1
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 PMCID: PMC11966650 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A. Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
3
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
4
|
The design of multi-responsive nanohydrogel networks of chitosan for controlled drug delivery. Carbohydr Polym 2022; 298:120143. [DOI: 10.1016/j.carbpol.2022.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
|
5
|
Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int J Pharm 2020; 586:119605. [DOI: 10.1016/j.ijpharm.2020.119605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
|
6
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Preparation and characterization of solid lipid nanoparticles loaded with salmon calcitonin phospholipid complex. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abstract
Dextran as a drug carrier for inhibiting cancer cells effectively reduces the toxic and side effects of the drug in the biological body. Targeting improves the concentration of active substance around the target tissue, which reduces damage to other heavy organs and other normal tissues. Dextran will be a potential carrier for the delivery of antitumor drugs in the future, which provides the possibility of slow-release chemotherapy and targeted drug delivery. Herein, the preparation and drug delivery of dextran-drug complex were summarized and discussed in detail.
Collapse
Affiliation(s)
- Shiyu Huang
- a Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials , Chongqing Normal University , Chongqing , China
| | - Gangliang Huang
- a Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials , Chongqing Normal University , Chongqing , China
| |
Collapse
|
9
|
Yin R, He J, Bai M, Huang C, Wang K, Zhang H, Yang SM, Zhang W. Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:374-382. [DOI: 10.1016/j.msec.2018.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
10
|
Ascorbyl Palmitate Hydrogel for Local, Intestinal Delivery of Macromolecules. Pharmaceutics 2018; 10:pharmaceutics10040188. [PMID: 30326565 PMCID: PMC6321208 DOI: 10.3390/pharmaceutics10040188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Biologics have changed the management of inflammatory bowel disease (IBD), but there are concerns with unexpected systemic toxicity and loss of therapeutic response following administration by injection. Rectal administration of biologics offers potentially reduced therapy costs, as well as safer and more effective local delivery to inflammation sites. Hydrogels are potentially useful carriers of biologics for improved delivery to the inflamed intestinal mucosa. Here, we prepared a hydrogel system based on ascorbyl palmitate (AP) and incorporated a model macromolecular drug (fluorescently-labelled dextran) into the system. Characterization of gel properties included rheology, drug loading and release, cytotoxicity, and drug delivery in an in vitro intestinal model. We report that this hydrogel can be formed under a moderate environment that is amenable to incorporation of some biologics. The system showed a shear-thinning behavior. AP hydrogel released approximately 60% of the drug within 5 h and showed reasonable a cytotoxicity profile. The study therefore provides evidence that AP hydrogel has potential for local delivery of macromolecules to the intestinal mucosa in IBD.
Collapse
|
11
|
Zheng XF, Lian Q, Yang H, Wang X. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release. Sci Rep 2016; 6:21409. [PMID: 26892676 PMCID: PMC4759818 DOI: 10.1038/srep21409] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, (1)H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior.
Collapse
Affiliation(s)
- Xue-Fang Zheng
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Qi Lian
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Hua Yang
- School of Chemistry and Chemical Engineering of Guangxi University, Nanning, 530004, China
| | - Xiuping Wang
- College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| |
Collapse
|
12
|
Rai G, Yadav AK, Jain NK, Agrawal GP. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon. Drug Dev Ind Pharm 2015; 41:2018-28. [DOI: 10.3109/03639045.2015.1044901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Casettari L, Bonacucina G, Morris GA, Perinelli DR, Lucaioli P, Cespi M, Palmieri GF. Dextran and its potential use as tablet excipient. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2014.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Das D, Pal S. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16103c] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review describes hydrogels and their classifications along with the synthesis and properties of biopolymer-dextrin based crosslinked hydrogels towards potential application in controlled drug delivery.
Collapse
Affiliation(s)
- Dipankar Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Sagar Pal
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|
15
|
Abstract
INTRODUCTION Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. AREAS COVERED This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. EXPERT OPINION Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.
Collapse
Affiliation(s)
- Lindsey A Sharpe
- The University of Texas, Department of Biomedical Engineering , Austin, TX 78712 , USA +1 512 471 6644 ; +1 512 471 8227 ;
| | | | | | | |
Collapse
|
16
|
Rai G, Yadav AK, Jain NK, Agrawal GP. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon. Drug Deliv 2014; 23:328-37. [PMID: 24845476 DOI: 10.3109/10717544.2014.913733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.
Collapse
Affiliation(s)
- Gopal Rai
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| | - Awesh K Yadav
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| | - Narendra K Jain
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| | - Govind P Agrawal
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| |
Collapse
|
17
|
Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydr Polym 2014; 103:369-76. [DOI: 10.1016/j.carbpol.2013.12.067] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/17/2022]
|
18
|
Koçdan D, Basan H. A novel spectrofluorimetric method for the determination of calcitonin in ampules through derivatization with fluorescamine. LUMINESCENCE 2012; 28:961-6. [DOI: 10.1002/bio.2467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/01/2012] [Accepted: 11/13/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Deniz Koçdan
- Gazi University; Faculty of Pharmacy, Department of Analytical Chemistry; 06330, etiler Ankara Turkey
| | - Hasan Basan
- Gazi University; Faculty of Pharmacy, Department of Analytical Chemistry; 06330, etiler Ankara Turkey
| |
Collapse
|
19
|
Vemulapalli V, Bai Y, Kalluri H, Herwadkar A, Kim H, Davis SP, Friden PM, Banga AK. In Vivo Iontophoretic Delivery of Salmon Calcitonin Across Microporated Skin. J Pharm Sci 2012; 101:2861-9. [DOI: 10.1002/jps.23222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/05/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
|
20
|
Krishnaiah YSR, Khan MA. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer. Pharm Dev Technol 2012; 17:521-40. [PMID: 22681390 DOI: 10.3109/10837450.2012.696268] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Yellela S R Krishnaiah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Springs, MD 20993, USA.
| | | |
Collapse
|
21
|
Ahmadi F, Varshosaz J, Emami J, Tavakoli N, Minaiyan M, Mahzouni P, Dorkoosh F. Preparation and in vitro/in vivo evaluation of dextran matrix tablets of budesonide in experimental ulcerative colitis in rats. Drug Deliv 2010; 18:122-30. [DOI: 10.3109/10717544.2010.520352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Sun G, Shen YI, Ho CC, Kusuma S, Gerecht S. Functional groups affect physical and biological properties of dextran-based hydrogels. J Biomed Mater Res A 2010; 93:1080-90. [PMID: 19753626 DOI: 10.1002/jbm.a.32604] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.
Collapse
Affiliation(s)
- Guoming Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
23
|
Quality analysis of salmon calcitonin in a polymeric bioadhesive pharmaceutical formulation: sample preparation optimization by DOE. J Pharm Biomed Anal 2010; 53:939-45. [PMID: 20655159 DOI: 10.1016/j.jpba.2010.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/13/2010] [Accepted: 06/24/2010] [Indexed: 11/22/2022]
Abstract
A sensitive and selective HPLC method for the assay and degradation of salmon calcitonin, a 32-amino acid peptide drug, formulated at low concentrations (400 ppm m/m) in a bioadhesive nasal powder containing polymers, was developed and validated. The sample preparation step was optimized using Plackett-Burman and Onion experimental designs. The response functions evaluated were calcitonin recovery and analytical stability. The best results were obtained by treating the sample with 0.45% (v/v) trifluoroacetic acid at 60 degrees C for 40 min. These extraction conditions did not yield any observable degradation, while a maximum recovery for salmon calcitonin of 99.6% was obtained. The HPLC-UV/MS methods used a reversed-phase C(18) Vydac Everest column, with a gradient system based on aqueous acid and acetonitrile. UV detection, using trifluoroacetic acid in the mobile phase, was used for the assay of calcitonin and related degradants. Electrospray ionization (ESI) ion trap mass spectrometry, using formic acid in the mobile phase, was implemented for the confirmatory identification of degradation products. Validation results showed that the methodology was fit for the intended use, with accuracy of 97.4+/-4.3% for the assay and detection limits for degradants ranging between 0.5 and 2.4%. Pilot stability tests of the bioadhesive powder under different storage conditions showed a temperature-dependent decrease in salmon calcitonin assay value, with no equivalent increase in degradation products, explained by the chemical interaction between salmon calcitonin and the carbomer polymer.
Collapse
|
24
|
Colon-specific devices based on methacrylic functionalized Tween monomer networks: Swelling studies and in vitro drug release. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2009.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Dispenza C, Tripodo G, LoPresti C, Spadaro G, Giammona G. Synthesis, characterisation and properties of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide-graft-maleic anhydride precursors and their stimuli-responsive hydrogels. REACT FUNCT POLYM 2009. [DOI: 10.1016/j.reactfunctpolym.2009.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Zorlutuna P, Yılgör P, Başmanav FB, Hasırcı V. Biomaterials and tissue engineering research in Turkey: The METU Biomat Center experience. Biotechnol J 2009; 4:965-80. [DOI: 10.1002/biot.200800335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Reis AV, Fajardo AR, Schuquel ITA, Guilherme MR, Vidotti GJ, Rubira AF, Muniz EC. Reaction of Glycidyl Methacrylate at the Hydroxyl and Carboxylic Groups of Poly(vinyl alcohol) and Poly(acrylic acid): Is This Reaction Mechanism Still Unclear? J Org Chem 2009; 74:3750-7. [DOI: 10.1021/jo900033c] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adriano V. Reis
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - André R. Fajardo
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Ivania T. A. Schuquel
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Marcos R. Guilherme
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Gentil José Vidotti
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Adley F. Rubira
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos e Compósitos, Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil, and Faculdade de Engenharia Química, Departamento de Sistemas Químicos e Informática DESQ, Zeferino Vaz, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brazil
| |
Collapse
|
28
|
Inulin vinyl sulfone derivative cross-linked with bis-amino PEG: new materials for biomedical applications. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50086-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Pitarresi G, Tripodo G, Calabrese R, Craparo EF, Licciardi M, Giammona G. Hydrogels for Potential Colon Drug Release by Thiol-ene Conjugate Addition of a New Inulin Derivative. Macromol Biosci 2008; 8:891-902. [DOI: 10.1002/mabi.200800043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|