1
|
Yasir M, Mishra R, Tripathi AS, Maurya RK, Shahi A, Zaki MEA, Al Hussain SA, Masand VH. Theranostics: a multifaceted approach utilizing nano-biomaterials. DISCOVER NANO 2024; 19:35. [PMID: 38407670 PMCID: PMC10897124 DOI: 10.1186/s11671-024-03979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Biomaterials play a vital role in targeting therapeutics. Over the years, several biomaterials have gained wide attention in the treatment and diagnosis of diseases. Scientists are trying to make more personalized treatments for different diseases, as well as discovering novel single agents that can be used for prognosis, medication administration, and keeping track of how a treatment works. Theranostics based on nano-biomaterials have higher sensitivity and specificity for disease management than conventional techniques. This review provides a concise overview of various biomaterials, including carbon-based materials like fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers, and their involvement in theranostics of different diseases. In addition, the involvement of imaging techniques for theranostics applications was overviewed. Theranostics is an emerging strategy that has great potential for enhancing the accuracy and efficacy of medicinal interventions. Despite the presence of obstacles such as disease heterogeneity, toxicity, reproducibility, uniformity, upscaling production, and regulatory hurdles, the field of medical research and development has great promise due to its ability to provide patients with personalised care, facilitate early identification, and enable focused treatment.
Collapse
Affiliation(s)
- Mohammad Yasir
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India.
| | - Ratnakar Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | | | - Rahul K Maurya
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | - Ashutosh Shahi
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia.
| | - Sami A Al Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, India
| |
Collapse
|
2
|
Vordos N, Gkika DA, Pradakis N, Mitropoulos AC, Kyzas GZ. Therapeutic and Diagnostic Potential of Nanomaterials for Enhanced Biomedical Applications. ADVANCED AND INNOVATIVE APPROACHES OF ENVIRONMENTAL BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT 2023:277-300. [DOI: 10.1007/978-981-99-2598-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
4
|
Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021; 608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The treatment effect of chemotherapeutics is often impeded by nonspecific biodistribution and limited biocompatibility. Polymeric core-shell nanocarriers (PCS NCs) composed of a polymer core and at least one shell have been widely applied for cancer therapy and have shown great potential in selectively delivering chemotherapeutic drugs to tumor sites. These PCS NCs can effectively ameliorate the delivery efficiency and therapeutic index of anticarcinogens by prolonging drug residence in the bloodstream, enhancing tumor tissue drug penetration, facilitating cellular drug uptake, controlling the spatiotemporal release of payloads, or codelivering two or more bioactive agents. This review summarizes recently published literature on using PCS NCs to transport chemotherapeutic drugs with poor aqueous solubility and discusses their design principles, structural features, functional properties, and potential limitations.
Collapse
|
5
|
Boddu SHS, Bhagav P, Karla PK, Jacob S, Adatiya MD, Dhameliya TM, Ranch KM, Tiwari AK. Polyamide/Poly(Amino Acid) Polymers for Drug Delivery. J Funct Biomater 2021; 12:58. [PMID: 34698184 PMCID: PMC8544418 DOI: 10.3390/jfb12040058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Polymers have always played a critical role in the development of novel drug delivery systems by providing the sustained, controlled and targeted release of both hydrophobic and hydrophilic drugs. Among the different polymers, polyamides or poly(amino acid)s exhibit distinct features such as good biocompatibility, slow degradability and flexible physicochemical modification. The degradation rates of poly(amino acid)s are influenced by the hydrophilicity of the amino acids that make up the polymer. Poly(amino acid)s are extensively used in the formulation of chemotherapeutics to achieve selective delivery for an appropriate duration of time in order to lessen the drug-related side effects and increase the anti-tumor efficacy. This review highlights various poly(amino acid) polymers used in drug delivery along with new developments in their utility. A thorough discussion on anticancer agents incorporated into poly(amino acid) micellar systems that are under clinical evaluation is included.
Collapse
Affiliation(s)
- Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Prakash Bhagav
- Advanced Drug Delivery Research and Development, Sampann Research and Development, Panacea Biotec Ltd., Ambala, Chandigarh Highway, Lalru 140501, India;
| | - Pradeep K. Karla
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th St. N.W., Washington, DC 20059, USA
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mansi D. Adatiya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Tejas M. Dhameliya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Ketan M. Ranch
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Amit K. Tiwari
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Pharmacology & Experimental Therapeutics, Health Science Campus, The University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
6
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
7
|
Sheybanifard M, Beztsinna N, Bagheri M, Buhl EM, Bresseleers J, Varela-Moreira A, Shi Y, van Nostrum CF, van der Pluijm G, Storm G, Hennink WE, Lammers T, Metselaar JM. Systematic evaluation of design features enables efficient selection of Π electron-stabilized polymeric micelles. Int J Pharm 2020; 584:119409. [PMID: 32389790 DOI: 10.1016/j.ijpharm.2020.119409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Abstract
Polymeric micelles (PM) based on poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) loaded with paclitaxel (PTX-PM) have shown promising results in overcoming the suboptimal efficacy/toxicity profile of paclitaxel. To get insight into the stability of PTX-PM formulations upon storage and to optimize their in vivo tumor-targeted drug delivery properties, we set out to identify a lead PTX-PM formulation with the optimal polymer composition. To this end, PM based on four different mPEG5k-b-p(HPMA-Bz) block copolymers with varying molecular weight of the hydrophobic block (17-3 kDa) were loaded with different amounts of PTX. The hydrodynamic diameter was 52 ± 1 nm for PM prepared using polymers with longer hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)17k and mPEG5k-b-p(HPMA-Bz)10k) and 39 ± 1 nm for PM composed of polymers with shorter hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)5k and mPEG5k-b-p(HPMA-Bz)3k). The best storage stability and the slowest PTX release was observed for PM with larger hydrophobic blocks. On the other hand, smaller sized PM of shorter mPEG5k-b-p(HPMA-Bz)5k showed a better tumor penetration in 3D spheroids. Considering better drug retention capacity of the mPEG5k-b-p(HPMA-Bz)17k and smaller size of the mPEG5k-b-p(HPMA-Bz)5k as two desirable design features, we argue that PM based on these two polymers are the lead candidates for further in vivo studies.
Collapse
Affiliation(s)
- Maryam Sheybanifard
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Nataliia Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Mahsa Bagheri
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital, Aachen, Germany
| | - Jaleesa Bresseleers
- ChemConnection BV - Ardena Oss, 5349 AB Oss, the Netherlands; Department of Bio-Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Aida Varela-Moreira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands; Laboratory of Clinical Chemistry and Hematology (LKCH), University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Gabri van der Pluijm
- Leiden University Medical Center, Department of Urology, J-3-108, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
8
|
Tshweu LL, Shemis MA, Abdelghany A, Gouda A, Pilcher LA, Sibuyi NRS, Meyer M, Dube A, Balogun MO. Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin. RSC Adv 2020; 10:19770-19780. [PMID: 35520420 PMCID: PMC9054125 DOI: 10.1039/c9ra10872f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Moxifloxacin was conjugated to polyethylene glycol to segregate host cell toxicity from antimicrobial activity. The conjugate was then encapsulated into a polycaprolactone nanoparticle to assist the simultaneous delivery of multiple drugs to the site of microbial infection.
Collapse
Affiliation(s)
- Lesego L. Tshweu
- Biopolymer Modification & Therapeutics Lab
- Chemicals Cluster
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
| | - Mohamed A. Shemis
- Biochemistry & Molecular Biology Department
- Theodor Bilharz Research Institute
- 12411-Giza
- Egypt
| | - Aya Abdelghany
- Biochemistry & Molecular Biology Department
- Theodor Bilharz Research Institute
- 12411-Giza
- Egypt
| | - Abdullah Gouda
- Biochemistry & Molecular Biology Department
- Theodor Bilharz Research Institute
- 12411-Giza
- Egypt
| | - Lynne A. Pilcher
- Department of Chemistry
- University of Pretoria
- Pretoria
- South Africa
| | - Nicole R. S. Sibuyi
- DST/Mintek Nanotechnology Innovation Centre
- Biolabels Node
- Department of Biotechnology
- University of the Western Cape
- Cape Town
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre
- Biolabels Node
- Department of Biotechnology
- University of the Western Cape
- Cape Town
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group
- School of Pharmacy
- University of the Western Cape
- Cape Town
- South Africa
| | - Mohammed O. Balogun
- Biopolymer Modification & Therapeutics Lab
- Chemicals Cluster
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
| |
Collapse
|
9
|
Sze LP, Li HY, Lai KLA, Chow SF, Li Q, KennethTo KW, Lam TNT, Lee WYT. Oral delivery of paclitaxel by polymeric micelles: A comparison of different block length on uptake, permeability and oral bioavailability. Colloids Surf B Biointerfaces 2019; 184:110554. [PMID: 31627103 DOI: 10.1016/j.colsurfb.2019.110554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/23/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022]
Abstract
Drug solubility and permeability are two major challenges affecting oral delivery, the most popular route of drug administration. Polymeric micelles is an emerging technology for overcoming the current oral drug delivery hurdles. Previous study primarily focused on developing new polymers or new micellar systems and a systematic investigation of the impact of the polymer block length on solubility and permeability enhancement; and their subsequent effect on oral bioavailability is lacking. Herein, by using paclitaxel, a poorly soluble P-glycoproteins (P-gp) substrate, as a model, we aim to assess and compare the drug-loaded micelles prepared with two different molecular weight of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL), with the ultimate goal of establishing a strong scientific rationale for proper design of formulations for oral drug delivery. PEG-b-PCL (750:570) (PEG17-b-PCL5) and PEG-b-PCL (5k:10k) (PEG114-b-PCL88) effectively enhanced the solubility of paclitaxel compared to the free drug. PEG-b-PCL (750:570) increased both P-gp and non P-gp substrate cellular uptake and increased the apparent permeability coefficient of a P-gp substrate. In vivo animal study showed that PEG-b-PCL micelles efficiently enhanced the oral bioavailability of paclitaxel. In addition to solubility enhancement, polymer choice also plays a pivotal role in determining the oral bioavailability improvement, probably via permeation enhancement. In conclusion, the knowledge gained in this study enables rational design of polymeric micelles to overcome the current challenges of oral drug delivery and it also provides a basis for future clinical translation of the technology.
Collapse
Affiliation(s)
- Lai Pan Sze
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ho Yin Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ka Lun Alan Lai
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qingqing Li
- Faculty of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Kin Wah KennethTo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tai Ning Teddy Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wai Yip Thomas Lee
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Li Q, Sun M, Li G, Qiu L, Huang Z, Gong J, Huang J, Li G, Si L. The sub-chronic impact of mPEG2k-PCLx polymeric nanocarriers on cytochrome P450 enzymes after intravenous administration in rats. Eur J Pharm Biopharm 2019; 142:101-113. [DOI: 10.1016/j.ejpb.2019.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
|
11
|
Jensen D, Cao Y, Lu C, Wulff JE, Moffitt MG. Microfluidic encapsulation of SN-38 in block copolymer nanoparticles: effect of hydrophobic block composition on loading and release properties. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A gas–liquid microfluidic reactor was used to prepare polymer nanoparticles (PNPs) containing the drug 7-ethyl-10-hydroxy camptothecin (SN-38) from a series of poly(methyl caprolactone-co-caprolactone)-b-poly(ethylene oxide) (P(MCL-co-CL)-b-PEO) amphiphilic block copolymers with variable MCL content in the hydrophobic block. All three copolymers formed spheres with ∼20 nm core diameters by TEM, although some rigid rod-like aggregates were also formed by the PMCL-50 and PMCL-75 copolymers. SN-38 encapsulation efficiencies (EE = 2.7%–3.0%) and loading levels (DL = 2.0%–2.9%) were similar for the three copolymers. In vitro release kinetics became significantly slower as the MCL content increased, with release half times increasing monotonically from 3.4 to 6.2 h as the MCL content of the hydrophobic block increased from 50% to 100%. The ability to systematically tune release half times via controlled variation in the hydrophobic block composition, while maintaining constant PNP size and loading levels, represents an intriguing chemical handle for the optimization of SN-38 nanomedicines.
Collapse
Affiliation(s)
- Danica Jensen
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
| | - Yimeng Cao
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
| | - Changhai Lu
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
| | - Jeremy E. Wulff
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
| | - Matthew G. Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, P.O. Box 1700, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
12
|
Mittal P, Vardhan H, Ajmal G, Bonde GV, Kapoor R, Mittal A, Mishra B. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev Ind Pharm 2018; 45:365-378. [DOI: 10.1080/03639045.2018.1542706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pooja Mittal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Harsh Vardhan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Gufran Ajmal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Gunjan Vasant Bonde
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Ramit Kapoor
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Ashu Mittal
- Canberra Institute of Technology (CIT), Canberra (ACT), Australia
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| |
Collapse
|
13
|
Cao Y, Silverman L, Lu C, Hof R, Wulff JE, Moffitt MG. Microfluidic Manufacturing of SN-38-Loaded Polymer Nanoparticles with Shear Processing Control of Drug Delivery Properties. Mol Pharm 2018; 16:96-107. [PMID: 30477300 DOI: 10.1021/acs.molpharmaceut.8b00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-phase gas-liquid microfluidic reactors provide shear processing control of SN-38-loaded polymer nanoparticles (SN-38-PNPs). We prepare SN-38-PNPs from the block copolymer poly(methyl caprolactone- co-caprolactone)- block-poly(ethylene oxides) (P(MCL- co-CL)- b-PEO) using bulk and microfluidic methods and at different drug-to-polymer loading ratios and on-chip flow rates. We show that, as the microfluidic flow rate ( Q) increases, encapsulation efficiency and drug loading increase and release half times increase. Slower SN-38 release is obtained at the highest Q value ( Q = 400 μL/min) than is achieved using a conventional bulk preparation method. For all SN-38-PNP formulations, we find a dominant population (by number) of nanosized particles (<50 nm) along with a small number of larger aggregates (>100 nm). As Q increases, the size of aggregates decreases through a minimum and then increases, attributed to a flow-variable competition of shear-induced particle breakup and shear-induced particle coalescence. IC25 and IC50 values of the various SN-38-PNPs against MCF-7 cells show strong flow rate dependencies that mirror trends in particle size. SN-38-PNPs manufactured on-chip at intermediate flow rates show both minimum particle sizes and maximum potencies with a significantly lower IC25 value than the bulk-prepared sample. Compared to conventional bulk methods, microfluidic shear processing in two-phase reactors provides controlled manufacturing routes for optimizing and improving the properties of SN-38 nanomedicines.
Collapse
Affiliation(s)
- Yimeng Cao
- Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , BC V8W 3 V6 , Canada
| | - Lisa Silverman
- Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , BC V8W 3 V6 , Canada
| | - Changhai Lu
- Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , BC V8W 3 V6 , Canada
| | - Rebecca Hof
- Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , BC V8W 3 V6 , Canada
| | - Jeremy E Wulff
- Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , BC V8W 3 V6 , Canada
| | - Matthew G Moffitt
- Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , BC V8W 3 V6 , Canada
| |
Collapse
|
14
|
El-Lakany SA, Elgindy NA, Helmy MW, Abu-Serie MM, Elzoghby AO. Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer. Expert Opin Drug Deliv 2018; 15:835-850. [DOI: 10.1080/17425247.2018.1505858] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sarah A. El-Lakany
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nazik A. Elgindy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W. Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, El-Behira, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed O. Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technologies, Cambridge, MA, USA
| |
Collapse
|
15
|
Zhang X, Wu Y, Zhang M, Mao J, Wu Y, Zhang Y, Yao J, Xu C, Guo W, Yu B. Sodium cholate-enhanced polymeric micelle system for tumor-targeting delivery of paclitaxel. Int J Nanomedicine 2017; 12:8779-8799. [PMID: 29263668 PMCID: PMC5732553 DOI: 10.2147/ijn.s150196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of paclitaxel (PTX). High antitumor efficacy and low toxicity require that PTX mainly accumulated in tumors with little drug exposure to normal tissues. However, many PTX-loaded micelle formulations suffer from low stability, fast drug release, and lack of tumor-targeting capability in the circulation. To overcome these challenges, we developed a micellar formulation that consists of sodium cholate (NaC) and monomethoxy poly (ethylene glycol)-block-poly (d,l-lactide) (mPEG-PDLLA). METHODS PTX-loaded NaC-mPEG-PDLLA micelles (PTX-CMs) and PTX-loaded mPEG-PDLLA micelles (PTX-Ms) were formulated, and their characteristics, particle size, surface morphology, release behavior in vitro, pharmacokinetics and in vivo biodistributions were researched. In vitro and in vivo tumor inhibition effects were systematically investigated. Furthermore, the hemolysis and acute toxicity of PTX-CMs were also evaluated. RESULTS The size of PTX-CMs was 53.61±0.75 nm and the ζ-potential was -19.73±0.68 mV. PTX was released much slower from PTX-CMs than PTX-Ms in vitro. Compared with PTX-Ms, the cellular uptake of PTX-CMs was significantly reduced in macrophages and significantly increased in human cancer cells, and therefore, PTX-CMs showed strong growth inhibitory effects on human cancer cells. In vivo, the plasma AUC0-t of PTX-CMs was 1.8-fold higher than that of PTX-Ms, and 5.2-fold higher than that of Taxol. The biodistribution study indicated that more PTX-CMs were accumulated in tumor than PTX-Ms and Taxol. Furthermore, the significant antitumor efficacy of PTX-CMs was observed in mice bearing BEL-7402 hepatocellular carcinoma and A549 lung carcinoma. Results from drug safety assessment studies including acute toxicity and hemolysis test revealed that the PTX-CMs were safe for in vivo applications. CONCLUSION These results strongly revealed that NaC-mPEG-PDLLA micelles can tumor-target delivery of PTX and enhance drug penetration in tumor, suggesting that NaC-mPEG-PDLLA micelles are promising nanocarrier systems for anticancer drugs delivery.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
- Push-Kang Biotechnology, Hangzhou
| | - Yibo Wu
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Min Zhang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Jing Mao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Ju Yao
- Push-Kang Biotechnology, Hangzhou
| | - Chang Xu
- Push-Kang Biotechnology, Hangzhou
| | - Wenli Guo
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Bo Yu
- Push-Kang Biotechnology, Hangzhou
| |
Collapse
|
16
|
Bains A, Moffitt MG. Effects of chemical and processing variables on paclitaxel-loaded polymer nanoparticles prepared using microfluidics. J Colloid Interface Sci 2017; 508:203-213. [DOI: 10.1016/j.jcis.2017.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
17
|
Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone) nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2017.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Xu Z, Lu C, Lindenberger C, Cao Y, Wulff JE, Moffitt MG. Synthesis, Self-Assembly, and Drug Delivery Characteristics of Poly(methyl caprolactone- co-caprolactone)- b-poly(ethylene oxide) Copolymers with Variable Compositions of Hydrophobic Blocks: Combining Chemistry and Microfluidic Processing for Polymeric Nanomedicines. ACS OMEGA 2017; 2:5289-5303. [PMID: 30023746 PMCID: PMC6044932 DOI: 10.1021/acsomega.7b00829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 06/08/2023]
Abstract
The synthesis, characterization, and self-assembly of a series of biocompatible poly(methyl caprolactone-co-caprolactone)-b-poly(ethylene oxide) amphiphilic block copolymers with variable MCL contents in the hydrophobic block are described. Self-assembly gives rise to polymeric nanoparticles (PNPs) with hydrophobic cores that decrease in crystallinity as the MCL content increases, and their morphologies and sizes show nonmonotonic trends with MCL content. PNPs loaded with the anticancer drug paclitaxel (PAX) give rise to in vitro PAX release rates and MCF-7 GI50 (50% growth inhibition concentration) values that decrease as the MCL content increases. We also show for selected copolymers that microfluidic manufacturing at a variable flow rate enables further control of PAX release rates and enhances MCF-7 antiproliferation potency. These results indicate that more effective and specific drug delivery PNPs are possible through tangential efforts combining polymer synthesis and microfluidic manufacturing.
Collapse
|
19
|
Bains A, Cao Y, Kly S, Wulff JE, Moffitt MG. Controlling Structure and Function of Polymeric Drug Delivery Nanoparticles Using Microfluidics. Mol Pharm 2017; 14:2595-2606. [PMID: 28520436 DOI: 10.1021/acs.molpharmaceut.7b00177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We demonstrate control of multiscale structure and drug delivery function for paclitaxel (PAX)-loaded polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) polymeric nanoparticles (PNPs) via synthesis and flow-directed shear processing in a two-phase gas-liquid microfluidic reactor. This strategy takes a page from the engineering of commodity plastics, where processing rather than polymer chemistry provides an experimental handle on properties and function. PNPs formed from copolymers with three different PCL block lengths show sizes, morphologies, and loading efficiencies that depend on both the PCL block length and the microfluidic flow rate. By varying flow rate and comparing with a conventional bulk method of PNP preparation, we show that flow-variable shear processing provides control of PNP sizes and morphologies and enables slower PAX release times (up to 2 weeks) compared to bulk-prepared PNPs. Antiproliferative effects against cultured MCF-7 breast cancer cells were greatest for PNPs formed at an intermediate flow rate, corresponding to small and low-polydispersity spheres formed uniquely at this flow condition. Formation and flow-directed nanoscale shear processing in gas-liquid microfluidic reactors provides a manufacturing platform for drug delivery PNPs that could enable more effective and selective nanomedicines through multiscale structural control.
Collapse
Affiliation(s)
- Aman Bains
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Yimeng Cao
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Sundiata Kly
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| |
Collapse
|
20
|
Cabeza L, Ortiz R, Prados J, Delgado ÁV, Martín-Villena MJ, Clares B, Perazzoli G, Entrena JM, Melguizo C, Arias JL. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study. Eur J Pharm Sci 2017; 102:24-34. [DOI: 10.1016/j.ejps.2017.02.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
|
21
|
Xu Z, Lu C, Riordon J, Sinton D, Moffitt MG. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12781-12789. [PMID: 27934536 DOI: 10.1021/acs.langmuir.6b03243] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.
Collapse
Affiliation(s)
- Zheqi Xu
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, BC, Canada V8W 3V6
| | - Changhai Lu
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, BC, Canada V8W 3V6
| | - Jason Riordon
- Department of Mechanical and Industrial Engineering and Institute for Sustainable Energy, University of Toronto , 5 King's College Road, Toronto, ON, Canada M5S 3G8
| | - David Sinton
- Department of Mechanical and Industrial Engineering and Institute for Sustainable Energy, University of Toronto , 5 King's College Road, Toronto, ON, Canada M5S 3G8
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, BC, Canada V8W 3V6
| |
Collapse
|
22
|
Yang Y, Bteich J, Li SD. Current Update of a Carboxymethylcellulose-PEG Conjugate Platform for Delivery of Insoluble Cytotoxic Agents to Tumors. AAPS JOURNAL 2016; 19:386-396. [PMID: 27873118 DOI: 10.1208/s12248-016-0014-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Cytotoxic chemotherapeutic agents are used as the standard therapy for a range of significant cancers, but many of these drugs suffer from poor water solubility and low selectivity, limiting their clinical efficacy. To overcome these shortcomings, Cellax™ drug delivery platform was developed. Cellax™ is a polymer-based nanoparticle drug delivery system designed to solubilize hydrophobic drugs and target them to solid tumors, thereby enhancing the efficacy and reducing the side effects. Cellax-docetaxel (Cellax-DTX) displayed improved pharmacokinetic, safety, and efficacy profiles compared to native DTX (Taxotere®) and Nab-paclitaxel (Nab-PTX, Abraxane®) in multiple animal models. Cellax-DTX was shown to interact with serum albumin and SPARC (secreted protein acidic and rich in cysteine) that is highly expressed by tumor stromal cells, leading to superior stroma depleting activity in orthotopic breast and pancreatic tumor models and subsequently reduced incidence of visceral metastases compared to free DTX and Nab-PTX. The Cellax™ platform was employed to deliver podophyllotoxin (Cellax-PPT) and cabazitaxel (Cellax-CBZ), and increased their safety and efficacy against multidrug-resistant tumors. This review discusses the rational design of the Cellax™ platform and summarizes the preclinical results. A multifunctional version of Cellax™ and a biomarker for predicting Cellax™ efficacy were developed and identified to promote the personalized use. Perspectives and future plans for this platform technology are also provided.
Collapse
Affiliation(s)
- Yang Yang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, 5519-2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Joseph Bteich
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, M5G 0A3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, 5519-2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
23
|
Key aspects to yield low dispersity of PEO-b-PCL diblock copolymers and their mesoscale self-assembly. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Ahsan MN, Verma PRP. Development, optimization and pharmacodynamic assessment of olanzapine based lipidic SNEDDS for proficient management of psychosis. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Silk fibroin as a non-thrombogenic biomaterial. Int J Biol Macromol 2016; 90:11-9. [DOI: 10.1016/j.ijbiomac.2016.01.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 02/06/2023]
|
26
|
Bains A, Wulff JE, Moffitt MG. Microfluidic synthesis of dye-loaded polycaprolactone-block-poly(ethylene oxide) nanoparticles: Insights into flow-directed loading and in vitro release for drug delivery. J Colloid Interface Sci 2016; 475:136-148. [PMID: 27163840 DOI: 10.1016/j.jcis.2016.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/06/2023]
Abstract
Using the fluorescent probe dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) as a surrogate for hydrophobic drugs, we investigate the effects of water content and on-chip flow rate on the multiscale structure, loading and release properties of DiI-loaded poly(ε-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles produced in a gas-liquid segmented microfluidic device. We find a linear increase in PCL crystallinity within the nanoparticle cores with increasing flow rate, while mean nanoparticle sizes first decrease and then increase with flow rate coincident with the disappearance and reappearance of long filament nanoparticles. Loading efficiencies at the lower water content (cwc+10wt%) are generally higher (up to 94%) compared to loading efficiencies (up to 53%) at the higher water content (cwc+75wt%). In vitro release times range between ∼2 and 4days for nanoparticles produced at cwc+10wt% and >15days for nanoparticles produced at cwc+75wt%. At the lower water content, slower release of DiI is found for nanoparticles produced at higher flow rate, while at high water content, release times first decrease and then increase with flow rate. Finally, we investigate the effects of the chemical and physical characteristics of the release medium on the kinetics of in vitro DiI release and nanoparticle degradation. This work demonstrates the general utility of dye-loaded nanoparticles as model systems for screening chemical and flow conditions for producing drug delivery formulations within microfluidic devices.
Collapse
Affiliation(s)
- Aman Bains
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada.
| |
Collapse
|
27
|
Wu Q, Tang X, Liu X, Hou Y, Li H, Yang C, Yi J, Song X, Zhang G. Thermo/pH Dual Responsive Mixed-Shell Polymeric Micelles Based on the Complementary Multiple Hydrogen Bonds for Drug Delivery. Chem Asian J 2015; 11:112-9. [PMID: 26377387 DOI: 10.1002/asia.201500847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 12/23/2022]
Abstract
Thermo/pH dual responsive mixed-shell polymeric micelles based on multiple hydrogen bonding were prepared by self-assembly of diaminotriazine-terminated poly(ɛ-caprolactone) (DAT-PCL), uracil-terminated methoxy poly(ethylene glycol) (MPEG-U), and uracil-terminated poly(N-vinylcaprolactam) (PNVCL-U) at room temperature. PCL acted as the core and MPEG/PNVCL as the mixed shell. Increasing the temperature, PNVCL collapsed and enclosed the PCL core, while MPEG penetrated through the PNVCL shell, thereby leading to the formation of MPEG channels on the micelles surface. The low cytotoxicity of the mixed micelles was confirmed by an MTT assay against BGC-823 cells. Studies on the in vitro drug release showed that a much faster release rate was observed at pH 5.0 compared to physiological pH, owing to the dissociation of hydrogen bonds. Therefore, the mixed-shell polymeric micelles would be very promising candidates in drug delivery systems.
Collapse
Affiliation(s)
- Qiuhua Wu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Xiuping Tang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Yu Hou
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - He Li
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Chen Yang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Jie Yi
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Ximing Song
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Guolin Zhang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China.
| |
Collapse
|
28
|
Bains A, Cao Y, Moffitt MG. Multiscale Control of Hierarchical Structure in Crystalline Block Copolymer Nanoparticles Using Microfluidics. Macromol Rapid Commun 2015; 36:2000-5. [DOI: 10.1002/marc.201500359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/17/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Aman Bains
- Department of Chemistry; University of Victoria; P.O. Box 3065 Victoria BC V8W 3V6 Canada
| | - Yimeng Cao
- Department of Chemistry; University of Victoria; P.O. Box 3065 Victoria BC V8W 3V6 Canada
| | - Matthew G. Moffitt
- Department of Chemistry; University of Victoria; P.O. Box 3065 Victoria BC V8W 3V6 Canada
| |
Collapse
|
29
|
A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat Commun 2015; 6:7939. [PMID: 26239362 PMCID: PMC4753781 DOI: 10.1038/ncomms8939] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/29/2015] [Indexed: 12/26/2022] Open
Abstract
Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery.
Collapse
|
30
|
Naksuriya O, Shi Y, van Nostrum CF, Anuchapreeda S, Hennink WE, Okonogi S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 2015; 94:501-12. [PMID: 26134273 DOI: 10.1016/j.ejpb.2015.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022]
Abstract
Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy.
Collapse
Affiliation(s)
- Ornchuma Naksuriya
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yang Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508TB Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508TB Utrecht, The Netherlands
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508TB Utrecht, The Netherlands
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
31
|
Shi Y, van der Meel R, Theek B, Blenke EO, Pieters EH, Fens MH, Ehling J, Schiffelers RM, Storm G, van Nostrum CF, Lammers T, Hennink WE. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles. ACS NANO 2015; 9:3740-52. [PMID: 25831471 PMCID: PMC4523313 DOI: 10.1021/acsnano.5b00929] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achiv prolonged circulation kinetics. As a result, PTX deposition in tumors is increased, while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed PTX-loaded micelles which are stable without chemical cross-linking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses, while they induced complete tumor regression in two different xenograft models (i.e., A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index.
Collapse
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Roy van der Meel
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Benjamin Theek
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Erik Oude Blenke
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Ebel H.E. Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Marcel H.A.M. Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Twan Lammers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Amphiphilic poly(amino acid) based micelles applied to drug delivery: The in vitro and in vivo challenges and the corresponding potential strategies. J Control Release 2015; 199:84-97. [DOI: 10.1016/j.jconrel.2014.12.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
|
33
|
Same-single-cell analysis using the microfluidic biochip to reveal drug accumulation enhancement by an amphiphilic diblock copolymer drug formulation. Anal Bioanal Chem 2014; 406:7071-83. [PMID: 25315452 DOI: 10.1007/s00216-014-8151-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles in drug delivery, and it is usually responsible for unsuccessful cancer treatment. MDR may be overcome by using MDR inhibitors. Among different classes of these inhibitors that block drug efflux mediated by permeability-glycoprotein (P-gp), less toxic amphiphilic diblock copolymers composed of methoxypolyethyleneglycol-block-polycaprolactone (MePEG-b-PCL) have been studied extensively. The purpose of this work is to evaluate how these copolymer molecules can reduce the efflux, thereby enhancing the accumulation of P-gp substrates (e.g., daunorubicin or DNR) in MDR cells. Using conventional methods, it was found that the low-molecular-weight diblock copolymer, MePEG17-b-PCL5 (PCL5), enhanced drug accumulation in MDCKII-MDR1 cells, but the high-molecular-weight version, MePEG114-b-PCL200 (PCL200), did not. However, when PCL200 was mixed with PCL5 (and DNR) in order to encapsulate them to facilitate drug delivery, there was no drug enhancement effect attributable to PCL5, and the reason for this negative result was unclear. Since drug accumulation measured on different cell batches originated from single cells, we employed the same-single-cell analysis in the accumulation mode (SASCA-A) to find out the reason. A microfluidic biochip was used to select single MDR cells, and the accumulation of DNR was fluorescently measured in real time on these cells in the absence and presence of PCL5. The SASCA-A method allowed us to obtain drug accumulation information faster in comparison to conventional assays. The SASCA-A results, and subsequent curve-fitting analysis of the data, have confirmed that when PCL5 was encapsulated in PCL200 nanoparticles as soon as they were synthesized, the ability of PCL5 to enhance DNR accumulation was retained, thus suggesting PCL200 as a promising delivery system for encapsulating P-gp inhibitors, such as PCL5.
Collapse
|
34
|
New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(−)-functionalized nanocapsules. Pharm Res 2014; 31:2975-87. [DOI: 10.1007/s11095-014-1392-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
|
35
|
Roy A, Bhattacharyya M, Ernsting MJ, May JP, Li SD. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:349-68. [PMID: 24652678 DOI: 10.1002/wnan.1264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Taxanes are one of the most potent and broadest spectrum chemotherapeutics used clinically, but also induce significant side effects. Different strategies have been developed to produce a safer taxane formulation. Development of polysaccharide drug conjugates has increased in the recent years because of the demonstrated biocompatibility, biodegradability, safety, and low cost of the biopolymers. This review focuses on polysaccharide-taxane conjugates and provides an overview on various conjugation strategies and their effect on the efficacy. Detailed analyses on the designing factors of an effective polysaccharide-drug conjugate are provided with a discussion on the future direction of this field. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Aniruddha Roy
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
36
|
Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 2013; 172:782-94. [PMID: 24075927 DOI: 10.1016/j.jconrel.2013.09.013] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/30/2022]
Abstract
Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
- Mark J Ernsting
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada; Ryerson University, Faculty of Architectural Science and Engineering, Toronto, Ontario M5B 1Z2, Canada
| | | | | | | |
Collapse
|
37
|
Fuhrmann K, Połomska A, Aeberli C, Castagner B, Gauthier MA, Leroux JC. Modular design of redox-responsive stabilizers for nanocrystals. ACS NANO 2013; 7:8243-8250. [PMID: 23968310 DOI: 10.1021/nn4037317] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many potent drugs are difficult to administer intravenously due to poor aqueous solubility. A common approach for addressing this issue is to process them into colloidal dispersions known as "nanocrystals" (NCs). However, NCs possess high-energy surfaces that must be stabilized with surfactants to prevent aggregation. An optimal surfactant should have high affinity for the nanocrystal's surface to stabilize it, but may also include a trigger mechanism that could offer the possibility of altering size distribution and uptake of the NC. This study presents a modular and systematic strategy for optimizing the affinity of polymeric stabilizers for drug nanocrystals both before and after oxidation (i.e., the selected trigger), thus allowing for the optimal responsiveness for a given application to be identified. A library of 10 redox-responsive polymer stabilizers was prepared by postpolymerization modification, using the thiol-yne reaction, of two parent block copolymers. The stabilizing potential of these polymers for paclitaxel NCs is presented as well as the influence of oxidation on size and dissolution following exposure to reactive oxygen species (ROS), which are strongly associated with chronic inflammation and cancer. Owing to the versatility of postpolymerization modification, this contribution provides general tools for preparing triggered-sheddable stabilizing coatings for nanoparticles.
Collapse
Affiliation(s)
- Kathrin Fuhrmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich (ETH Zürich), Wolfgang-Pauli-Straße 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Sosnik A. Temperature- and pH-sensitive Polymeric Micelles for Drug Encapsulation, Release and Targeting. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
More than 50% of the drugs in the market and 70% of the new candidates are poorly water soluble according to the Biopharmaceutic Classification System (BCS(. Poor aqueous solubility and physico-chemical stability of drugs in biological fluids remain key limitations in oral, parenteral and transdermal administration and contribute to an increase the drug attrition rate. Motivated by the outbreak of nanotechnology, different nanocarriers made of lipids and polymers have been designed and developed to address these limitations. Moreover, robust platforms were exploited to achieve the temporal and spatial release of drugs, thus constraining the systemic exposure to toxic agents and the appearance of severe adverse effects and improving the safety ratio. Owing to unique features such as (i( great chemical flexibility, (ii( capacity to host, solubilize and physico-chemically stabilize poorly water soluble drugs, (iii( ability to accumulate selectively in highly vascularized solid tumors and (iv( ability of single amphiphile molecules (unimers( to inhibit the activity of different pumps of the ATP-binding cassette superfamily (ABCs(, polymeric micelles have emerged as one of the most versatile nanotechnologies. Despite their diverse applications to improve the therapeutic outcomes, polymeric micelles remain clinically uncapitalized. The present chapter overviews the most recent applications of temperature- and pH-responsive polymeric micelles for the encapsulation, release and targeting of drugs and discusses the perspectives for these unique nanocarriers in the near future.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED) Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín St., Buenos Aires CP1113 Argentina and National Science Research Council (CONICET) Buenos Aires, Argentina
| |
Collapse
|
39
|
Wan CPL, Letchford K, Jackson JK, Burt HM. The combined use of paclitaxel-loaded nanoparticles with a low-molecular-weight copolymer inhibitor of P-glycoprotein to overcome drug resistance. Int J Nanomedicine 2013; 8:379-91. [PMID: 23378760 PMCID: PMC3556923 DOI: 10.2147/ijn.s38737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two types of nanoparticles were prepared using the diblock copolymer methoxy poly(ethylene glycol)-block-poly(caprolactone) (MePEG-b-PCL), with either a short PCL block length, which forms micelles, or with a longer PCL block length, which forms kinetically “frozen core” structures termed nanospheres. Paclitaxel (PTX)-loaded micelles and nanospheres were evaluated for their cytotoxicity, cellular polymer uptake, and drug accumulation in drug-sensitive (Madin–Darby Canine Kidney [MDCK]II) and multidrug-resistant (MDR) P-glycoprotein (P-gp)-overexpressing (MDCKII-MDR1) cell lines. Both types of PTX-loaded nanoparticles were equally effective at inhibiting proliferation of MDCKII cells, but PTX-loaded micelles were more cytotoxic than nanospheres in MDCKII-MDR1 cells. The intracellular accumulation of both PTX and the diblock copolymers were similar for both nanoparticles, suggesting that the difference in cytotoxicity might be due to the different drug-release profiles. Furthermore, the cytotoxicity of these PTX-loaded nanoparticles was enhanced when these systems were subsequently or concurrently combined with a low-molecular-weight MePEG-b-PCL diblock copolymer, which we have previously demonstrated to be an effective P-gp inhibitor. These results suggest that the dual functionality of MePEG-b-PCL might be useful in delivering drug intracellularly and in modulating P-gp in order to optimize the cytotoxicity of PTX in multidrug-resistant cells.
Collapse
|
40
|
Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release 2012; 162:575-81. [PMID: 22967490 DOI: 10.1016/j.jconrel.2012.07.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022]
Abstract
Cellax is a PEGylated carboxymethylcellulose conjugate of docetaxel (DTX) which condenses into a 120-nm nanoparticle, and was compared against the approved clinical taxane nanoformulation (Abraxane®) in mouse models. Cellax increased the systemic exposure of taxanes by 37× compared to Abraxane, and improved the delivery specificity: Cellax uptake was selective to the tumor, liver and spleen, with a 203× increase in tumor accumulation compared to Abraxane. The concentration of released DTX in Cellax treated tumors was well above the IC50 for at least 10 d, while paclitaxel released from Abraxane was undetectable after 24h. In s.c. PC3 (prostate) and B16F10 (melanoma) models, Cellax exhibited enhanced efficacy and was better tolerated compared to Abraxane. In an orthotopic 4T1 breast tumor model, Cellax reduced the incidence of lung metastasis to 40% with no metastasic incidence in other tissues. Mice treated with Abraxane displayed increased lung metastasic incidence (>85%) with metastases detected in the bone, liver, spleen and kidney. These results confirm that Cellax is a more effective drug delivery strategy compared to the approved taxane nanomedicine.
Collapse
Affiliation(s)
- Mark J Ernsting
- Drug Delivery and Formulation, Medicinal Chemistry Platform, Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Li C, Wang B, Liu Y, Cao J, Feng T, Chen Y, Luo X. Synthesis and evaluation of star-shaped poly(ϵ-caprolactone)-poly(2-hydroxyethyl methacrylate) as potential anticancer drug delivery carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:741-57. [PMID: 23565913 DOI: 10.1080/09205063.2012.709417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Novel star-shaped poly(ϵ-caprolactone)-b-poly(2-hydroxyethyl methacrylate) (sPCL-b-PHEMA) with 3 arm and 6 arm was synthesized by a combination of ring-opening polymerization and atom transfer radical polymerization. The structure of copolymers was confirmed by nuclear magnetic resonance ((1)H and (13)C NMR) and Fourier transform infrared spectroscopy. The thermal behavior was measured by differential scanning calorimetry. The results showed that Tc, Tm, and Xc of the sPCL-b-PHEMA were reduced along with the increase in the length of the PHEMA block. The copolymers could self-assemble into dispersed micelles with quite low (×10(-4)mg/mL) critical micelle concentration. The size and morphology of the micelles were characterized by dynamic light scattering and HAADF scanning transmission electron microscopy. It was found that the micelles were around 20-70 nm with a regular spherical shape. Moreover, drug loading content and encapsulation efficiency of paclitaxel by 3sPCL-b-PHEMA micelles were much lower than the values of 6sPCL-b-PHEMA micelles. The drug release experiments demonstrated that paclitaxelrelease was two-phase release profile and relative to the structure of sPCL-b-PHEMA.The in vitro cytotoxicity of sPCL-b-PHEMA micelles was evaluated using methylthiazoletetrazolium assay. The results showed no apparent inhibition effect on the Hela cells. These preliminary studies suggest that sPCL-b-PHEMA has a possible application as anticancer drug delivery carriers.
Collapse
Affiliation(s)
- Chenglong Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Yoncheva K, Calleja P, Agüeros M, Petrov P, Miladinova I, Tsvetanov C, Irache JM. Stabilized micelles as delivery vehicles for paclitaxel. Int J Pharm 2012; 436:258-64. [PMID: 22721848 DOI: 10.1016/j.ijpharm.2012.06.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 11/29/2022]
Abstract
Paclitaxel is an antineoplastic drug used against a variety of tumors, but its low aqueous solubility and active removal caused by P-glycoprotein in the intestinal cells hinder its oral administration. In our study, new type of stabilized Pluronic micelles were developed and evaluated as carriers for paclitaxel delivery via oral or intravenous route. The pre-stabilized micelles were loaded with paclitaxel by simple solvent/evaporation technique achieving high encapsulation efficiency of approximately 70%. Gastrointestinal transit of the developed micelles was evaluated by oral administration of rhodamine-labeled micelles in rats. Our results showed prolonged gastrointestinal residence of the marker encapsulated into micelles, compared to a solution containing free marker. Further, the oral administration of micelles in mice showed high area under curve of micellar paclitaxel (similar to the area of i.v. Taxol(®)), longer mean residence time (9-times longer than i.v. Taxol(®)) and high distribution volume (2-fold higher than i.v. Taxol(®)) indicating an efficient oral absorption of paclitaxel delivered by micelles. Intravenous administration of micelles also showed a significant improvement of pharmacokinetic parameters of micellar paclitaxel vs. Taxol(®), in particular higher area under curve (1.2-fold), 5-times longer mean residence time and lower clearance, indicating longer systemic circulation of the micelles.
Collapse
Affiliation(s)
- Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, 2 Dunav Str., 1000 Sofia, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
43
|
Miller T, Hill A, Uezguen S, Weigandt M, Goepferich A. Analysis of immediate stress mechanisms upon injection of polymeric micelles and related colloidal drug carriers: implications on drug targeting. Biomacromolecules 2012; 13:1707-18. [PMID: 22462502 DOI: 10.1021/bm3002045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polymeric micelles are ideal carriers for solubilization and targeting applications using hydrophobic drugs. Stability of colloidal aggregates upon injection into the bloodstream is mandatory to maintain the drugs' targeting potential and to influence pharmacokinetics. In this review we analyzed and discussed the most relevant stress mechanisms that polymeric micelles and related colloidal carriers encounter upon injection, including (1) dilution, (2) interactions with blood components, and (3) immunological responses of the body. In detail we analyzed the opsonin-dysopsonin hypothesis that points at a connection between a particles' protein-corona and its tissue accumulation by the enhanced permeability and retention (EPR) effect. In the established theory, size is seen as a necessary condition to reach nanoparticle accumulation in disease modified tissue. There is, however, mounting evidence of other sufficient conditions (e.g., particle charge, receptor recognition of proteins adsorbed onto particle surfaces) triggering nanoparticle extravasation by active mechanisms. In conclusion, the analyzed stress mechanisms are directly responsible for in vivo success or failure of the site-specific delivery with colloidal carrier systems.
Collapse
Affiliation(s)
- Tobias Miller
- Exploratory Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | | | | | | | | |
Collapse
|
44
|
Wan CPL, Jackson JK, Pirmoradi FN, Chiao M, Burt HM. Increased accumulation and retention of micellar paclitaxel in drug-sensitive and P-glycoprotein-expressing cell lines following ultrasound exposure. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:736-744. [PMID: 22425383 DOI: 10.1016/j.ultrasmedbio.2012.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 05/31/2023]
Abstract
Ultrasound treatment has been shown to enhance the uptake of both hydrophilic and hydrophobic compounds into PC3 and Huvec cell lines using an insonation regimen of a single 10-s burst of high-frequency (4 MHz), moderate intensity (32 W/cm(2)) ultrasound. The purpose of this work was to evaluate the effect of this ultrasound regimen on the cellular accumulation of paclitaxel (PTX) loaded in copolymer micellar of methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (MePEG-b-PDLLA) in both drug-sensitive (MDCKII and MCF-7) and P-glycoprotein (Pgp)-expressing (MDCKII-MDR and NCI-ADR) cell lines. There were no effects of ultrasound on hydrodynamic diameters of micelles and the release of FRET pairs, indicating the integrity of micelles was maintained. There was a two-fold increase in intracellular PTX for all ultrasound-treated drug-sensitive cell lines and their respective drug-resistant counterparts compared with no ultrasound. Significant decreases in drug efflux rates were observed at 20, 40 and 60 min for both drug-sensitive and -resistant cell lines receiving ultrasound. The enhanced accumulation and retention of PTX by ultrasound resulted in greater cytotoxicity in both MDCKII and MDCKII-MDR cell lines, as indicated by the MTS assay. These data suggest that ultrasound may facilitate the uptake of intact paclitaxel-loaded micelles into cells, allowing greater retention of drug in both Pgp and non-Pgp-expressing cells.
Collapse
|
45
|
Bender EA, Adorne MD, Colomé LM, Abdalla DS, Guterres SS, Pohlmann AR. Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm 2012; 426:271-279. [DOI: 10.1016/j.ijpharm.2012.01.051] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
|
46
|
Zhao Y, Li J, Yu H, Wang G, Liu W. Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG-PLLA-PMMD) as self-assembly micelle delivery system for paclitaxel. Int J Pharm 2012; 430:282-91. [PMID: 22484705 DOI: 10.1016/j.ijpharm.2012.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/12/2012] [Accepted: 03/25/2012] [Indexed: 11/27/2022]
Abstract
A series of biodegradable polydepsipeptides based new triblock copolymers, poly (ethylene glycol)-poly(L-lactide)-poly(3(S)-methyl-morpholine-2,5-dione) (mPEG-PLLA-PMMD) have been synthesized and characterized as self-assembly micelle delivery system for paclitaxel (PTX). Compared to the mPEG(2000)-PLLA(2000) diblock copolymers, the triblock copolymers present more benefits such as lower CMC value, positive-shifted zeta potential, better drug loading efficiency and stability. Among the triblock polymers, mPEG(2000)-PLLA(2000)-PMMD(1400) micelles present low cytotoxicity and promote the anti-cancer activity of PTX on A-549 and HCT-116cells. In addition, mPEG(2000)-PLLA(2000)-PMMD(1400) micelles prolongs the circulation time of PTX in rat after i.v. injection (5 mg/kg) than that of mPEG(2000)-PLLA(2000) micelles and Taxol. The half life (t(1/2β)), mean residence time (MRT), AUC(0-∞) and clearance (CL) for PTX-loaded mPEG(2000)-PLLA(2000)-PMMD(1400) micelles are determined to be 1.941 h, 2.683 h, 5.220 μg/m Lh (1.8-fold to mPEG(2000)-PLLA(2000) group), 0.967 L/h kg(-1), respectively. In conclusion, mPEG(2000)-PLLA(2000)-PMMD(1400) copolymer could be developed as one of the promising vectors to anti-cancer agents for chemotherapeutics.
Collapse
Affiliation(s)
- Yanlei Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | |
Collapse
|
47
|
Zheng N, Dai W, Du W, Zhang H, Lei L, Zhang H, Wang X, Wang J, Zhang X, Gao J, Zhang Q. A Novel Lanreotide-Encoded Micelle System Targets Paclitaxel to the Tumors with Overexpression of Somatostatin Receptors. Mol Pharm 2012; 9:1175-88. [DOI: 10.1021/mp200464x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Wenbing Dai
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Wenwen Du
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Haoran Zhang
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Liandi Lei
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Hua Zhang
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Xueqing Wang
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Jiancheng Wang
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Xuan Zhang
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| | - Jinming Gao
- Harold C. Simmons
Comprehensive
Cancer Center, Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Qiang Zhang
- State Key Laboratory of Natural
and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic
of China
| |
Collapse
|
48
|
Fuhrmann K, Schulz JD, Gauthier MA, Leroux JC. PEG nanocages as non-sheddable stabilizers for drug nanocrystals. ACS NANO 2012; 6:1667-1676. [PMID: 22296103 DOI: 10.1021/nn2046554] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many potent drugs are difficult to administer intravenously due to poor aqueous solubility. One validated approach for addressing this issue is to process them into colloidal dispersions known as "nanocrystals" (NCs). However, NCs possess high-energy surfaces that must be stabilized with surfactants to prevent aggregation. In addition, the stabilizer provides a means of anchoring targeting moieties to the NCs for achieving deposition or uptake at specified locations. Nevertheless, a critical challenge is that the surfactant (and consequently the targeting agents) can be shed upon high dilution. This work demonstrates successful cross-linking by click chemistry of stabilizers around paclitaxel NCs to form polymeric "nanocages". Cross-linking does not cause aggregation, as evidenced by transmission electron microscopy, and the nanocages retained the particulate drug through a combination of physical entrapment and physisorption. Size measurements by dynamic light scattering showed that nanocages act as sterically stabilizing barriers to particle-particle interactions and aggregation. The nanocages were shown to be less shed from the NCs than comparable non-cross-linked stabilizers. This contribution provides crucial general tools for preparing poorly sheddable stabilizing coatings to NCs and potentially other classes of nanoparticles for which covalent attachment of the stabilizer to the particle is undesirable (e.g., a drug) or impossible (chemically inert). The presented approach also offers the possibility of more stably attaching targeting moieties to the latter by use of heterotelechelic PEG derivatives, which may favor active targeting and internalization by cells.
Collapse
Affiliation(s)
- Kathrin Fuhrmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich (ETH), Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
49
|
Ukawala M, Rajyaguru T, Chaudhari K, Manjappa AS, Pimple S, Babbar AK, Mathur R, Mishra AK, Murthy RSR. Investigation on design of stable etoposide-loaded PEG-PCL micelles: effect of molecular weight of PEG-PCL diblock copolymer on thein vitroandin vivoperformance of micelles. Drug Deliv 2012; 19:155-67. [DOI: 10.3109/10717544.2012.657721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Ernsting MJ, Foltz WD, Undzys E, Tagami T, Li SD. Tumor-targeted drug delivery using MR-contrasted docetaxel - carboxymethylcellulose nanoparticles. Biomaterials 2012; 33:3931-41. [PMID: 22369962 DOI: 10.1016/j.biomaterials.2012.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/07/2012] [Indexed: 01/08/2023]
Abstract
A carboxymethylcellulose-based polymer conjugate with nanoparticle forming properties (Cellax) has been shown to enhance the pharmacokinetics, specificity of biodistribution, anti-tumor efficacy and safety of docetaxel (DTX) in comparison to the Taxotere™ formulation. We examined Cellax and Taxotere efficacy in four tumor models (EMT-6, B16F10, PC3, and MDA-MB-231), and observed variances in efficacy. To explore whether differences in tumor uptake of Cellax were responsible for these effects, we incorporated superparamagnetic iron oxide nanoparticles (SPIONs) into Cellax particles to enable magnetic resonance (MR) imaging (Cellax-MR). In the EMT-6 tumor model, Cellax-MR nanoparticles exhibited peak tumor accumulation 3-24 h post intravenous injection, and 3 days post-treatment, significant MR contrast was still detected. The amount of Cellax-MR deposited in the EMT-6 tumors was quantifiable as a hypointense volume fraction, a value positively correlated with drug content as determined by LC/MS analysis (R(2) = 0.97). In the four tumor models, Cellax-MR uptake was linearly associated with anti-tumor efficacy (R(2) > 0.9), and was correlated with blood vessel density (R(2) > 0.9). We have affirmed that nanoparticle uptake is variable in tumor physiology, and that this efficacy-predictive parameter can be non-invasively estimated in real-time using a theranostic variant of Cellax.
Collapse
Affiliation(s)
- Mark J Ernsting
- Drug Delivery and Formulation Group, Medicinal Chemistry Platform, Ontario Institute for Cancer Research, MaRS Centre South Tower, Toronto, Ontario M5G 0A3, Canada
| | | | | | | | | |
Collapse
|