1
|
Jansen SM, Pitek R, Karsdal MA, Henriksen K. Decastatin, a Novel Non-Collagenous 1 Domain From Collagen Type X, Harbors a Specific Fragment With Antiangiogenic Properties. J Cardiovasc Pharmacol 2025; 85:369-380. [PMID: 39933048 DOI: 10.1097/fjc.0000000000001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
ABSTRACT The NC1 domains of collagens have been shown to possess antiangiogenic potential and, therefore, are of therapeutic interest for cancer. However, endostatin and other NC1 domains have not been successful in clinical tests. Therefore, we used evolutionary conservation to perform molecular deconstruction of the domains to further understand their structure-activity relationship, thereby deciphering their antiangiogenic potential. Homology exploration revealed that collagen type X contains a highly interesting NC1 domain (decastatin), with several sequences showing significant homology with vastatin, which is a known collagen type VIII-derived NC1 domain. For comparison, endostatin and vastatin were split into fragments, some of which contained highly conserved regions. The testing of these peptides revealed that the peptides containing conserved regions induced signaling, and fragment 4 of decastatin showed the highest potency of all fragments, with a calculated inhibitory concentration value of 2.7 μM in the human umbilical vein endothelial cell-based tube formation assay, which is like that of an intact NC1 domain. Notably, the corresponding fragment from vastatin (V4) also inhibited tube formation, suggesting that this region is of therapeutic interest. In summary, we used evolutionary conservation to identify a novel NC1 domain of collagen type X, a collagen playing a role in angiogenesis of the growth plate. Furthermore, we provided data indicating that the antiangiogenic activity of NC1 domain-derived peptides reside within their conserved domains. As a result, we identified a fragment called Decastatin fragment 4 (D4) derived from the NC1 domain of collagen type X, and which has potent antiangiogenic activity.
Collapse
|
2
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
3
|
Kumari K, Sharma GS, Gupta A, Singh KS, Singh LR. Functionally active cross-linked protein oligomers formed by homocysteine thiolactone. Sci Rep 2023; 13:5620. [PMID: 37024663 PMCID: PMC10079695 DOI: 10.1038/s41598-023-32694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Deposition of high-order protein oligomers is a common hallmark of a large number of human diseases and therefore, has been of immense medical interest. From the past several decades, efforts are being made to characterize protein oligomers and explore how they are linked with the disease pathologies. In general, oligomers are non-functional, rather cytotoxic in nature while the functional (non-cytotoxic) oligomers are quite rare. In the present study, we identified new protein oligomers of Ribonuclease-A and Lysozyme that contain functionally active fractions. These functional oligomers are disulfide cross-linked, native-like, and obtained as a result of the covalent modification of the proteins by the toxic metabolite, homocysteine thiolactone accumulated under hyperhomocysteinemia (a condition responsible for cardiovascular complications including atherosclerosis). These results have been obtained from the extensive analysis of the nature of oligomers, functional status, and structural integrity of the proteins using orthogonal techniques. The study implicates the existence of such oligomers as protein sinks that may sequester toxic homocysteines in humans.
Collapse
Affiliation(s)
- Kritika Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, 110075, India
| | - Akshita Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | |
Collapse
|
4
|
Ajmal MR. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response. Diseases 2023; 11:30. [PMID: 36810544 PMCID: PMC9944956 DOI: 10.3390/diseases11010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Proteins are central to life functions. Alterations in the structure of proteins are reflected in their function. Misfolded proteins and their aggregates present a significant risk to the cell. Cells have a diverse but integrated network of protection mechanisms. Streams of misfolded proteins that cells are continuously exposed to must be continually monitored by an elaborated network of molecular chaperones and protein degradation factors to control and contain protein misfolding problems. Aggregation inhibition properties of small molecules such as polyphenols are important as they possess other beneficial properties such as antioxidative, anti-inflammatory, and pro-autophagic properties and help neuroprotection. A candidate with such desired features is important for any possible treatment development for protein aggregation diseases. There is a need to study the protein misfolding phenomenon so that we can treat some of the worst kinds of human ailments related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
5
|
Lui LH, Egbu R, Graver T, Williams GR, Brocchini S, Velayudhan A. Computational and Experimental Evaluation of the Stability of a GLP-1-like Peptide in Ethanol–Water Mixtures. Pharmaceutics 2022; 14:pharmaceutics14071462. [PMID: 35890357 PMCID: PMC9321252 DOI: 10.3390/pharmaceutics14071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Aggregation resulting from the self-association of peptide molecules remains a major challenge during preformulation. Whereas certain organic solvents are known to promote aggregation, ethanol (EtOH) is capable of disrupting interactions between peptide molecules. It is unclear whether it is beneficial or counterproductive to include EtOH in formulations of short peptides. Here, we employed molecular dynamics simulations using the DAFT protocol and MARTINI force field to predict the formation of self-associated dimers and to estimate the stability of a GLP-1-like peptide (G48) in 0–80% aqueous EtOH solutions. Both simulation and experimental data reveal that EtOH leads to a remarkable increase in the conformational stability of the peptide when stored over 15 days at 27 °C. In the absence of EtOH, dimerisation and subsequent loss in conformational stability (α-helix → random coil) were observed. EtOH improved conformational stability by reducing peptide–peptide interactions. The data suggest that a more nuanced approach may be applied in formulation decision making and, if the native state of the peptide is an α-helix organic solvent, such as EtOH, may enhance stability and improve prospects of long-term storage.
Collapse
Affiliation(s)
- Lok Hin Lui
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (L.H.L.); (R.E.); (T.G.); (G.R.W.); (S.B.)
| | - Raphael Egbu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (L.H.L.); (R.E.); (T.G.); (G.R.W.); (S.B.)
| | - Thomas Graver
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (L.H.L.); (R.E.); (T.G.); (G.R.W.); (S.B.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (L.H.L.); (R.E.); (T.G.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (L.H.L.); (R.E.); (T.G.); (G.R.W.); (S.B.)
| | - Ajoy Velayudhan
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
- Correspondence:
| |
Collapse
|
6
|
Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022; 14:pharmaceutics14030671. [PMID: 35336045 PMCID: PMC8949695 DOI: 10.3390/pharmaceutics14030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an immune response. Aggregates are one of the major risk factors for the undesired immunogenicity of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent activation of MoDC characterized by the enhanced production of cytokines and expression of co-stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells, which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was administered locally in the airways as compared to a systemic administration but was mitigated by improving IgG stability during nebulization, through the addition of polysorbates to the formulation. Conclusion: Although inhalation delivery represents an attractive alternative route for delivering Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of Ab formulation can mitigate adverse effects induced by nebulization.
Collapse
|
7
|
Khan JM, Malik A, Husain FM, Hakeem MJ, Alhomida AS. Sunset Yellow Dye Induces Amorphous Aggregation in β-Lactoglobulin at Acidic pH: A Multi-Techniques Approach. Polymers (Basel) 2022; 14:polym14030395. [PMID: 35160385 PMCID: PMC8839080 DOI: 10.3390/polym14030395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Protein aggregation is of two types: (i) amorphous and (ii) amyloid fibril. Several extrinsic factors (temperature, pH, and small ligands) stimulate protein aggregation in vitro. In this study, we have examined the role of sunset yellow (SY) on the β-lactoglobulin (BLG) aggregation at pH 2.0. We have used spectroscopic (turbidity, Rayleigh light scattering (RLS), far-UV CD) and microscopic (transmission electron microscopy [TEM]) techniques to describe the effects of SY on BLG aggregation. Our results showed that BLG aggregation is dependent on SY concentrations. Very low concentrations (0.0–0.07 mM) of SY were unable to induce aggregation, while SY in the concentrations range of 0.1–5.0 mM induces aggregation in BLG. The kinetics of SY-stimulated aggregation is very fast and monomeric form of BLG directly converted into polymeric aggregates. The kinetics results also showed SY-induced BLG aggregation disappeared in the presence of NaCl. The far-UV CD and TEM results indicated the amorphous nature of SY-induced BLG aggregates. We believe that our results clearly suggest that SY dye effectively stimulates BLG aggregation.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (F.M.H.); (M.J.H.)
- Correspondence:
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (A.S.A.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (F.M.H.); (M.J.H.)
| | - Mohammed J. Hakeem
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (F.M.H.); (M.J.H.)
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (A.S.A.)
| |
Collapse
|
8
|
Schuster J, Kamuju V, Mathaes R. Fate of Antibody and Polysorbate Particles in a Human Serum Model. Eur J Pharm Biopharm 2021; 171:72-79. [PMID: 34920132 DOI: 10.1016/j.ejpb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (mAbs) and excipients can degrade owing to different stress factors they encounter during their life cycle or after administration in human body. This can result in the formation of aggregates and particulates. As particles can evoke an immune response in patients, it becomes increasingly important to monitor their fate after administration. In this study, we used a protein-free serum model to assess the fate of mAb and polysorbate (PS) particles under physiologic conditions. Commonly encountered stress conditions such as pH, temperature, extrusion, and shaking were chosen to generate mAb particles. Alkaline hydrolysis was used to generate PS particles. The fate of aggregates and particles was evaluated in serum and histidine buffer. We observed that depending on the nature of stress and the environment particles are subjected to, the fate of particles can differ substantially. The mAb aggregates generated by pH stress, showed reduction in HMWS from 26% to 6% over 14days in human serum filtrate. PS particles dissolved at 37°C but remained unaltered in Histidine at 5°C. Our results reinforce the need to track the fate of particles generated during drug product development upon exposure to physiologic conditions.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
9
|
Forsythe NL, Maynard HD. Synthesis of Disulfide-Bridging Trehalose Polymers for Antibody and Fab Conjugation Using a Bis-Sulfone ATRP Initiator. Polym Chem 2021; 12:1217-1223. [PMID: 34211593 PMCID: PMC8240515 DOI: 10.1039/d0py01579b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies and antigen binding fragments (FABs) are widely used as therapeutics and conjugated polymers can enhance the properties of these important biomolecules. However, limitations to the selectivity and stability of current conjugation methodologies can inhibit the exploration of new antibody-polymer conjugates. Herein, we describe a new strategy for the synthesis of these conjugates that forms a stable thioether bond and can be directly incorporated into an atom transfer radical polymerization (ATRP) initiator. Specifically, a bis-sulfone alkyl bromide initiator was synthesized and utilized in the activators generated by electron transfer (AGET) ATRP of ethylene glycol methacrylate and trehalose methacrylate to form the respective polymers. The trehalose polymer was then irreversibly inserted into the disulfide bonds of Herceptin and Herceptin FAB after mild reduction to form the conjugates with quantitative conversions as verified by Western Blot and mass spectrometry after cleavage of the polymer. The binding of the Herceptin and Herceptin Fab conjugates to the receptor was investigated by indirect ELISA (enzyme-linked immunosorbent assay) and the EC50's were 0.90 and 2.74 nM, respectively, compared to Herceptin (0.26 nM) and the Fab (0.56 nM). The conjugates were subjected to heating studies at a constant 75 °C, the temperature determined in a heat ramp to be the threshold of stability for the antibody and FAB; the trehalose polymer was found to considerably increase the thermal stability of both Herceptin and Herceptin Fab. This work provides a new way to prepare polymer-antibody/Fab conjugates utilizing bis-sulfone end groups installed by atom transfer radical polymerization of the functionalized initiators and a way to stabilize these important molecules by conjugation to trehalose polymers.
Collapse
Affiliation(s)
- Neil L. Forsythe
- Department of Chemistry and Biochemistry and
California NanoSystems Institute, 607 Charles E. Young Drive East, University of
California, Los Angeles, CA 90095-1569
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and
California NanoSystems Institute, 607 Charles E. Young Drive East, University of
California, Los Angeles, CA 90095-1569
| |
Collapse
|
10
|
Egbu R, van der Walle CF, Brocchini S, Williams GR. Inhibiting the fibrillation of a GLP-1-like peptide. Int J Pharm 2020; 574:118923. [PMID: 31812799 DOI: 10.1016/j.ijpharm.2019.118923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/30/2022]
Abstract
Aggregation, including the formation of fibrils, poses significant challenges for the development of therapeutic peptides. To prepare stable peptide formulations, some understanding of the mechanisms underpinning the fibrillation process is required. A thioflavin T fluorescence assay was first used to determine the fibrillation profile of a GLP-1-like peptide (G48) at conditions being considered to formulate the peptide. G48 concentrations ranged from 0 to 600 µM and three pH values (pH 3.7, 7.4 and 8.5) were evaluated. Kinetic data demonstrate that G48 displays a pH-dependent aggregation profile. At pH 3.7, which is below the isoelectric point of G48 (pI ~ 5), kinetics representative of amorphous aggregates forming via a nucleation-independent mechanism were seen. At pH 7.4 and 8.5 (pH > pI) typical nucleation-dependent aggregation kinetics were observed. The weight concentration of β-sheet rich aggregates (FLmax) correlated inversely with net charge, so lower FLmax values were observed at pH 3.7 and 8.5 than at pH 7.4. Incorporation of a non-ionic surfactant (polysorbate 80) into the peptide solution suppressed the fibrillation of G48 at all pH values and maintained the native peptide conformation, whereas a phenolic co-formulant (ferulic acid) had minimal effects on fibril growth. Peptide fibrillation, which can occur within a range of formulation concentrations and pH values, can hence be inhibited by the judicious use of excipients.
Collapse
Affiliation(s)
- Raphael Egbu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | - Steve Brocchini
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK.
| |
Collapse
|
11
|
Frazier KS, Obert LA. Drug-induced Glomerulonephritis: The Spectre of Biotherapeutic and Antisense Oligonucleotide Immune Activation in the Kidney. Toxicol Pathol 2018; 46:904-917. [PMID: 30089413 DOI: 10.1177/0192623318789399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevalence of immune-mediated glomerulonephritis has increased in preclinical toxicity studies, with more frequent use of biotherapeutic agents (especially antigenic humanized molecules) and antisense oligonucleotide (ASO) therapies. Immune complex disease affects a small number of study monkeys, often correlates with antidrug antibody (ADA) titers, and occurs at a dose that favors immune complex formation or impedes clearance. While preclinical glomerulonephritis often fails to correlate with evidence of glomerular or vascular injury in human clinical trials and is not considered predictive, additional animal investigative immunohistochemical work may be performed to substantiate evidence for immune complex pathogenesis. While ADA is most commonly encountered as a predisposing factor with biotherapeutic agents, complement activation may occur without circulating complexes, and other mechanisms of non-ADA immune-mediated glomerulonephritis have been observed including nonendogenous immune aggregates and immunoregulatory pharmacology. Although glomerulonephritis associated with oligonucleotide therapies has been noted occasionally in preclinical studies and more rarely with human patients, pathophysiologic mechanisms involved appear to be different between species and preclinical cases are not considered predictive for humans. ADA is not involved in oligonucleotide-associated cases, and complement fixation plays a more important role in monkeys. Recent screening of ASOs for proinflammatory activity appears to have decreased glomerulonephritis incidence preclinically.
Collapse
|
12
|
Faraji F, Karjoo Z, Moghaddam MV, Heidari S, Emameh RZ, Falak R. Challenges related to the immunogenicity of parenteral recombinant proteins: Underlying mechanisms and new approaches to overcome it. Int Rev Immunol 2018; 37:301-315. [PMID: 29851534 DOI: 10.1080/08830185.2018.1471139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune response elicited by therapeutic proteins is an important safety and efficacy issue for regulatory agencies, drug manufacturers, clinicians, and patients. Administration of therapeutic proteins can potentially induce the production of anti-drug antibodies or cell-mediated immune responses. At first, it was speculated that the immunogenicity is related to the non-human origin of these proteins. Later on, it was confirmed that the human proteins may also show immunogenicity. In this review article, we will focus on a number of factors, which play crucial roles in the human protein immunogenicity. These factors are related to the patient's status (or intrinsic properties) and molecular characteristics of the therapeutic protein's (or extrinsic properties). Furthermore, we will discuss available in silico, in vitro, and in vivo methods for the prediction of sequences, which may generate an immune response following parenteral administration of these proteins. In summary, nowadays, it is possible for drug manufacturers to evaluate the risk of immunogenicity of therapeutic proteins and implement a management plan to overcome the problems prior to proceeding to human clinical trials.
Collapse
Affiliation(s)
- Fatemeh Faraji
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Zahra Karjoo
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | | | - Sahel Heidari
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Reza Zolfaghari Emameh
- c Department of Energy and Environmental Biotechnology, Division of Industrial & Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Reza Falak
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| |
Collapse
|
13
|
Wang G, Bondarenko PV, Kaltashov IA. Multi-step conformational transitions in heat-treated protein therapeutics can be monitored in real time with temperature-controlled electrospray ionization mass spectrometry. Analyst 2018; 143:670-677. [PMID: 29303166 DOI: 10.1039/c7an01655g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat-induced conformational transitions are frequently used to probe the free energy landscapes of proteins. However, the extraction of information from thermal denaturation profiles pertaining to non-native protein conformations remains challenging due to their transient nature and significant conformational heterogeneity. Previously we developed a temperature-controlled electrospray ionization (ESI) source that allowed unfolding and association of biopolymers to be monitored by mass spectrometry (MS) in real time as a function of temperature. The scope of this technique is now extended to systems that undergo multi-step denaturation upon heat stress, as well as relatively small-scale conformational changes that are precursors to protein aggregation. The behavior of two therapeutic proteins (human antithrombin and an IgG1 monoclonal antibody) under heat-stress conditions is monitored in real time, providing evidence that relatively small-scale conformational changes in each system lead to protein oligomerization, followed by aggregation. Temperature-controlled ESI MS is particularly useful for the studies of heat-stressed multi-domain proteins such as IgG, where it allows distinct transitions to be observed. The ability of native temperature-controlled ESI MS to monitor both the conformational changes and oligomerization/degradation with high selectivity complements the classic calorimetric methods, lending itself as a powerful experimental tool for the thermostability studies of protein therapeutics.
Collapse
Affiliation(s)
- Guanbo Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen, Inc., Thousand Oaks, CA, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| |
Collapse
|
14
|
Jozawa H, Kabir MG, Zako T, Maeda M, Chiba K, Kuroda Y. Amorphous protein aggregation monitored using fluorescence self-quenching. FEBS Lett 2016; 590:3501-3509. [DOI: 10.1002/1873-3468.12439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroki Jozawa
- Department of Biotechnology and Life Science; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Koganei-shi Japan
| | - Md. Golam Kabir
- Department of Biotechnology and Life Science; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Koganei-shi Japan
| | - Tamotsu Zako
- Bioengineering Laboratory; RIKEN Institute; Wako Japan
| | - Mizuo Maeda
- Bioengineering Laboratory; RIKEN Institute; Wako Japan
| | - Kazuhiro Chiba
- Laboratory of Bio-Organic Chemistry; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Koganei-shi Japan
| |
Collapse
|
15
|
The Effects of Light-Accelerated Degradation on the Aggregation of Marketed Therapeutic Monoclonal Antibodies Evaluated by Size-Exclusion Chromatography With Diode Array Detection. J Pharm Sci 2016; 105:1405-18. [PMID: 26952878 DOI: 10.1016/j.xphs.2016.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/28/2015] [Accepted: 12/15/2015] [Indexed: 11/24/2022]
Abstract
Research into the effects that exposure to light can have on therapeutic proteins is essential for ensuring the quality and safety of the medicines in which they are used. It is important to understand the effects of light on aggregation to help avoid undesirable colloidal instabilities, both in the original medicines and in the formats in which they are finally administered. In this study, 5 marketed therapeutic mAbs, namely bevacizumab, cetuximab, infliximab, rituximab, and trastuzumab, were investigated for this purpose. The medicines and 2 diluted preparations in 0.9 NaCl (2 mg/mL and 5 mg/mL)-commonly used in clinical practice-were subjected to controlled light-accelerated degradation. The formation of aggregates was monitored by size-exclusion chromatography. The results indicated that light induced protein aggregation. This process of protein damage was influenced above all by mAb concentration, although the particular characteristics of each mAb were also important. Photodegradation also produced the fragmentation of the mAbs. The damage caused to the mAbs as a result of light-induced aggregation and/or fragmentation was demonstrated both in the medicines and in the diluted preparation forms. These findings should be carefully considered when handling the medicines for administration and when recommending beyond-use dates in normal hospital conditions.
Collapse
|
16
|
Rane S, Rana S, Mudrabettu C, Jha V, Joshi K. Heavy-chain deposition disease: a morphological, immunofluorescence and ultrastructural assessment. Clin Kidney J 2015; 5:383-9. [PMID: 26019812 PMCID: PMC4432403 DOI: 10.1093/ckj/sfs062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 04/26/2012] [Indexed: 11/13/2022] Open
Abstract
Heavy-chain deposition disease (HCDD) is the least common of the monoclonal immunoglobulin deposition diseases with only 24 reported cases in English literature, including the present case. The rarity of this disease merits its documentation. We present a case of HCDD from our archival material, who presented with rapidly progressive renal failure and nephrotic syndrome and was found to have nodular glomerulosclerosis on renal biopsy which on immunofluorescence and electron microscopy confirmed HCDD of immunoglobulin G1 type without any light-chain deposition. We also present an in-depth literature review on HCDD.
Collapse
Affiliation(s)
- Swapnil Rane
- Department of Histopathology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Seema Rana
- Department of Histopathology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Chetan Mudrabettu
- Department of Nephrology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Vivekananda Jha
- Department of Nephrology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Kusum Joshi
- Department of Histopathology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
17
|
Frazier KS, Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS. Scientific and Regulatory Policy Committee Points-to-consider Paper*. Toxicol Pathol 2015; 43:915-34. [DOI: 10.1177/0192623315570340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. Although DIVI in laboratory animal species has been well characterized for vasoactive small molecules, there is little available information regarding DIVI associated with biotherapeutics such as peptides/proteins or antibodies. Because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans and the lack of robust biomarkers of DIVI, preclinical DIVI findings can cause considerable delays in or even halt development of promising new drugs. This review discusses standard terminology, characteristics, and mechanisms of DIVI associated with biotherapeutics. Guidance and points to consider for the toxicologist and pathologist facing preclinical cases of biotherapeutic-related DIVI are outlined, and examples of regulatory feedback for each of the mechanistic types of DIVI are included to provide insight into risk assessment.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael W. Leach
- Pfizer—Drug Safety Research and Development, Andover, Massachusetts, USA
| | | | | | | | | |
Collapse
|
18
|
Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS, Frazier KS. Scientific and Regulatory Policy Committee Points-to-consider Paper*: Drug-induced Vascular Injury Associated with Nonsmall Molecule Therapeutics in Preclinical Development: Part 2. Antisense Oligonucleotides. Toxicol Pathol 2015; 43:935-44. [PMID: 25717082 DOI: 10.1177/0192623315570341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. In recent years, DIVI has been occasionally observed in nonhuman primates given RNA-targeting therapeutics such as antisense oligonucleotide therapies (ASOs) during chronic toxicity studies. While DIVI in laboratory animal species has been well characterized for vasoactive small molecules, and immune-mediated responses against large molecule biotherapeutics have been well described, there is little published information regarding DIVI induced by ASOs to date. Preclinical DIVI findings in monkeys have caused considerable delays in development of promising new ASO therapies, because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans, and the lack of robust biomarkers of DIVI. This review of DIVI discusses clinical and microscopic features of vasculitis in monkeys, their pathogenic mechanisms, and points to consider for the toxicologist and pathologist when confronted with ASO-related DIVI. Relevant examples of regulatory feedback are included to provide insight into risk assessment of ASO therapies.
Collapse
Affiliation(s)
| | | | | | | | - Michael W Leach
- Pfizer-Drug Safety Research and Development, Andover, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu J, Yadav S, Andya J, Demeule B, Shire SJ. Analytical Ultracentrifugation and Its Role in Development and Research of Therapeutical Proteins. Methods Enzymol 2015; 562:441-76. [DOI: 10.1016/bs.mie.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
|
21
|
De Paoli SH, Diduch LL, Tegegn TZ, Orecna M, Strader MB, Karnaukhova E, Bonevich JE, Holada K, Simak J. The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 2014; 35:6182-94. [PMID: 24831972 DOI: 10.1016/j.biomaterials.2014.04.067] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNT) are one of the most promising nanomaterials for use in medicine. The blood biocompatibility of CNT is a critical safety issue. In the bloodstream, proteins bind to CNT through non-covalent interactions to form a protein corona, thereby largely defining the biological properties of the CNT. Here, we characterize the interactions of carboxylated-multiwalled carbon nanotubes (CNTCOOH) with common human proteins and investigate the effect of the different protein coronas on the interaction of CNTCOOH with human blood platelets (PLT). Molecular modeling and different photophysical techniques were employed to characterize the binding of albumin (HSA), fibrinogen (FBG), γ-globulins (IgG) and histone H1 (H1) on CNTCOOH. We found that the identity of protein forming the corona greatly affects the outcome of CNTCOOH's interaction with blood PLT. Bare CNTCOOH-induced PLT aggregation and the release of platelet membrane microparticles (PMP). HSA corona attenuated the PLT aggregating activity of CNTCOOH, while FBG caused the agglomeration of CNTCOOH nanomaterial, thereby diminishing the effect of CNTCOOH on PLT. In contrast, the IgG corona caused PLT fragmentation, and the H1 corona induced a strong PLT aggregation, thus potentiating the release of PMP.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Lukas L Diduch
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Tseday Z Tegegn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Martina Orecna
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Michael B Strader
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - John E Bonevich
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Karel Holada
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Simak
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| |
Collapse
|
22
|
Batal I, Bijol V, Schlossman RL, Rennke HG. Proliferative Glomerulonephritis With Monoclonal Immunoglobulin Deposits in a Kidney Allograft. Am J Kidney Dis 2014; 63:318-23. [DOI: 10.1053/j.ajkd.2013.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
|
23
|
|
24
|
Capito F, Skudas R, Kolmar H, Hunzinger C. Mid-infrared spectroscopy-based antibody aggregate quantification in cell culture fluids. Biotechnol J 2013; 8:912-7. [DOI: 10.1002/biot.201300164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/06/2013] [Accepted: 05/24/2013] [Indexed: 11/09/2022]
|
25
|
Breaking the Aggregation of the Monoclonal Antibody Bevacizumab (Avastin®) by Dexamethasone Phosphate: Insights from Molecular Modelling and Asymmetrical Flow Field-Flow Fractionation. Pharm Res 2013; 30:1176-87. [DOI: 10.1007/s11095-012-0955-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022]
|
26
|
Biosimilars and biobetters as tools for understanding and mitigating the immunogenicity of biotherapeutics. Drug Discov Today 2012; 17:1282-8. [PMID: 22796124 DOI: 10.1016/j.drudis.2012.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/11/2012] [Accepted: 07/04/2012] [Indexed: 11/21/2022]
Abstract
In this article, we review key steps for the development of biosimilars and biobetters and related bioanalytical challenges, with a focus on how they are associated with immunogenicity. We analyze the factors that can impact antidrug antibody (ADA) responses and their correlations with preclinical and clinical outcomes to provide relevant insights and to answer questions, including what types of aggregate are immunogenic. We also address strategies for developing less-immunogenic biotherapeutics. Using interferon-β (IFN-β) as a case study, we explore the correlation between aggregation and immunogenicity. We dissect and integrate with clinical data the IFN-β preclinical immunogenicity and aggregation predictions and discuss the feasibility of developing an IFN-β with lower aggregation and/or immunogenicity.
Collapse
|
27
|
Abstract
With the advances in cell culture methodologies and molecular biology that have occurred over the past several decades, biologics have become as common as small molecules within the portfolios of the pharmaceutical industry. Toxicologic pathologists should be aware of some of the fundamental differences between small molecules and biologics. Effects are not always observed in studies following administration of biologics. When findings are observed, the toxicologic pathologist should initially determine whether the effect(s) are mediated (directly or indirectly) via the intended pharmacology, exaggerated pharmacology, an immune response, and/or off target effects. Following this determination, the toxicologic pathologist should provide an assessment regarding the relevance of the findings to the intended clinical population, usually humans. The toxicologic pathologist may also be asked to assess unusual species and models. Given their broad background in physiology and immunology, toxicologic pathologists are uniquely positioned to provide this input to drug development teams.
Collapse
Affiliation(s)
- Michael W. Leach
- Drug Safety Research and Development, Pfizer, Andover, Massachusetts, USA
| |
Collapse
|
28
|
Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, Goletz TJ, Kerwin BA, Chirmule N, Narhi LO, Jawa V. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 2012; 287:25266-79. [PMID: 22584577 PMCID: PMC3408134 DOI: 10.1074/jbc.m111.330902] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aggregation of biotherapeutics has the potential to induce an immunogenic response. Here, we show that aggregated therapeutic antibodies, previously generated and determined to contain a variety of attributes (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118–25133), can enhance the in vitro innate immune response of a population of naive human peripheral blood mononuclear cells. This response depended on the aggregate type, inherent immunogenicity of the monomer, and donor responsiveness, and required a high number of particles, well above that detected in marketed drug products, at least in this in vitro system. We propose a cytokine signature as a potential biomarker of the in vitro peripheral blood mononuclear cell response to aggregates. The cytokines include IL-1β, IL-6, IL-10, MCP-1, MIP-1α, MIP-1β, MMP-2, and TNF-α. IL-6 and IL-10 might have an immunosuppressive effect on the long term immune response. Aggregates made by stirring induced the highest response compared with aggregates made by other methods. Particle size in the 2–10 μm range and the retention of some folded structure were associated with an increased response. The mechanism of aggregate activation at the innate phase was found to occur through specific cell surface receptors (the toll-like receptors TLR-2 and TLR-4, FcγRs, and the complement system). The innate signal was shown to progress to an adaptive T-cell response characterized by T-cell proliferation and secretion of T-cell cytokines. Investigating the ability of aggregates to induce cytokine signatures as biomarkers of immune responses is essential for determining their risk of immunogenicity.
Collapse
Affiliation(s)
- Marisa K Joubert
- Department of Product Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Giray S, Bal T, Kartal AM, Kızılel S, Erkey C. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 2012; 100:1307-15. [PMID: 22374682 DOI: 10.1002/jbm.a.34056] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022]
Abstract
A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications.
Collapse
Affiliation(s)
- Seda Giray
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
30
|
Association of ranibizumab (Lucentis®) or bevacizumab (Avastin®) with dexamethasone and triamcinolone acetonide: An in vitro stability assessment. Eur J Pharm Biopharm 2011; 78:271-7. [DOI: 10.1016/j.ejpb.2010.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 11/22/2022]
|
31
|
Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J. Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem 2011; 286:25134-44. [PMID: 21518762 DOI: 10.1074/jbc.m110.160440] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we characterized the chemical modifications in the monoclonal antibody (IgG(2)) aggregates generated under various conditions, including mechanical, chemical, and thermal stress treatment, to provide insight into the mechanism of protein aggregation and the types of aggregate produced by the different stresses. In a separate study, additional biophysical characterization was performed to arrange these aggregates into a classification system (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118-25133). Here, we report that different aggregates possessed different types and levels of chemical modification. For chemically treated samples, metal-catalyzed oxidation using copper showed site-specific oxidation of Met(246), His(304), and His(427) in the Fc portion of the antibody, which might be attributed to a putative copper-binding site. For the hydrogen peroxide-treated sample, in contrast, four solvent-exposed Met residues in the Fc portion were completely oxidized. Met and/or Trp oxidation was observed in the mechanically stressed samples, which is in agreement with the proposed model of protein interaction at the air-liquid interface. Heat treatment resulted in significant deamidation but almost no oxidation, which is consistent with thermally induced aggregates being generated by a different pathway, primarily by perturbing conformational stability. These results demonstrate that chemical modifications are present in protein aggregates; furthermore, the type, locations, and severity of the modifications depend on the specific conditions that generated the aggregates.
Collapse
Affiliation(s)
- Quanzhou Luo
- Department of Analytical and Formulation Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem 2011; 286:25118-33. [PMID: 21454532 DOI: 10.1074/jbc.m110.160457] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A host of diverse stress techniques was applied to a monoclonal antibody (IgG(2)) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134-25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG(1) and IgG(2) subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced.
Collapse
Affiliation(s)
- Marisa K Joubert
- Department of Formulation and Analytical Resources, Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | |
Collapse
|
33
|
Rheumatoid arthritis and renal light-chain deposition disease: long-term effectiveness of TNF-α blockade with etanercept. Int Urol Nephrol 2010; 43:909-12. [PMID: 20559723 DOI: 10.1007/s11255-010-9788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
A 68-year-old woman diagnosed with erosive rheumatoid arthritis (RA) was treated with intramuscular methotrexate 15 mg weekly and oral prednisone 5 mg daily. A favorable outcome of 6 years was followed by RA flare and nephrotic syndrome (NS). Renal biopsy revealed non-amyloid light-chain deposition disease. Laboratory analysis and bone marrow biopsy excluded monoclonal protein and plasma cell dyscrasia. Addition of subcutaneous etanercept, 25 mg twice weekly allowed rapid control of both arthritis and NS. To date, after over 7-year follow-up, RA is in clinical remission, 24-h albuminuria is consistently below 0.5 g, and serum creatinine is 0.9 mg/dl.
Collapse
|
34
|
Chen J, Tetrault J, Zhang Y, Wasserman A, Conley G, DiLeo M, Haimes E, Nixon AE, Ley A. The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process. J Chromatogr A 2010; 1217:216-24. [DOI: 10.1016/j.chroma.2009.09.047] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/05/2009] [Accepted: 09/17/2009] [Indexed: 11/25/2022]
|
35
|
Role of benzyl alcohol in the prevention of heat-induced aggregation and inactivation of hen egg white lysozyme. Eur J Pharm Biopharm 2009; 71:367-76. [DOI: 10.1016/j.ejpb.2008.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/19/2008] [Accepted: 09/13/2008] [Indexed: 11/21/2022]
|
36
|
Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. MASS SPECTROMETRY REVIEWS 2009; 28:147-76. [PMID: 18720354 DOI: 10.1002/mas.20190] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Antibodies, also known as immunoglobulins, have emerged as one of the most promising classes of therapeutics in the biopharmaceutical industry. The need for complete characterization of the quality attributes of these molecules requires sophisticated techniques. Mass spectrometry (MS) has become an essential analytical tool for the structural characterization of therapeutic antibodies, due to its superior resolution over other analytical techniques. It has been widely used in virtually all phases of antibody development. Structural features determined by MS include amino acid sequence, disulfide linkages, carbohydrate structure and profile, and many different post-translational, in-process, and in-storage modifications. In this review, we will discuss various MS-based techniques for the structural characterization of monoclonal antibodies. These techniques are categorized as mass determination of intact antibodies, and as middle-up, bottom-up, top-down, and middle-down structural characterizations. Each of these techniques has its advantages and disadvantages in terms of structural resolution, sequence coverage, sample consumption, and effort required for analyses. The role of MS in glycan structural characterization and profiling will also be discussed.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen, Thousand Oaks, CA 91320, USA.
| | | | | |
Collapse
|
37
|
Lins KOAL, Bezerra DP, Alves APNN, Alencar NMN, Lima MW, Torres VM, Farias WRL, Pessoa C, de Moraes MO, Costa-Lotufo LV. Antitumor properties of a sulfated polysaccharide from the red seaweedChampia feldmannii(Diaz-Pifferer). J Appl Toxicol 2009; 29:20-6. [DOI: 10.1002/jat.1374] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Biologic and genetic characterization of the novel amyloidogenic lambda light chain-secreting human cell lines, ALMC-1 and ALMC-2. Blood 2008; 112:1931-41. [PMID: 18567838 DOI: 10.1182/blood-2008-03-143040] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary systemic amyloidosis (AL) is a rare monoclonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin (Ig) light chains (LC) in vital organs throughout the body. To our knowledge, no cell lines have ever been established from AL patients. Here we describe the establishment of the ALMC-1 and ALMC-2 cell lines from an AL patient. Both cell lines exhibit a PC phenotype and display cytokine-dependent growth. Using a comprehensive genetic approach, we established the genetic relationship between the cell lines and the primary patient cells, and we were also able to identify new genetic changes accompanying tumor progression that may explain the natural history of this patient's disease. Importantly, we demonstrate that free lambda LC secreted by both cell lines contained a beta structure and formed amyloid fibrils. Despite absolute Ig LC variable gene sequence identity, the proteins show differences in amyloid formation kinetics that are abolished by the presence of Na(2)SO(4). The formation of amyloid fibrils from these naturally secreting human LC cell lines is unprecedented. Moreover, these cell lines will provide an invaluable tool to better understand AL, from the combined perspectives of amyloidogenic protein structure and amyloid formation, genetics, and cell biology.
Collapse
|
39
|
Top A, Kiick KL, Roberts CJ. Modulation of self-association and subsequent fibril formation in an alanine-rich helical polypeptide. Biomacromolecules 2008; 9:1595-603. [PMID: 18452331 DOI: 10.1021/bm800056r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal unfolding, reversible self-association, and irreversible aggregation were investigated for an alanine-rich helical polypeptide, 17-H-6, with sequence [AAAQEAAAAQAAAQAEAAQAAQ] 6. Dynamic light scattering, transmission electron microscopy, and thermal unfolding measurements indicate that 17-H-6 spontaneously and reversibly self-associates at acidic pH and low temperature. The resulting multimers have a compact, globular morphology with an average hydrodynamic radius approximately 10-20 nm and reversibly dissociate to monomers upon an increase to pH 7.4. Both free monomer and 17-H-6 chains within the multimers are alpha-helical and folded at low temperature. Reversible unfolding of the monomer occurs upon heating of solutions at pH 7.4. At pH 2.3, heating first causes incomplete dissociation and unfolding of the constituent chains. Further incubation at elevated temperature induces additional structural and morphological changes and results in fibrils with a beta-sheet 2 degrees structure and a characteristic diameter of 5-10 nm (7 nm mean). The ability to modulate association and aggregation suggests opportunities for this class of polypeptides in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Ayben Top
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
40
|
Blasco H, Lalmanach G, Godat E, Maurel MC, Canepa S, Belghazi M, Paintaud G, Degenne D, Chatelut E, Cartron G, Le Guellec C. Evaluation of a peptide ELISA for the detection of rituximab in serum. J Immunol Methods 2007; 325:127-39. [PMID: 17651747 DOI: 10.1016/j.jim.2007.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 06/11/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
Pharmacokinetic studies of therapeutic monoclonal antibodies necessitate the measurement of their biologically active fraction. The aim of this work was to develop an enzyme-linked immunosorbent assay (ELISA) for rituximab, a chimeric anti-CD20 monoclonal antibody, based on its binding to a 20-mer peptide (P20) derived from the extracellular loop of human CD20 (residues 165-184). Derivatives of P20 were prepared by conjugation to bovine serum albumin (BSA-P20ACM) or biotin (Biot-P20ACM). Interactions of P20 and its derived peptides with rituximab were analyzed by surface plasmon resonance (SPR) and by ELISA. A monoclonal anti-idiotype antibody (MB2A4) was used as the reference in each case. SPR analysis showed that P20 (conjugated or unconjugated) had a lower affinity for rituximab than MB2A4. ELISA methods based on P20 or MB2A4 were both highly accurate and reproducible for rituximab measurement in spiked samples, but the MB2A4-based assay had a lower limit of quantification. Interestingly, discrepant results were obtained with the two ELISA methods when analyzing pharmacokinetic samples, with the rituximab concentrations obtained with the MB2A4-based method being systematically higher than those determined by the P20-based method. Possible interference of circulating CD20 with the P20-based method was supported by competition experiments. Rituximab aggregation in the bloodstream may also account for the bias observed in samples from healthy mice. The P20-based ELISA is far less sensitive than the MB2A-based ELISA, thus limiting its utility for pharmacokinetic studies. However, the discrepancy observed between two different approaches for rituximab measurement indicates that data from different studies should be interpreted with care.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Anti-Idiotypic/immunology
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Murine-Derived
- Antibody Affinity/immunology
- Antigen-Antibody Reactions/immunology
- Antigens, CD20/chemistry
- Antigens, CD20/immunology
- Antineoplastic Agents/blood
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacokinetics
- Binding, Competitive/immunology
- Chromatography, High Pressure Liquid/methods
- Enzyme-Linked Immunosorbent Assay/methods
- Humans
- Mass Spectrometry
- Mice
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Reproducibility of Results
- Rituximab
- Serum Albumin, Bovine/chemistry
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- H Blasco
- Université Francois Rabelais Tours, EA3853, Immuno-Pharmaco-Génétique des Anticorps Thérapeutiques, IFR 135, F-37032 Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|