCLUSION The present study describes the benefits of producing transgenic onion resistance to black rot diseases via expression of thionin proteins.
Collapse
|
16
|
Dobhal A, Srivastav A, Dandekar P, Jain R. Influence of lactide vs glycolide composition of poly (lactic-co-glycolic acid) polymers on encapsulation of hydrophobic molecules: molecular dynamics and formulation studies. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:126. [PMID: 34591178 PMCID: PMC8484083 DOI: 10.1007/s10856-021-06580-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The work demonstrates the preparation of PLGA (PLGA 50:50, PLGA 75:25) nanoparticles, to encapsulate a hydrophobic molecule (coumarin-6), using the microreactor-based continuous process. The formulations were characterized using dynamic light scattering and transmission electron microscopy to determine their size, homogeneity, zeta potential, and surface morphology. The resulting nanoparticles were safe to the CHO cells (≈80% cell survival), at the concentration of ≤600 µg/mL and were successfully taken up by the cells, as demonstrated using confocal microscopy. Moreover, imaging flow cytometry confirmed that the nanoparticles were internalized in 73.96% of the cells. Furthermore, molecular dynamics simulation and docking studies were carried out to explore the effect of polymer chain length of PLGA and lactide vs glycolide (LA:GA) ratio on their compatibility with the coumarin-6 molecules and to study the coiling and flexibility of PLGA in the presence of coumarin-6 molecules. Flory-Huggins interaction parameter (χ) was calculated for polymer chains of varying lengths and LA:GA ratio, with respect to coumarin-6. χ parameter increased with increase in polymer chain length, which indicated superior interaction of coumarin-6 with the smaller chains. Amongst all the polymeric systems, PLGA55 exhibited the strongest interaction with coumarin-6, for all the chain lengths, possibly because of their homogeneous spatial arrangements and superior binding energy. PLGA27 showed better compatibility compared to PLGA72 and PGA, whereas PLA-based polymers exhibited the least compatibility. Analysis of the radius of gyration of the polymer chains in the polymer-coumarin-6 complexes, at the end of molecular dynamics run, exhibited that the polymer chains displayed varying coiling behavior and flexibility, depending upon the relative concentrations of the polymer and coumarin-6. Factors like intra-chain interactions, spatial arrangement, inter-chain binding energies, and polymer-coumarin-6 compatibility also influenced the coiling and flexibility of polymer chains.
Collapse
Affiliation(s)
- Anurag Dobhal
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Ashu Srivastav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
17
|
Polyethylenimine (PEI)-modified poly (lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with tumor-homing bacteria facilitate high intensity focused ultrasound-mediated tumor ablation. Biochem Biophys Res Commun 2021; 571:104-109. [PMID: 34314995 DOI: 10.1016/j.bbrc.2021.07.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
The acoustic propagation characteristic of ultrasound determines that the energy of ultrasound beam will decrease with the increase of its propagation depth in the body. Similarly, the energy of High Intensity Focused Ultrasound (HIFU) will be attenuated with the increase of HIFU propagation depth in the body. Ensuring sufficient ultrasound energy deposition in the HIFU ablation region for tumor ablation is usually achieved by increasing the ultrasound irradiation power or prolonging the ultrasound ablation time. However, these two methods may damage the normal tissue adjacent to the HIFU ablation region. Herein, we constructed the nanoparticles conjugated with tumor-homing bacteria as the biological tumor-homing synergist to facilitate HIFU-mediated tumor ablation avoiding the potential safety risk. In our strategy, Bifidobacterium bifidum (B.bifidum) was selectively colonized in the hypoxic region of solid tumors after been injected into 4T1 breast cancer bearing-BALB/c mice via the tail vein due to its anaerobic growth characteristic. The amount of B. bifidum with negative surface potential in the hypoxic region of solid tumors was increased by its anaerobic proliferation. Polyethylenimine (PEI) -modified Poly (lactic-co-glycolic) acid nanoparticles loaded sodium bicarbonate (PEI-PLGA-NaHCO3-NPs) with positive surface potential injected into 4T1 breast cancer bearing-BALB/c mice via the tail vein displayed the tumor-homing ability by the electrostatic adsorption with B. bifidum colonized solid tumors. PEI-PLGA-NaHCO3-NPs could release NaHCO3 to produce carbon dioxide (CO2) as cavitation nuclei inside the acidic microenvironment of solid tumors. When HIFU irradiated solid tumors contained with more cavitation nuclei, the ultrasound energy deposition at the tumor region was increased to destroy the tumors more effectively. Meanwhile, the improved efficiency of HIFU-mediated tumor ablation reduced the dependence of the tumor ablation on the ultrasound energy dose, which improved the safety of HIFU-mediated tumor ablation to the non-targeted ablation tissue. This tumor-homing synergist shows the potential application value on the HIFU-mediated tumor ablation in the clinical.
Collapse
|
18
|
Kiani MH, Ali S, Qadry A, Arshad R, Aslam A, Shahnaz G. Polyethylene imine conjugated supramolecular stereocomplexed nanomicelles for intracellular delivery of rifampicin against Mycobacterium bovis. Colloids Surf B Biointerfaces 2021; 206:111976. [PMID: 34280682 DOI: 10.1016/j.colsurfb.2021.111976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
The main objective of this study was to investigate polyethylene imine (PEI) based stereocomplexed nanomiceles for intracellular delivery of rifampicin against Mycobacterium bovis (M. bovis) and their in vitro-in vivo evaluation. The formation of Rifampicin (Rif) loaded isotactic (PEI-g-PLLA and PEI-g-PDLA) and stereocomplexed nanomicelles (StM) of PEI conjugated poly l- and poly d-lactic acid via self-assembly was thoroughly explored. Synthesis of polymer graft was confirmed via FTIR and NMR. A 2-fold reduction in CMC of StM was observed along with decreased particle size in comparison to isotactic nanomicelles. In vitro, StM exhibited a higher encapsulation efficiency and 84 % of drug release in 48 h. at pH 5 with minimal initial burst release in comparison to isotactic nanomicelles. Minimum inhibitory concentration (MIC) of StM was found to be four folds lower in contrast to isotactic nanomicelles. Ex vivo studies exhibited a better uptake of StM and minimum cytotoxicity in murine alveolar macrophages. Following oral administration in mice, drug loaded StM exhibited highest distribution in macrophage rich organs, longer half-life, AUC, AUMC and MRT in comparison to isotactic nanomicelles indicating maximum bioavailability and efficacy of StM. In vivo antimycobacterial activity also demonstrated a higher reduction (2.38fold) in M. bovis CFU at reduced dosing frequency by drug loaded StM in comparison to control group. Thus, StM can be regarded as a simple, stable, efficient, and biocompatible carrier system for delivery of rifampicin to intracellular M. bovis with added advantage of reduced dosing frequency and improved patient compliance.
Collapse
Affiliation(s)
- Maria Hassan Kiani
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sajjad Ali
- Veterinary Research Institute (VRI), Lahore, Pakistan.
| | - Ayesha Qadry
- Veterinary Research Institute (VRI), Lahore, Pakistan.
| | - Rabia Arshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Asma Aslam
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan.
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
19
|
Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112167. [PMID: 34082968 DOI: 10.1016/j.msec.2021.112167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
The spread of multidrug-resistant (MDR) bacterial infections has become a serious global threat. We introduce multi-layer coated gold nanoparticles (MLGNPs) delivering antisense oligonucleotides (ASOs) targeting the resistance gene of methicillin-resistant Staphylococcus aureus (MRSA), as a selective antimicrobial by restoring susceptibility. MLGNPs were prepared by multi-step surface immobilization of gold nanoparticles (GNPs) with polyethylenimine (PEI) and loaded with ASO targeting the mecA gene. The MLGNPs were shown to be efficiently internalized into various types of Gram-positive bacteria, including MRSA, Staphylococcus epidermidis, and Bacillus subtilis, which was superior to single-layer coated GNPs and free PEI polymer. The delivery of MLGNPs into MRSA resulted in up to 74% silencing of the mecA gene with high selectivity, in a dose-dependent manner. The treatment of MLGNPs to MRSA in the presence of oxacillin, a beta-lactam antibiotic, showed major suppression (~71%) of bacterial growth, due to the recovery of antibacterial sensitivity. Furthermore, the treatment of MLGNPs in a complex system showed preferential uptake into bacteria over mammalian cells, demonstrating the suitable characteristics of MLGNPs for selective delivery into bacteria. The current approach can be potentially applied for targeting various types of MDR bacterial infections by specific silencing of a resistance gene, as a combinatorial therapeutic used with conventional antibiotics.
Collapse
Affiliation(s)
- Marcel Janis Beha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci Rep 2021; 11:6604. [PMID: 33758300 PMCID: PMC7988124 DOI: 10.1038/s41598-021-86119-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
Herein, in a one-pot method, the reduced graphene oxide layers with the assistance of multiwalled carbon nanotubes were decorated to provide a suitable space for the in situ growth of CoNi2S4, and the porphyrins were incorporated into the layers as well to increase the sensitivity of the prepared nanostructure. The prepared nanocomposite can establish π-π interactions between the genetic material and on the surface of porphyrin rings. Also, hydrogen bonds between genetic domains and the porphyrin' nitrogen and the surface hydroxyl groups are probable. Furthermore, the potential donor-acceptor relationship between the d7 transition metal, cobalt, and the genetic material provides a suitable way to increase the interaction and gene loading , and transfections. The reason for this phenomenon was optimized to increase the EGFP by up to 17.9%. Furthermore, the sensing ability of the nanocomposite towards H2O2 was investigated. In this regard, the limit of detection of the H2O2 obtained 10 µM. Also, the in situ biosensing ability in the HEK-293 and PC12 cell lines was evaluated by the addition of PMA. The nanocomposite showed the ability to detect the released H2O2 after adding the minimum amount of 120 ng/mL of the PMA.
Collapse
|
21
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
22
|
Solomun JI, Cinar G, Mapfumo P, Richter F, Moek E, Hausig F, Martin L, Hoeppener S, Nischang I, Traeger A. Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery. Int J Pharm 2021; 593:120080. [PMID: 33246046 DOI: 10.1016/j.ijpharm.2020.120080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023]
Abstract
Cationic polymers are promising gene delivery vectors due to their ability to bind and protect genetic material. The introduction of hydrophobic moieties into cationic polymers can further improve the vector efficiency, but common formulations of hydrophobic polymers involve harsh conditions such as organic solvents, impairing intactness and loading efficiency of the genetic material. In this study, a mild, aqueous formulation method for the encapsulation of high amounts of genetic material is presented. A well-defined pH-responsive hydrophobic copolymer, i.e. poly((n-butylmethacrylate)-co-(methylmethacrylate)-co-(2-(dimethylamino) ethylmethacrylate)), (PBMD) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Exploiting the pH-dependent solubility behavior of the polymer, stable pDNA loaded nanoparticles were prepared and characterized using analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). This novel formulation approach showed high transfection efficiencies in HEK293T cells, while requiring 5- to 10-fold less pDNA compared to linear polyethylenimine (LPEI), in particular at short incubation times and in serum-containing media. Furthermore, the formulation was successfully adopted for siRNA and mRNA encapsulation and the commercially approved polymer Eudragit® E(PO/100). Overall, the aqueous formulation approach, accompanied by a tailor-made hydrophobic polymer and detailed physicochemical and application studies, led to improved gene delivery vectors with high potential for further applications.
Collapse
Affiliation(s)
- Jana I Solomun
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Elisabeth Moek
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Franziska Hausig
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Liam Martin
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
23
|
Wang M, Wang Z, Qiao B, Cao J, Quan L, Luo Y, Qi H, Zhong X, He Y, Zhang X, Hao L. Inhibited Metastasis and Amplified Chemotherapeutic Effects by Epigene-Transfection Based on a Tumor-Targeting Nanoparticle. Int J Nanomedicine 2020; 15:4483-4500. [PMID: 32606690 PMCID: PMC7320902 DOI: 10.2147/ijn.s247567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Tumor metastasis and drug resistance have always been vital aspects to cancer mortality and prognosis. To compromise metastasis and drug resistance, a nanoparticle IPPD-PHF2 (IR780/PLGA-PEI(Dox)-PHF2) has been engineered to accomplish efficient targeted epigenotherapy forced by PHF2-induced MET (mesenchymal to epithelial transition). Materials and Methods IPPD-PHF2 nanoparticle was synthesized and characterized by several analytical techniques. The transfection efficiency of IPP-PHF2 (IR780/PLGA-PEI-PHF2) was compared with PP-PHF2 (PLGA-PEI-PHF2) in vitro by WB and in vivo by IHC, and the cytotoxicity of IPP was compared with Lipo2000 in vitro by CCK8 assay. The inhibition of cancer cell migration caused by PHF2-upregulation was tested by wound healing assay, and the enhanced chemotherapeutic sensitivity was detected by flow cytometry. Tumor-targeting property of IPPD-PHF2 was proved by fluorescent imaging in vivo with MDA-MB-231 tumor-bearing nude mice. Except for fluorescent imaging ability, considerable photoacoustic signals of IPPD-PHF2 at tumor sites were verified. The anti-tumor activity of IPPD-PHF2 was investigated using in vivo human breast cancer MDA-MB-231 cell models. Results Tumor-targeting nanoparticle IPPD-PHF2 had an average size of about 319.2 nm, a stable zeta potential at about 38 mV. The encapsulation efficiency of doxorubicin was around 39.28%, and the adsorption capacity of plasmids was about 64.804 μg/mg. Significant up-regulation of PHF2 induced MET and caused reduced migration as well as enhanced chemotherapeutic sensitivity. Either IPPD (IR780/PLGA-PEI(Dox)) or IPP-PHF2 (IR780/PLGA-PEI-PHF2) presented minor therapeutic effects, whereas IPPD-PHF2 specifically accumulated within tumors, showed extraordinary transfection efficiency specifically in tumor sites, acted as inhibitors of metastasis and proliferation, and presented good multimodality imaging potentials in vivo. Conclusion IPPD-PHF2 NPs is a promising tool to bring epigenotherapy into a more practical era, and the potential application of harm-free multimodality imaging guidance is of great value.
Collapse
Affiliation(s)
- Mengzhu Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Bin Qiao
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jin Cao
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Luya Quan
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuanli Luo
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Hanwen Qi
- The A. Gary Anderson Graduate School of Management, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiaowen Zhong
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yubei He
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xianquan Zhang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.,Cardiothoracic Surgery Department, Chongqing Hygeia Cancer Hospital, Chongqing, 401331, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
24
|
Zumaya ALV, Martynek D, Bautkinová T, Šoóš M, Ulbrich P, Raquez JM, Dendisová M, Merna J, Vilčáková J, Kopecký D, Hassouna F. Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
26
|
Vaughan HJ, Green JJ, Tzeng SY. Cancer-Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901081. [PMID: 31222852 PMCID: PMC6923623 DOI: 10.1002/adma.201901081] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Indexed: 05/03/2023]
Abstract
Nucleic acids are a promising type of therapeutic for the treatment of a wide range of conditions, including cancer, but they also pose many delivery challenges. For efficient and safe delivery to cancer cells, nucleic acids must generally be packaged into a vehicle, such as a nanoparticle, that will allow them to be taken up by the target cells and then released in the appropriate cellular compartment to function. As with other types of therapeutics, delivery vehicles for nucleic acids must also be designed to avoid unwanted side effects; thus, the ability of such carriers to target their cargo to cancer cells is crucial. Classes of nucleic acids, hurdles that must be overcome for effective intracellular delivery, types of nonviral nanomaterials used as delivery vehicles, and the different strategies that can be employed to target nucleic acid delivery specifically to tumor cells are discussed. Additonally, nanoparticle designs that facilitate multiplexed delivery of combinations of nucleic acids are reviewed.
Collapse
Affiliation(s)
- Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| |
Collapse
|
27
|
The effect of engineered PLGA nanoparticles on nitrifying bacteria in the soil environment. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Keshavarz A, Kadry H, Alobaida A, Ahsan F. Newer approaches and novel drugs for inhalational therapy for pulmonary arterial hypertension. Expert Opin Drug Deliv 2020; 17:439-461. [PMID: 32070157 DOI: 10.1080/17425247.2020.1729119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of small pulmonary arteries leading to increased pulmonary arterial pressure. Existing treatments acts to normalize vascular tone via three signaling pathways: the prostacyclin, the endothelin-1, and the nitric oxide. Although over the past 20 years, there has been considerable progress in terms of treatments for PAH, the disease still remains incurable with a disappointing prognosis.Areas covered: This review summarizes the pathophysiology of PAH, the advantages and disadvantages of the inhalation route, and assess the relative advantages various inhaled therapies for PAH. The recent studies concerning the development of controlled-release drug delivery systems loaded with available anti-PAH drugs have also been summarized.Expert opinion: The main obstacles of current pharmacotherapies of PAH are their short half-life, stability, and formulations, resulting in reducing the efficacy and increasing systemic side effects and unknown pathogenesis of PAH. The pulmonary route has been proposed for delivering anti-PAH drugs to overcome the shortcomings. However, the application of approved inhaled anti-PAH drugs is limited. Inhalational delivery of controlled-release nanoformulations can overcome these restrictions. Extensive studies are required to develop safe and effective drug delivery systems for PAH patients.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hossam Kadry
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
29
|
Mao W, Kim SR, Yoo HS. Surface-decorated nanoparticles clicked into nanoparticle clusters for oligonucleotide encapsulation. RSC Adv 2020; 10:37040-37049. [PMID: 35521231 PMCID: PMC9057053 DOI: 10.1039/d0ra06622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022] Open
Abstract
Gold nanoparticles (AuNPs) are the predominant and representative metal nano-carriers used for the tumor-targeted delivery of therapeutics because they possess advantages such as biocompatibility, high drug loading efficiency, and enhanced accumulation at tumor sites via the size-dependent enhanced permeability and retention (EPR) effect. In this study, we designed an AuNP functionalized with block polymers comprising polyethylenimine and azide group-functionalized poly(ethyl glycol) for the electrostatic incorporation of cytosine–guanine oligonucleotide (CpG ODN) on the surface. The ODN-incorporated AuNPs were cross-linked to gold nanoparticle clusters (AuNCs) via click chemistry using a matrix metalloproteinase (MMP)-2 cleavable peptide linker modified with alkyne groups at both ends. In the presence of Cu(i), azide groups and alkyne groups spontaneously cyclize to form a triazole ring with high fidelity and efficiency, and therefore allow single AuNPs to stack to larger AuNCs for increased EPR effect-mediated tumor targeting. 1H-NMR and Fourier transform infrared spectroscopy revealed the successful synthesis of an azide–PEG-grafted branched polyethylenimine, and the size and morphology of AuNPs fabricated by the synthesized polymer were confirmed to be 4.02 ± 0.45 nm by field emission-transmission electron microscopy. Raman spectroscopy characterization demonstrated the introduction of azide groups on the surface of the synthesized AuNPs. Zeta-potential and gel-retardation analysis of CpG-loaded AuNPs indicated complete CpG sequestration by AuNPs when the CpG : AuNP weight ratio was higher than 1 : 2.5. The clustering process of the CpG-loaded AuNPs was monitored and was demonstrated to be dependent on the alkyne linker-to-AuNP ratio. Thus, the clicked AuNC can be tailored as a gene carrier where a high accumulation of therapeutics is required. AuNPs with bPEI and azide modification are loaded with CpG and self-assembled to AuNCs by click chemistry using an alkyne-terminated MMP-2 cleavable peptide as a linker. The clusters are dissembled by MMP-2 to release CpG in a stimuli-responsive manner.![]()
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Song Rae Kim
- Chuncheon Center
- Korea Basic Science Institute
- Chuncheon
- Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
- Institute of Molecular Science and Fusion Technology
| |
Collapse
|
30
|
Talebi S, Amani V, Saber‐Tehrani M, Abedi A. Improvement of the Biological Activity of a New Cobalt(III) Complex through Loading into a Nanocarrier, and the Characterization Thereof. ChemistrySelect 2019. [DOI: 10.1002/slct.201903065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sanaz Talebi
- Department of ChemistryIslamic Azad University, North Tehran Branch, Tehran Iran
| | - Vahid Amani
- Department of ChemistryFarhangian University, Tehran Iran
| | | | - Anita Abedi
- Department of ChemistryIslamic Azad University, North Tehran Branch, Tehran Iran
| |
Collapse
|
31
|
Jin Z, Gao S, Cui X, Sun D, Zhao K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm 2019; 572:118731. [PMID: 31669213 DOI: 10.1016/j.ijpharm.2019.118731] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
Most pathogens enter the body through mucosal surfaces. Therefore, vaccination through the mucosal route can greatly enhance the mucosal immune response. Vaccination via the mucosal surface is the most effective way to trigger a protective mucosal immune response, but the vast majority of vaccines used are administered by injection. Strategies to enhance the mucosal immunity have been developed by using vaccine adjuvants, delivery systems, bacterial or viral vectors, and DNA vaccines. Appropriate vaccine adjuvants and drug delivery systems can improve the immunogenicity of antigens, induce a stronger immune response, and reduce the vaccine dose and production cost. In recent years, many studies have focused on finding safe and effective vaccine adjuvants and drug delivery systems to formulate the mucosal vaccines for solving the above problems. Great progress has also been made in vaccine adjuvants and drug delivery systems based on biodegradable polymer nanoparticles. In this paper, the research progress of the mucosal vaccine and its related adjuvants and drug delivery systems in recent years was reviewed, and the application of polymers as adjuvants and drug delivery system in vaccine was prospected. This review provides a fundamental knowledge for the application of biodegradable polymer nanoparticles as adjuvants and carriers in mucosal vaccines and shows great application prospects.
Collapse
Affiliation(s)
- Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Shuang Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Xianlan Cui
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China; Bluesky Biotech (Harbin) Co., Ltd., Harbin 150028, China
| | - Dejun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
32
|
Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308:206-215. [PMID: 31136735 PMCID: PMC7094617 DOI: 10.1016/j.cbi.2019.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Oligonucleotide-based therapies are advanced novel interventions used in the management of various respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). These agents primarily act by gene silencing or RNA interference. Better methodologies and techniques are the need of the hour that can deliver these agents to tissues and cells in a target specific manner by which their maximum potential can be reached in the management of chronic inflammatory diseases. Nanoparticles play an important role in the target-specific delivery of drugs. In addition, oligonucleotides also are extensively used for gene transfer in the form of polymeric, liposomal and inorganic carrier materials. Therefore, the current review focuses on various novel dosage forms like nanoparticles, liposomes that can be used efficiently for the delivery of various oligonucleotides such as siRNA and miRNA. We also discuss the future perspectives and targets for oligonucleotides in the management of respiratory diseases.
Collapse
|
33
|
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160:130-142. [DOI: 10.1016/j.mimet.2019.03.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
|
34
|
Terry TL, Givens BE, Rodgers VGJ, Salem AK. Tunable Properties of Poly-DL-Lactide-Monomethoxypolyethylene Glycol Porous Microparticles for Sustained Release of Polyethylenimine-DNA Polyplexes. AAPS PharmSciTech 2019; 20:23. [PMID: 30604270 DOI: 10.1208/s12249-018-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Direct pulmonary delivery is a promising step in developing effective gene therapies for respiratory disease. Gene therapies can be used to treat the root cause of diseases, rather than just the symptoms. However, developing effective therapies that do not cause toxicity and that successfully reach the target site at therapeutic levels is challenging. We have developed a polymer-DNA complex utilizing polyethylene imine (PEI) and DNA, which was then encapsulated into poly(lactic acid)-co-monomethoxy poly(ethylene glycol) (PLA-mPEG) microparticles via double emulsion, solvent evaporation. Then, the resultant particle size, porosity, and encapsulation efficiency were measured as a function of altering preparation parameters. Microsphere formation was confirmed from scanning electron micrographs and the aerodynamic particle diameter was measured using an aerodynamic particle sizer. Several formulations produced particles with aerodynamic diameters in the 0-5 μm range despite having larger particle diameters which is indicative of porous particles. Furthermore, these aerodynamic diameters correspond to high deposition within the airways when inhaled and the measured DNA content indicated high encapsulation efficiency. Thus, this formulation provides promise for developing inhalable gene therapies.
Collapse
|
35
|
Li Y, Xiao Y, Lin HP, Reichel D, Bae Y, Lee EY, Jiang Y, Huang X, Yang C, Wang Z. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials 2019; 188:160-172. [DOI: 10.1016/j.biomaterials.2018.10.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
|
36
|
Cupic KI, Rennick JJ, Johnston APR, Such GK. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine (Lond) 2019; 14:215-223. [DOI: 10.2217/nnm-2018-0326] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polymer nanoparticles offer significant benefits for improving delivery of biological therapeutics such as DNA and proteins, as they allow the cargo to be protected until it is delivered to a target cell. However, there are still challenges with achieving efficient delivery to the optimal cellular region. One significant roadblock is escape of nanoparticles from within the endosomal/lysosomal compartments into the cytosol. Here, we review the recent advances in understanding endosomal escape of polymer nanoparticles. We also discuss the current progress on investigating how nanoparticle structure can control endosomal escape. It is important to understand the fundamental biological processes that govern endosomal escape in order to design more effective therapeutic delivery systems.
Collapse
Affiliation(s)
- Kristofer I Cupic
- The School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joshua J Rennick
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus PR Johnston
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Georgina K Such
- The School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
37
|
Segura-Ibarra V, Wu S, Hassan N, Moran-Guerrero JA, Ferrari M, Guha A, Karmouty-Quintana H, Blanco E. Nanotherapeutics for Treatment of Pulmonary Arterial Hypertension. Front Physiol 2018; 9:890. [PMID: 30061840 PMCID: PMC6055049 DOI: 10.3389/fphys.2018.00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and fatal chronic lung disease. While current pharmacotherapies have improved patient quality of life, PAH drugs suffer from limitations in the form of short-term pharmacokinetics, instability, and poor organ specificity. Traditionally, nanotechnology-based delivery strategies have proven advantageous at increasing both circulation lifetimes of chemotherapeutics and accumulation in tumors due to enhanced permeability through fenestrated vasculature. Importantly, increased nanoparticle (NP) accumulation in diseased tissues has been observed pre-clinically in pathologies characterized by endothelial dysfunction and remodeled vasculature, including myocardial infarction and heart failure. Recently, this phenomenon has also been observed in preclinical models of PAH, leading to the exploration of NP-based drug delivery as a therapeutic modality in PAH. Herein, we discussed the advantages of NPs for efficacious treatment of PAH, including heightened therapeutic delivery to diseased lungs for increased drug bioavailability, as well as highlighted innovative nanotherapeutic approaches for PAH.
Collapse
Affiliation(s)
- Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Nida Hassan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jose A Moran-Guerrero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States.,Houston Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
38
|
Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomedicine 2018; 13:3553-3570. [PMID: 29950835 PMCID: PMC6016269 DOI: 10.2147/ijn.s164967] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION The depth limitation of conventional photodynamic therapy (PDT) with visible electromagnetic radiation represents a challenge for the treatment of deep-seated tumors. MATERIALS AND METHODS To overcome this issue, we developed an X-ray-induced PDT system where poly(lactide-co-glycolide) (PLGA) polymeric nanoparticles (NPs) incorporating a photosensitizer (PS), verteporfin (VP), were triggered by 6 MeV X-ray radiation to generate cytotoxic singlet oxygen. The X-ray radiation used in this study allows this system to breakthrough the PDT depth barrier due to excellent penetration of 6 MeV X-ray radiation through biological tissue. In addition, the conjugation of our NPs with folic acid moieties enables specific targeting of HCT116 cancer cells that overexpress the folate receptors. We carried out physiochemical characterization of PLGA NPs, such as size distribution, zeta potential, morphology and in vitro release of VP. Cellular uptake activity and cell-killing effect of these NPs were also evaluated. RESULTS AND DISCUSSION Our results indicate that our nanoconstructs triggered by 6 MeV X-ray radiation yield enhanced PDT efficacy compared with the radiation alone. We attributed the X-ray-induced singlet oxygen generation from the PS, VP, to photoexcitation by Cherenkov radiation and/or reactive oxygen species generation facilitated by energetic secondary electrons produced in the tissue. CONCLUSION The cytotoxic effect caused by VP offers the possibility of enhancing the radiation therapy commonly prescribed for the treatment of cancer by simultaneous PDT.
Collapse
Affiliation(s)
- Sandhya Clement
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Wenjie Chen
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
| | - Wei Deng
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Lacroix G, Koch W, Ritter D, Gutleb AC, Larsen ST, Loret T, Zanetti F, Constant S, Chortarea S, Rothen-Rutishauser B, Hiemstra PS, Frejafon E, Hubert P, Gribaldo L, Kearns P, Aublant JM, Diabaté S, Weiss C, de Groot A, Kooter I. Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. ACTA ACUST UNITED AC 2018; 4:91-106. [PMID: 32953944 PMCID: PMC7500038 DOI: 10.1089/aivt.2017.0034] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vitro air-liquid interface (ALI) cell culture models can potentially be used to assess inhalation toxicology endpoints and are usually considered, in terms of relevancy, between classic (i.e., submerged) in vitro models and animal-based models. In some situations that need to be clearly defined, ALI methods may represent a complement or an alternative option to in vivo experimentations or classic in vitro methods. However, it is clear that many different approaches exist and that only very limited validation studies have been carried out to date. This means comparison of data from different methods is difficult and available methods are currently not suitable for use in regulatory assessments. This is despite inhalation toxicology being a priority area for many governmental organizations. In this setting, a 1-day workshop on ALI in vitro models for respiratory toxicology research was organized in Paris in March 2016 to assess the situation and to discuss what might be possible in terms of validation studies. The workshop was attended by major parties in Europe and brought together more than 60 representatives from various academic, commercial, and regulatory organizations. Following plenary, oral, and poster presentations, an expert panel was convened to lead a discussion on possible approaches to validation studies for ALI inhalation models. A series of recommendations were made and the outcomes of the workshop are reported.
Collapse
Affiliation(s)
- Ghislaine Lacroix
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Wolfgang Koch
- In Vitro und Mechanistische Toxikologie, Fraunhofer ITEM, Hannover, Germany
| | - Detlef Ritter
- In Vitro und Mechanistische Toxikologie, Fraunhofer ITEM, Hannover, Germany
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Søren Thor Larsen
- Inhalation Toxicology Group, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Thomas Loret
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Filippo Zanetti
- Systems Toxicology Department, Philip Morris International R&D, Neuchâtel, Switzerland
| | | | - Savvina Chortarea
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.,Laboratory for Materials-Biology Interactions, EMPA, Swiss Federal Laboratories for Materials, Science and Technology, St Gallen, Switzerland
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emeric Frejafon
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Philippe Hubert
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Laura Gribaldo
- Directorate F-Health, Consumers and Reference Materials Chemicals Safety and Alternative Methods Unit (F.3), EURL ECVAM, JRC, Ispra, Italy
| | - Peter Kearns
- Environment, Health and Safety Division, OECD, Paris, France
| | - Jean-Marc Aublant
- European Affairs and Standardization, Laboratoire National de Métrologie et d'Essais, Paris, France
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Antoinette de Groot
- Toxicological and Environmental Risk Assessment (TERA) Department, Solvay, Brussels, Belgium
| | - Ingeborg Kooter
- Department of Circular Environment and Environment (CEE), TNO, Utrecht, The Netherlands
| |
Collapse
|
40
|
Abstract
Diabetes is a condition that is not completely treatable but life of a diabetic patient can be smoothed by preventing or delaying the associate conditions like diabetic retinopathy, nephropathy, impaired wound healing process, etc. Apart from conventional methods to regulate diabetic condition, new techniques using siRNA have been emerged to prevent the associated conditions. This paper focuses on how siRNA used as a tool to silence the expression of genes which plays critical role in pathogenesis of these conditions. A marked improvement in wound-healing process of diabetic patients has been observed with siRNA treatment by silencing of Keap1 gene. Glucagon plays critical role in glucose homoeostasis and increases blood glucose level during hypoglycaemia. Glucose homoeostasis is impaired in diabetic patient and suppressing the expression of glucagon secretion with siRNA is used to suppress the progress of diabetes. Similarly, silencing expression of several factors has demonstrated improvement of treatment of diabetic nephropathy, retinopathy and inflammation by the use of siRNA.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| | - Chirag Patel
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
41
|
Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018; 13:1051-1066. [PMID: 29790803 PMCID: PMC6219432 DOI: 10.2217/nnm-2017-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
AIM Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype. Since no targeted therapy is available, gene-directed enzyme prodrug therapy (GDEPT) could be an attractive strategy for treating TNBC. MATERIALS & METHODS Polyethylene glycol (PEG)ylated-poly(lactic-co-glycolic acid)/polyethyleneimine nanoparticles (PLGA/PEI NPs) were synthesized and complexed with TK-NTR fusion gene. Ultrasound (US) and microbubble (MB) mediated sonoporation was used for efficient delivery of the TK-NTR-DNA-NP complex to TNBC tumor in vivo for cancer therapy. Therapeutic effect was evaluated by treating TNBC cells in vitro and tumor xenograft in vivo by using prodrugs ganciclovir (GCV) and CB1954. RESULTS TNBC cells treated with GCV/CB1954 prodrugs after transfection of TK-NTR-DNA by PEGylated-PLGA/PEI NP resulted in high apoptotic-index. US-MB image-guided delivery of TK-NTR-DNA-NP complex displayed significant expression level of TK-NTR protein and showed tumor reduction when treated with GCV/CB1954 prodrugs in TNBC xenograft in vivo. CONCLUSION US-MB image-guided delivery of TK-NTR gene by PEGylated-PLGA/PEI NPs could be a potential prodrug therapy for TNBC in the clinic.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Thillai V Sekar
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Kira Foygel
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
42
|
Harrison EB, Azam SH, Pecot CV. Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Front Pharmacol 2018; 9:307. [PMID: 29670528 PMCID: PMC5893903 DOI: 10.3389/fphar.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleic acid delivery for cancer holds extraordinary promise. Increasing expression of tumor suppressor genes or inhibition of oncogenes in cancer cells has important therapeutic potential. However, several barriers impair progress in cancer gene delivery. These include effective delivery to cancer cells and relevant intracellular compartments. Although viral gene delivery can be effective, it has the disadvantages of being immuno-stimulatory, potentially mutagenic and lacking temporal control. Various nanoparticle (NP) platforms have been developed to overcome nucleic acid delivery hurdles, but several challenges still exist. One such challenge has been the accumulation of NPs in non-cancer cells within the tumor microenvironment (TME) as well as the circulation. While uptake by these cancer-associated cells is considered to be an off-target effect in some contexts, several strategies have now emerged to utilize NP-mediated gene delivery to intentionally alter the TME. For example, the similarity of NPs in shape and size to pathogens promotes uptake by antigen presenting cells, which can be used to increase immune stimulation and promote tumor killing by T-lymphocytes. In the era of immunotherapy, boosting the ability of the immune system to eliminate cancer cells has proven to be an exciting new area in cancer nanotechnology. Given the importance of cancer-associated cells in tumor growth and metastasis, targeting these cells in the TME opens up new therapeutic applications for NPs. This review will cover evidence for non-cancer cell accumulation of NPs in animal models and patients, summarize characteristics that promote NP delivery to different cell types, and describe several therapeutic strategies for gene modification within the TME.
Collapse
Affiliation(s)
- Emily B. Harrison
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Salma H. Azam
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
43
|
Visualization of MMP-2 Activity Using Dual-Probe Nanoparticles to Detect Potential Metastatic Cancer Cells. NANOMATERIALS 2018; 8:nano8020119. [PMID: 29466303 PMCID: PMC5853750 DOI: 10.3390/nano8020119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent enzymes capable of degrading extracellular matrix components. Previous studies have shown that the upregulation of MMP-2 is closely related to metastatic cancers. While Western blotting, zymography, and Enzyme-Linked Immunosorbent Assays (ELISA) can be used to measure the amount of MMP-2 activity, it is not possible to visualize the dynamic MMP-2 activities of cancer cells using these techniques. In this study, MMP-2-activated poly(lactic-co-glycolic acid) with polyethylenimine (MMP-2-PLGA-PEI) nanoparticles were developed to visualize time-dependent MMP-2 activities. The MMP-2-PLGA-PEI nanoparticles contain MMP-2-activated probes that were detectable via fluorescence microscopy only in the presence of MMP-2 activity, while the Rhodamine-based probes in the nanoparticles were used to continuously visualize the location of the nanoparticles. This approach allowed us to visualize MMP-2 activities in cancer cells and their microenvironment. Our results showed that the MMP-2-PLGA-PEI nanoparticles were able to distinguish between MMP-2-positive (HaCat) and MMP-2-negative (MCF-7) cells. While the MMP-2-PLGA-PEI nanoparticles gave fluorescent signals recovered by active recombinant MMP-2, there was no signal recovery in the presence of an MMP-2 inhibitor. In conclusion, MMP-2-PLGA-PEI nanoparticles are an effective tool to visualize dynamic MMP-2 activities of potential metastatic cancer cells.
Collapse
|
44
|
Ultrasonic-assisted mesoporous silica nanoparticle-mediated exogenous gene stable expression in tobacco. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Thandapani G, P SP, P N S, Sukumaran A. Size optimization and in vitro biocompatibility studies of chitosan nanoparticles. Int J Biol Macromol 2017; 104:1794-1806. [PMID: 28807691 DOI: 10.1016/j.ijbiomac.2017.08.057] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 01/07/2023]
Abstract
Chitosan (CS), an amino polysaccharide has fascinating scientific applications due to its many flexible properties. The advantages of Chitosan tend to increase when it was modified. Thus, in the present research work, to improve the properties of chitosan, it was converted into chitosan nanoparticles (CS-NPs) through the ionic gelation method using sodium tripoyphosphate (TPP) and sodium hexametaphosphate (SHMP) as a crosslinker. The size optimization was done by varying the parameters such as crosslinker concentration, agitation method and rate, agitation time, temperature and drying method. The prepared samples were characterized using FTIR, TGA, XRD, SEM, TEM and DLS. Also the prepared CS-NPs with TPP and SHMP had been evaluated in vitro for determining its hemocompatibility, biodegradability, serum stability, cytotoxicity and cell viability. The results showed the significant participation of all the parameters in obtaining the nanoparticles in 20-30nm and 5-10nm for CS-NPs-TPP air dried and freeze dried samples and around 60-80nm and 20-30nm for CS-NPs-SHMP air dried and freeze dried samples. The in vitro biological studies revealed that the nanoparticles are non-toxic with a good degree of biodegradability, blood compatibility and stability.
Collapse
Affiliation(s)
- Gomathi Thandapani
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India.
| | - Supriya Prasad P
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Sudha P N
- Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India.
| | - Anil Sukumaran
- Division of Periodontics, Department of PDS, College of Dentistry, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Seok H, Noh JY, Lee DY, Kim SJ, Song CS, Kim YC. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J Control Release 2017; 265:66-74. [DOI: 10.1016/j.jconrel.2017.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
|
47
|
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173:37-49. [PMID: 28732878 DOI: 10.1016/j.carbpol.2017.05.086] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 11/29/2022]
|
48
|
Efficacious cellular codelivery of doxorubicin and EGFP siRNA mediated by the composition of PLGA and PEI protected gold nanoparticles. Bioorg Med Chem Lett 2017; 27:4288-4293. [PMID: 28838699 DOI: 10.1016/j.bmcl.2017.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy.
Collapse
|
49
|
Gómez-Sequeda N, Torres R, Ortiz C. Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid). Nanotechnol Sci Appl 2017; 10:95-104. [PMID: 28572725 PMCID: PMC5441665 DOI: 10.2147/nsa.s96018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) loaded with fluconazole (FLZ) and FLZ-NPs coated with the cationic polymer polyethylenimine (PEI) (FLZ-NP-PEI) were synthetized in order to improve antimycotic activity against four strains of Candida spp. of clinical relevance. FLZ-NPs and FLZ-NP-PEI were synthesized by double emulsion solvent-diffusion (DES-D) and characterized. Minimum inhibitory concentration (MIC50) and minimum fungicide concentration (MFC) were determined in vitro by culturing Candida strains in the presence of these nanocompounds. FLZ-NPs were spherical in shape with hydrodynamic sizes of ~222 nm and surface charge of -11.6 mV. The surface charges of these NPs were successfully modified using PEI (FLZ-NP-PEI) with mean hydrodynamic sizes of 281 nm and surface charge of 23.5 mV. The efficiency of encapsulation (~53%) and a quick release of FLZ (≥90% after 3 h) were obtained. Cytotoxicity assay showed a good cell viability for FLZ-NPs (≥86%), and PEI-modified NPs presented a decrease in cell viability (~38%). FLZ-NPs showed an increasing antifungal activity of FLZ for sensitive (Candida parapsilosis ATCC22019 and Candida albicans ATCC10231, MIC50 =0.5 and 0.1 µg/mL, respectively) and resistant strains (Candida glabrata EMLM14 and Candida krusei ATCC6258, MIC50 =0.1 and 0.5 µg/mL, respectively). FLZ-NP-PEI showed fungicidal activity even against C. glabrata and C. krusei (MFC =4 and 8 µg/mL, respectively). MIC50 values showed best results for FLZ-NPs and FLZ-NP-PEI. Nevertheless, only FLZ-NP-PEI displayed fungicidal activity against the studied strains.
Collapse
Affiliation(s)
| | | | - Claudia Ortiz
- School of Microbiology, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
50
|
PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm 2017; 524:382-396. [PMID: 28391040 DOI: 10.1016/j.ijpharm.2017.03.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Achieving stable, efficient and non-toxic pulmonary gene delivery is most challenging requirement for successful gene therapy to lung. Composite nanoparticles (NPs) of the poly(lactic-co-glycolic acid) (PLGA) and cationic polymer polyethyleneimine (PEI) is an efficient alternative to viral and liposomal vectors for the pulmonary delivery of pDNA. NPs with different weight ratios (0-12.5%w/w) of PLGA/PEI were prepared and characterized for size, morphology, surface charge, pDNA loading and in vitro release. The in vitro cell uptake and transfection studies in the CFBE41o-cell line revealed that NPs with 10% w/w PEI were more efficient but they exhibited significant cytotoxicity in MTT assays, challenging the safety of this formulation. Surface modifications of these composite NPs through PEGylation reduced toxicity and enhanced cellular uptake and pDNA expression. PEGylation improved diffusion of NPs through the mucus barrier and prevented uptake by pulmonary macrophages. Finally, PEGylated composite NPs were converted to DPI by lyophilization and combined with lactose carrier particles, which resulted in improved aerosolization properties and lung deposition, without affecting pDNA bioactivity. This study demonstrates that a multidisciplinary approach may enable the local delivery of pDNA to lung tissue for effective treatment of deadly lung diseases.
Collapse
|