1
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
2
|
Tang H, Dong L, Xia X, Chen X, Ren M, Shu G, Fu H, Lin J, Zhao L, Zhang L, Cheng G, Wang X, Zhang W. Preparation, Optimization, and Anti-Pulmonary Infection Activity of Casein-Based Chrysin Nanoparticles. Int J Nanomedicine 2024; 19:5511-5522. [PMID: 38895144 PMCID: PMC11182753 DOI: 10.2147/ijn.s457643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Chrysin has a wide range of biological activities, but its poor bioavailability greatly limits its use. Here, we attempted to prepare casein (cas)-based nanoparticles to promote the biotransfer of chrysin, which demonstrated better bioavailability and anti-infection activity compared to free chrysin. Methods Cas-based chrysin nanoparticles were prepared and characterized, and most of the preparation process was optimized. Then, the in vitro and in vivo release characteristics were studied, and anti-pulmonary infection activity was evaluated. Results The constructed chrysin-cas nanoparticles exhibited nearly spherical morphology with particle size and ζ potential of 225.3 nm and -33 mV, respectively. These nanoparticles showed high encapsulation efficiency and drug-loading capacity of 79.84% ± 1.81% and 11.56% ± 0.28%, respectively. In vitro release studies highlighted a significant improvement in the release profile of the chrysin-cas nanoparticles (CCPs). In vivo experiments revealed that the relative oral bioavailability of CCPs was approximately 2.01 times higher than that of the free chrysin suspension. Further investigations indicated that CCPs effectively attenuated pulmonary infections caused by Acinetobacter baumannii by mitigating oxidative stress and reducing pro-inflammatory cytokines levels, and the efficacy was better than that of the free chrysin suspension. Conclusion The findings underscore the advantageous bioavailability of CCPs and their protective effects against pulmonary infections. Such advancements position CCPs as a promising pharmaceutical agent and candidate for future therapeutic drug innovations.
Collapse
Affiliation(s)
- Huaqiao Tang
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Liying Dong
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Xue Xia
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Xinling Chen
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Meichen Ren
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Gang Shu
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Hualin Fu
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Juchun Lin
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Ling Zhao
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, People’s Republic of China
| | - Guoqiang Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, People’s Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| | - Wei Zhang
- College of Veterinary, Sichuan Agricultural University, Chengdu, 611130, People’s Republic of China
| |
Collapse
|
3
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Zong M, Tong X, Farid MS, Chang C, Guo Y, Lian L, Zeng X, Pan D, Wu Z. Enhancement of gum Arabic/casein microencapsulation on the survival of Lactiplantibacillus plantarum in the stimulated gastrointestinal conditions. Int J Biol Macromol 2023; 246:125639. [PMID: 37394217 DOI: 10.1016/j.ijbiomac.2023.125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Probiotic products that contain lactobacilli have long histories of safe use as Lactobacillus strains have many physiological functions in the gastrointestinal tract (GIT). However, the viability of probiotics can be affected by food processing and the adverse environment. This study investigated the O/W (Oil-in-water emulsions) emulsions formed by coagulation of casein/GA (Gum Arabic) complexes for Lactiplantibacillus plantarum microencapsulation, and the stability of the strains during gastrointestinal environment were also determined. The results showed that the particle size of the emulsion decreased from 9.72 μm to 5.48 μm when the GA concentration increased from 0 to 2 (w/v), and the emulsion particles were found to be more uniform as observed by CLSM (Confocal Laser Scanning Microscope). The surface of this microencapsulated casein/GA composite forms smooth, dense agglomerates and has high viscoelasticity, which effectively improved casein's emulsifying activity (8.66 ± 0.17 m2/g). After the casein/GA complexes microencapsulation, a higher viable count was detected after gastrointestinal digestion in vitro, and the activity of L. plantarum is more stable (about 7.51 log CFU/mL) during 35 days of storage at 4 °C. The results of study will help to design lactic acid bacteria encapsulation systems based on the GIT environment for the oral delivery strategy.
Collapse
Affiliation(s)
- Manli Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Xin Tong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Muhammad Salman Farid
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Chun Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yuxing Guo
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, 315211, Zhejiang, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
5
|
Casein-Based Nanoparticles: A Potential Tool for the Delivery of Daunorubicin in Acute Lymphocytic Leukemia. Pharmaceutics 2023; 15:pharmaceutics15020471. [PMID: 36839793 PMCID: PMC9967267 DOI: 10.3390/pharmaceutics15020471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to develop casein-based nanoscale carriers as a potential delivery system for daunorubicin, as a pH-responsive targeting tool for acute lymphocytic leukemia. A coacervation technique followed by nano spray-drying was used for the preparation of drug-loaded casein nanoparticles. Four batches of drug-loaded formulations were developed at varied drug-polymer ratios using a simple coacervation technique followed by spray-drying. They were further characterized using scanning electron microscopy, dynamic light scattering, FTIR spectroscopy, XRD diffractometry, and differential scanning calorimetry. Drug release was investigated in different media (pH 5 and 7.4). The cytotoxicity of the daunorubicin-loaded nanoparticles was compared to that of the pure drug. The influence of the polymer-to-drug ratio on the nanoparticles' properties such as their particle size, surface morphology, production yield, drug loading, entrapment efficiency, and drug release behavior was studied. Furthermore, the cytotoxicity of the drug-loaded nanoparticles was investigated confirming their potential as carriers for daunorubicin delivery.
Collapse
|
6
|
Khatun S, Appidi T, Rengan AK. Casein nanoformulations - Potential biomaterials in theranostics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
A comparative evaluation of anti-tumor activity following oral and intravenous delivery of doxorubicin in a xenograft model of breast tumor. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Natural materials have been extensively studied for oral drug delivery due to their biodegradability and other unique properties. In the current research, we fabricated sodium caseinate nanomicelles (NaCNs) using casein as a natural polymer to develop a controlled-release oral delivery system that would improve the therapeutic potential of doxorubicin (DOX) and reduce its toxicity.
Methods
DOX-loaded NaCNs were synthesized and thoroughly characterized, then subjected to in vivo anti-tumor evaluation and bio-distribution analysis in a 4T1-induced breast cancer model.
Results
Our findings indicated that the tumor would shrink by eight-fold in the group orally treated with DOX-NaCNs when compared to free DOX. The tumor accumulated drug 1.27-fold more from the orally administered DOX-NaCNs compared to the intravenously administered DOX-NaCNs, 6.8-fold more compared to free DOX, and 8.34-times more compared to orally administered free DOX. In comparison, the orally administered DOX-NaCNs lead to a significant reduction in tumor size (5.66 ± 4.36 mm3) compared to intravenously administered DOX-NaCNs (10.29 ± 4.86 mm3) on day 17 of the experiment. NaCNs were well tolerated at a single dose of 2000 mg/kg in an acute oral toxicity study.
Conclusion
The enhanced anti-tumor effects of oral DOX-NaCNs might be related to the controlled release of DOX from the delivery system when compared to free DOX and the intravenous formulation of DOX-NaCNs. Moreover, NaCNs is recognized as a safe and non-toxic delivery system with excellent bio-distribution profile and high anti-tumor effects that has a potential for oral chemotherapy.
Collapse
|
8
|
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022; 10:biomedicines10092055. [PMID: 36140156 PMCID: PMC9495787 DOI: 10.3390/biomedicines10092055] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
Collapse
|
9
|
Elbialy NS, Mohamed N. Fabrication of the quaternary nanocomplex curcumin-casein-alginate-chitosan as a potential oral delivery system for cancer nutraceutical therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Microspheres Based on a Protein Matrix and Dipyridamole with Possible Inhalation Administration. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02519-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Gandhi S, Roy I. Drug delivery applications of casein nanostructures: A minireview. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Functionalized polymeric patch for localized oxaliplatin delivery to treat gastric cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112302. [PMID: 34474853 DOI: 10.1016/j.msec.2021.112302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
Localized delivery of chemotherapeutic agents allows extended drug exposure at the target site, thereby reducing systemic toxicity. We report the development of functionalized polymeric patch with unidirectional drug release to treat gastric cancer. The oxaliplatin-loaded patch was prepared by incorporating sodium carboxymethyl cellulose, hydroxypropyl cellulose and polyvinylpyrrolidone. The patch was functionalized by coating with transferrin-poly(lactic-co-glycolic acid) conjugate on one side of the patch for cancer targeting. The other side of the patch was coated with ethylcellulose (EC) to restrict the release of oxaliplatin. The physical and mechanical properties of oxaliplatin-loaded patches were characterized. Mucoadhesion studies using excised rat stomach tissue have shown that the functionalized side of the patch has significantly (p < 0.05) greater mucoadhesion strength compared with EC coated side of the patch. The in vitro and ex vivo (stomach sac and open-membrane model) studies revealed greater permeation of oxaliplatin across the stomach tissue when adhered to the functionalized and non-functionalized side of the patch compared with EC coated side. It was found that the growth inhibition with oxaliplatin solution was not significantly greater compared with corresponding concentrations of oxaliplatin-loaded patch in AGS and Caco-2 cell models. The in vivo studies were performed in mice, where indocyanine green-loaded patch encapsulated in a gelatin capsule was orally administered. The near-infrared (NIR) optical imaging revealed adherence of the patch on the mucosal side of the stomach tissue for up to 6 h. In conclusion, the functionalized polymeric patch loaded with oxaliplatin can be a potential localized delivery system to target gastric cancer.
Collapse
|
13
|
Yuan Z, Deng S, Chen L, Hu Y, Gu J, He L. pH-driven entrapment of enrofloxacin in casein-based nanoparticles for the enhancement of oral bioavailability. Food Sci Nutr 2021; 9:4057-4067. [PMID: 34401057 PMCID: PMC8358345 DOI: 10.1002/fsn3.2224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/01/2021] [Accepted: 02/14/2021] [Indexed: 11/11/2022] Open
Abstract
Enrofloxacin (ENR), a broad-spectrum antibacterial drug, has extremely poor water solubility contributing to low bioavailability, which prevents drug formulation design and limits its wide application in livestock farming and aquaculture. Compared to conventional formulations of ENR, casein (Cas)-based drug delivery system has been reported to have significant advantages in the improvement of solubility and bioavailability of drugs. In this paper, we report the preparation process of ENR-loaded Cas nanoparticles (ENR-Cas) using magnetic agitation without any organic agent and the optimization of the formulation. Transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR) were all adopted to characterize the ENR-Cas. Results showed that the obtained ENR-Cas were approximately spherical with a particle size of 171.6 ± 13.8 nm with a polydispersity index of 0.322 ± 0.053. In vitro release behavior of ENR-Cas showed a sustained release profile. Additionally, in vivo study in rats displayed that the mean plasma concentration of ENR after oral administration of ENR-Cas was significantly higher than that treated with ENR suspension. The mean residence time (MRT0-24) of ENR was enhanced by Cas nanoparticles from 9.287 ± 0.524 to 11.372 ± 1.139 hr in comparison with ENR suspension. Accordingly, the area under the curve (AUC0-24) of ENR-Cas was 80.521 ± 6.624 μg·hr/ml, 3.8-fold higher than that of ENR suspension (20.850 ± 1.715 μg·hr/ml). Therefore, it can be concluded that ENR-Cas enhanced the absorption, prolonged the retention time, and improved oral bioavailability of ENR. Taken the good oral safety of Cas into consideration, ENR-Cas should be a more promising oral preparation of ENR for clinical application.
Collapse
Affiliation(s)
- Zhi‐xiang Yuan
- College of PharmacySouthwest Minzu UniversityChengduChina
| | - Shichen Deng
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Li Chen
- Department of PharmacyCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - You Hu
- Department of PharmacyCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Jian Gu
- College of PharmacySouthwest Minzu UniversityChengduChina
| | - Lili He
- College of PharmacySouthwest Minzu UniversityChengduChina
| |
Collapse
|
14
|
Daniloski D, Petkoska AT, Lee NA, Bekhit AED, Carne A, Vaskoska R, Vasiljevic T. Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol 2021; 12:618411. [PMID: 33679401 PMCID: PMC7933596 DOI: 10.3389/fphar.2021.618411] [Citation(s) in RCA: 369] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oral route is the most common route for drug administration. It is the most preferred route, due to its advantages, such as non-invasiveness, patient compliance and convenience of drug administration. Various factors govern oral drug absorption including drug solubility, mucosal permeability, and stability in the gastrointestinal tract environment. Attempts to overcome these factors have focused on understanding the physicochemical, biochemical, metabolic and biological barriers which limit the overall drug bioavailability. Different pharmaceutical technologies and drug delivery systems including nanocarriers, micelles, cyclodextrins and lipid-based carriers have been explored to enhance oral drug absorption. To this end, this review will discuss the physiological, and pharmaceutical barriers influencing drug bioavailability for the oral route of administration, as well as the conventional and novel drug delivery strategies. The challenges and development aspects of pediatric formulations will also be addressed.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Z. Ahmad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
17
|
Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Rehan F, Ahemad N, Islam RA, Gupta M, Gan SH, Chowdhury EH. Optimization and Formulation of Nanostructured and Self-Assembled Caseinate Micelles for Enhanced Cytotoxic Effects of Paclitaxel on Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100984. [PMID: 33080962 PMCID: PMC7589039 DOI: 10.3390/pharmaceutics12100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paclitaxel (PTX) is a widely used anti-cancer drug for treating various types of solid malignant tumors including breast, ovarian and lung cancers. However, PTX has a low therapeutic response and is linked with acquired resistance, as well as a high incidence of adverse events, such as allergic reactions, neurotoxicity and myelosuppression. The situation is compounded when its complex chemical structure contributes towards hydrophobicity, shortening its circulation time in blood, causing off-target effects and limiting its therapeutic activity against cancer cells. Formulating a smart nano-carrier may overcome the solubility and toxicity issues of the drug and enable its more selective delivery to the cancerous cells. Among the nano-carriers, natural polymers are of great importance due to their excellent biodegradability, non-toxicity and good accessibility. The aim of the present research is to develop self-assembled sodium caseinate nanomicelles (NaCNs) with PTX loaded into the hydrophobic core of NaCNs for effective uptake of the drug in cancer cells and its subsequent intracellular release. METHODS The PTX-loaded micelle was characterized with high-performance liquid chromatography (HPLC), Fourier Transform Infrared Spectra (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). Following treatment with PTX-loaded NaCNs, cell viability, cellular uptake and morphological changes were analyzed using MCF-7 and MDA-MB 231 human breast cancer cell lines. RESULTS We found that PTX-loaded NaCNs efficiently released PTX in an acidic tumor environment, while showing an enhanced cytotoxicity, cellular uptake and in-vivo anti-tumor efficacy in a mouse model of breast cancer when compared to free drug and blank micelles. Additionally, the nanomicelles also presented improved colloidal stability for three months at 4 °C and -20 °C and when placed at a temperature of 37 °C. CONCLUSIONS We conclude that the newly developed NaCNs is a promising carrier of PTX to enhance tumor accumulation of the drug while addressing its toxicity issues as well.
Collapse
Affiliation(s)
- Farah Rehan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Global Asia in the 21st century Research Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
| | - Manish Gupta
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- School of Pharmaceutical and Population Health Informatics, DIT University, Mussoorie-Diversion Road, Dehradun, Uttarakhand-248009, India
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Ezharul Hoque Chowdhury
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
19
|
Markovic MD, Panic VV, Seslija SI, Spasojevic PM, Ugrinovic VD, Boskovic‐Vragolovic NM, Pjanovic RV. Modification of hydrophilic polymer network to design a carrier for a poorly water‐soluble substance. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maja D. Markovic
- Innovation Center of Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Vesna V. Panic
- Innovation Center of Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Sanja I. Seslija
- Institute of Chemistry, Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Pavle M. Spasojevic
- Innovation Center of Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
- Faculty of Technical Sciences University of Kragujevac Cacak Serbia
| | - Vukasin Dj. Ugrinovic
- Innovation Center of Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | | | - Rada V. Pjanovic
- Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| |
Collapse
|
20
|
Gupta SK, Singh P, Ali V, Verma M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol Rev 2020; 14:448. [PMID: 32676170 PMCID: PMC7358983 DOI: 10.4081/oncol.2020.448] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major problems being faced by researchers and clinicians in leukemic treatment is the development of multidrug resistance (MDR) which restrict the action of several tyrosine kinase inhibitors (TKIs). MDR is a major obstacle to the success of cancer chemotherapy. The mechanism of MDR involves active drug efflux transport of ABC superfamily of proteins such as Pglycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that weaken the effectiveness of chemotherapeutics and negative impact on the future of anticancer therapy. In this review, the authors aim to provide an overview of various multidrug resistance (MDR) mechanisms observed in cancer cells as well as the various strategies developed to overcome these MDR. Extensive studies have been carried out since last several years to enhance the efficacy of chemotherapy by defeating these MDR mechanisms with the use of novel anticancer drugs that could escape from the efflux reaction, MDR modulators or chemosensitizers, multifunctional nanotechnology, and RNA interference (RNAi) therapy.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Priyanka Singh
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Villayat Ali
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Malkhey Verma
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| |
Collapse
|
21
|
Casein nanoparticles as oral delivery carriers of mequindox for the improved bioavailability. Colloids Surf B Biointerfaces 2020; 195:111221. [PMID: 32652401 DOI: 10.1016/j.colsurfb.2020.111221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
Mequindox (Meq) is a promising broad-spectrum antibacterial agent, but the clinical application of Meq has been hampered by its low oral bioavailability. Casein (Cas) can bind to a variety of poorly water-soluble drugs to improve their water solubility through a micellar solubilization mechanism. Here, a low-cost and convenient method was introduced to prepare mequindox-loaded casein nanoparticles (Meq-Cas). Meq-Cas was characterized by several methods including differential scanning calorimetry (DSC), X-ray diffraction (XRD), and fourier transform infrared (FTIR) to illuminate the mutual effect between the drug and carriers. Meq-Cas presented nearly spherical nanoparticles with smooth surfaces and its mean particle size was lower than untreated Cas. Meq-Cas showed a nearly complete release of Meq, which displayed a biphasic drug release pattern in both phosphate-buffered solution (PBS) and simulated gastric fluid (SGF). The relative oral bioavailability of Meq-Cas was found to be about 1.20 times higher than that of the animals treated with Meq suspension (control). These results suggest that Cas is a good candidate to load in Meq for pharmaceutical purposes.
Collapse
|
22
|
Xu G, Li L, Bao X, Yao P. Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100569] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
24
|
Xv L, Qian X, Wang Y, Yu C, Qin D, Zhang Y, Jin P, Du Q. Structural Modification of Nanomicelles through Phosphatidylcholine: The Enhanced Drug-Loading Capacity and Anticancer Activity of Celecoxib-Casein Nanoparticles for the Intravenous Delivery of Celecoxib. NANOMATERIALS 2020; 10:nano10030451. [PMID: 32131561 PMCID: PMC7153595 DOI: 10.3390/nano10030451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
This study aims to stabilize loaded celecoxib (CX) by modifying the structure of casein nanoparticles through phosphatidylcholine. The results show that Egg yolk phosphatidylcholine PC98T (PC) significantly increased the stability of CX-PC-casein nanoparticles (NPs) (192.6 nm) from 5 min (CX-β-casein-NPs) to 2.5 h at 37 °C. In addition, the resuspended freeze-dried NPs (202.4 nm) remained stable for 2.5 h. Scanning electron microscopy indicated that PC may block the micropore structures in nanoparticles by ultrasonic treatment and hence improve the physicochemical stability of CX-PC-casein-NPs. The stability of the NPs was positively correlated with their inhibiting ability for human malignant melanoma A375 cells. The structural modification of CX-PC-casein-NPs resulted in an increased intracellular uptake of CX by 2.4 times than that of the unmodified ones. The pharmacokinetic study showed that the Area Under Curve (AUC) of the CX-PC-casein-NPs was 2.9-fold higher in rats than that of the original casein nanoparticles. When CX-PC-casein-NPs were intravenously administrated to mice implanted with A375 tumors (CX dose = 16 mg/kg bodyweight), the tumor inhibition rate reached 56.2%, which was comparable to that of paclitaxel (57.3%) at a dose of 4 mg/kg bodyweight. Our results confirm that the structural modification of CX-PC-casein-NPs can effectively prolong the remaining time of specific drugs, and may provide a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Liuli Xv
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Xinxin Qian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Yan Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Chenghuan Yu
- Experimental Animal Center of the Zhejiang Academy of Medical Sciences, Hangzhou 310013, China;
| | - Dingkui Qin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Yahui Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Peng Jin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
- Correspondence: (P.J.); (Q.D.)
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
- Correspondence: (P.J.); (Q.D.)
| |
Collapse
|
25
|
Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010065] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biopolymers are materials synthesised or derived from natural sources, such as plants, animals, microorganisms or any other living organism. The use of these polymers has grown significantly in recent years as industry shifts away from unsustainable fossil fuel resources and looks towards a softer and more sustainable environmental approach. This review article covers the main classes of biopolymers: Polysaccharides, proteins, microbial-derived and lignin. In addition, an overview of the leading biomedical applications of biopolymers is also provided, which includes tissue engineering, medical implants, wound dressings, and the delivery of bioactive molecules. The future clinical applications of biopolymers are vast, due to their inherent biocompatibility, biodegradability and low immunogenicity. All properties which their synthetic counterparts do not share.
Collapse
|
26
|
Thekkilaveedu S, Krishnaswami V, Mohanan DP, Alagarsamy S, Natesan S, Kandasamy R. Lactic acid‐mediated isolation of alpha‐, beta‐ and kappa‐casein fractions by isoelectric precipitation coupled with cold extraction from defatted cow milk. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saranya Thekkilaveedu
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Dhilin Pathayappurakkal Mohanan
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Subramanian Natesan
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| |
Collapse
|
27
|
Nowak E, Livney YD, Niu Z, Singh H. Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Binding analysis between monomeric β-casein and hydrophobic bioactive compounds investigated by surface plasmon resonance and fluorescence spectroscopy. Food Chem 2019; 286:289-296. [DOI: 10.1016/j.foodchem.2019.01.176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/12/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022]
|
29
|
Zheng Y, Xiao L, Yu C, Jin P, Qin D, Xu Y, Yin J, Liu Z, Du Q. Enhanced Antiarthritic Efficacy by Nanoparticles of (-)-Epigallocatechin Gallate-Glucosamine-Casein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6476-6486. [PMID: 31117504 DOI: 10.1021/acs.jafc.9b02075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work aims to improve the antiarthritic activity of (-)-epigallocatechin gallate (EGCG) and glucosamine (GA) through fabrication and optimization of casein protein nanoparticles (EGC-NPs). Optimized EGC-NPs were obtained with a EGCG/GA/casein ratio of 1:2:8 (w/w/w). The EGC-NPs gave a mean size of 186 ± 3.5 nm and an entrapment efficiency of 86.8 ± 2.7%, and they exhibited a greater inhibitory activity against human fibroblast-like synoviocytes-osteoarthritis cells and human fibroblast-like synoviocytes-rheumatoid arthritis cells compared with that of the EGCG-GA mixture by 33.5% and 20.8%, respectively. Freeze-dried EGC-NPs stored at 25 °C during 12 months showed high dispersion stability. Moreover, the redispersion of the freeze-dried EGC-NPs produced almost no significant changes in their physicochemical properties and bioactivity. Rat experiments demonstrated that the antiarthritis effect of the EGC-NPs was significantly higher than that of EGCG-GA mixture, as assessed through an analysis of anti-inflammatory efficacy, radiographic images and histopathological assessments of paw joints, and immunohistochemical changes in serum cytokines. The enchanced antiarthritic activity in vivo was consistent with that in vitro. The EGC-NPs demonstrate potential as a food supplement for the treatment of arthritis.
Collapse
Affiliation(s)
- Yafang Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| | - Lizheng Xiao
- Key Lab of Education Ministry for Tea Science, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Hunan Agricultural University , Changsha 410128 , China
| | - Chenhuan Yu
- Experimental Animal Center of the Zhejiang Academy of Medical Sciences , Hangzhou 310013 , China
| | - Peng Jin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| | - Dingkui Qin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences , Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture , 9 South Meiling Road , Hangzhou 310008 , China
| | - Junfeng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences , Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture , 9 South Meiling Road , Hangzhou 310008 , China
| | - Zhonghua Liu
- Key Lab of Education Ministry for Tea Science, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Hunan Agricultural University , Changsha 410128 , China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| |
Collapse
|
30
|
Lin Q, Liang R, Zhong F, Ye A, Hemar Y, Yang Z, Singh H. Self-Assembled Micelles Based on OSA-Modified Starches for Enhancing Solubility of β-Carotene: Effect of Starch Macromolecular Architecture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6614-6624. [PMID: 31117487 DOI: 10.1021/acs.jafc.9b00355] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembled micelles based on octenyl succinic anhydride (OSA)-modified starch were prepared to enhance the solubility of β-carotene. The critical micelle concentration (CMC) was lower for OSA-modified starch with a lower molecular weight (Mw) or higher degree of substitution (DS). Above the CMC, OSA-modified starch assembled into spherical micelles with an average hydrodynamic diameter of <20 nm, as determined by dynamic light scattering (DLS). All the radii of gyration ( Rg), obtained from Guinier fitting of small-angle X-ray scattering (SAXS) data, were between 3 and 9 nm, and they were positively correlated with the Mw but negatively correlated with both the DS and the starch concentration. β-Carotene was encapsulated effectively into the starch micelles, and the concentration of β-carotene in the micelles was positively correlated with the concentration, Mw, and DS of the starch, with a maximum value of 53.14 μg/mL. The incorporation of β-carotene enlarged the hydrophobic core and induced a significant increase in the Rg of the micelles determined by SAXS, and it may have also promoted the aggregation of the micelles resulting in a marked increase in the Dh determined by DLS.
Collapse
Affiliation(s)
- Quanquan Lin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Riddet Institute , Massey University , Private Bag 11 222 , Palmerston North 4442 , New Zealand
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Bioengineering , Zhejiang Gongshang University , Hangzhou , Zhejiang 310018 , China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Aiqian Ye
- Riddet Institute , Massey University , Private Bag 11 222 , Palmerston North 4442 , New Zealand
- School of Food Science and Bioengineering , Zhejiang Gongshang University , Hangzhou , Zhejiang 310018 , China
| | - Yacine Hemar
- Riddet Institute , Massey University , Private Bag 11 222 , Palmerston North 4442 , New Zealand
| | - Zhi Yang
- Biology and Soft Matter Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Harjinder Singh
- Riddet Institute , Massey University , Private Bag 11 222 , Palmerston North 4442 , New Zealand
| |
Collapse
|
31
|
Chen H, Liu M. Synthesis, crystal structure and in vitro anticancer studies of two bis(8-quinolinolato-N,O)-platinum(II) complexes. ACTA ACUST UNITED AC 2019. [DOI: 10.5155/eurjchem.10.1.37-44.1814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two bis(8-quinolinolato-N,O)-platinum(II) complexes, C18H12N2O2Pt (1) and C20H16N2O2Pt (2), were synthesized and characterized by FT-IR, elementary analysis and X-ray single crystal diffraction. Complex 1 crystallizes in monoclinic, space group P21/c with a = 9.3413(7), b = 10.3893(9), c = 14.8495(12) Å, β = 100.574(7)°, V = 1416.7(2) Å3. Complex 2 crystallizes in monoclinic, space group P21/n with a = 9.5115(11), b = 15.5692(18), c = 16.720(2) Å, β = 94.544(2)°, V = 2468.3(5) Å3. Intermolecular C-H···O hydrogen bonding interactions, as well as Pt···Pt and π-π stacking interactions, help to stabilize the crystal structures. The preliminary in vitro anticancer activity of complexes 1 and 2 and the corresponding ligands (L1 and L2) were investigated using human cervical (Hela) and hepatocellular carcinoma (Hep-G2) cancer cell lines. The platinum(II) complexes can greatly inhibit the cell proliferation and show stronger cytotoxic activities against the tested cancer cell lines than both ligands.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Mingguo Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
32
|
β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. Eur J Pharm Biopharm 2018; 133:240-249. [DOI: 10.1016/j.ejpb.2018.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/22/2022]
|
33
|
Doxorubicin-loaded casein nanoparticles for drug delivery: Preparation, characterization and in vitro evaluation. Int J Biol Macromol 2018; 121:6-12. [PMID: 30290258 DOI: 10.1016/j.ijbiomac.2018.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
Abstract
Casein, a milk protein that self-assembles to form micelles in aqueous solution, can bind to a wide range of drugs (hydrophilic and hydrophobic). Herein, a low cost and facile method was reported to prepare casein nanoparticles loaded with an anticancer drug, doxorubicin (DOX). The particles were fabricated by adding an excess of Ca2+ ions which brings the soluble casein present in the solution into the micellar framework to form dense nanoparticles. The binding between the drug and the macromolecule was confirmed using fluorescence studies. Circular Dichroism (CD) shows that upon addition of excess Ca2+ the protein chains rearrange. The nanoparticles were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and dynamic light scattering (DLS). The release at pH 1 was higher than the physiological pH making this formulation potent for delivering the drug to the stomach via the oral route. The DOX attached with casein showed improved efficacy, i.e., better cytotoxicity against human pancreatic carcinoma cell line, PANC 1 cells as compared to the free drug of the same concentration, owing to higher cell uptake of the macromolecule.
Collapse
|
34
|
Preparation and characterization of casein-carrageenan conjugates and self-assembled microcapsules for encapsulation of red pigment from paprika. Carbohydr Polym 2018; 196:322-331. [DOI: 10.1016/j.carbpol.2018.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
|
35
|
Inada A, Sakurai Y, Oshima T, Baba Y, Matsuyama H. Improvements in the water dispersibility of paclitaxel by complexing with synthetic peptides derived from β-casein. Colloids Surf B Biointerfaces 2018; 167:144-149. [DOI: 10.1016/j.colsurfb.2018.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 11/25/2022]
|
36
|
Fathi M, Donsi F, McClements DJ. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr Rev Food Sci Food Saf 2018; 17:920-936. [PMID: 33350116 DOI: 10.1111/1541-4337.12360] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Many proteins possess functional attributes that make them suitable for the encapsulation of bioactive agents, such as nutraceuticals and pharmaceuticals. This article reviews the state of the art of protein-based nanoencapsulation approaches. The physicochemical principles underlying the major techniques for the fabrication of nanoparticles, nanogels, and nanofibers from animal, botanical, and recombinant proteins are described. Protein modification approaches that can be used to extend their functionality in these nanocarrier systems are also described, including chemical, physical, and enzymatic treatments. The encapsulation, retention, protection, and release of bioactive agents in different protein-based nanocarriers are discussed. Finally, some of the major challenges in the design and fabrication of protein-based delivery systems are highlighted.
Collapse
Affiliation(s)
- Milad Fathi
- Dept. of Food Science and Technology, College of Agriculture, Isfahan Univ. of Technology, Isfahan, 84156-83111, Iran
| | - Francesco Donsi
- Dept. of Industrial Engineering, Univ. of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | | |
Collapse
|
37
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 2018; 7:23322-34. [PMID: 26989076 PMCID: PMC5029629 DOI: 10.18632/oncotarget.8019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer.
Collapse
|
39
|
Wang Y, Yan L, He S, Zhou D, Cheng Y, Chen X, Jing X, Huang Y. A Versatile Method to Prepare Protein Nanoclusters for Drug Delivery. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/28/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yupeng Wang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Lesan Yan
- Department of Bioengineering; School of Engineering and Applied Sciences; University of Pennsylvania; Philadelphia PA 19104 USA
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuesi Chen
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
40
|
Ye L, Miao M, Li S, Hao K. Nanosuspensions of a new compound, ER-β005, for enhanced oral bioavailability and improved analgesic efficacy. Int J Pharm 2017; 531:246-256. [PMID: 28847666 DOI: 10.1016/j.ijpharm.2017.08.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-β005 (ER-β005) is a novel compound developed by our group; however, its application has been greatly hindered due to its low solubility. A nanosuspension of insoluble drugs is a nanoscale colloidal dispersion that has extremely higher drug-loading compared with other nanomedicines. In this study, nanosuspensions of ER-β005 (Nano-ER-β005) stabilized by a food protein, β-casein (β-CN), were prepared via an antisolvent-precipitation method to improve oral absorption and thus promote therapeutic efficacy. Nano-ER-β005, which has a diameter of 110nm and drug-loading of 50%, was developed. Analyses of fluorescence and circular dichroism (CD) spectra demonstrated a strong interaction between β-CN and drug particles in Nano-ER-β005, indicating that β-CN is a potent nanosuspension stabilizer. The oral bioavailability of Nano-ER-β005 was 1.6-fold greater than that of raw drug particles. Additionally, ER-β005 was confirmed to have a strong therapeutic effect against pain reactions in animal models, and inhibition of this effect was significantly increased with Nano-ER-β005 treatment. In conclusion, by using β-CN as a stabilizer, nanosuspensions of ER-β005 were developed and oral absorption was enhanced. Moreover, ER-β005 is a powerful drug that inhibits pain reactions, and its therapeutic efficacy was markedly increased in the Nano-ER-β005.
Collapse
Affiliation(s)
- Ling Ye
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; School of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 51006, PR China
| | - Mingxing Miao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China; National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Suning Li
- China National Center for Biotechnology Development, Beijing 100039, PR China.
| | - Kun Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
41
|
Potential of Casein as a Carrier for Biologically Active Agents. Top Curr Chem (Cham) 2017; 375:71. [PMID: 28712055 PMCID: PMC5511616 DOI: 10.1007/s41061-017-0158-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Casein is the collective name for a family of milk proteins. In bovine milk, casein comprises four peptides: αS1, αS2, β, and κ, differing in their amino acid, phosphorus and carbohydrate content but similar in their amphiphilic character. Hydrophilic and hydrophobic regions of casein show block distribution in the protein chain. Casein peptides carry negative charge on their surface as a result of phosphorylation and tend to bind nanoclusters of amorphous calcium phosphate. Due to these properties, in suitable conditions, casein molecules agglomerate into spherical micelles. The high content of casein in milk (2.75 %) has made it one of the most popular proteins. Novel research techniques have improved understanding of its properties, opening up new applications. However, casein is not just a dietary protein. Its properties promise new and unexpected applications in science and the pharmaceutical and functional food industries. One example is an encapsulation of health-related substances in casein matrices. This review discusses gelation, coacervation, self-assembly and reassembly of casein peptides as means of encapsulation. We highlight information on encapsulation of health-related substances such as drugs and dietary supplements inside casein micro- and nanoparticles.
Collapse
|
42
|
Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 2017; 134:91-116. [PMID: 28458031 DOI: 10.1016/j.biomaterials.2017.04.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York, NY 10003, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
43
|
Edelman R, Assaraf YG, Levitzky I, Shahar T, Livney YD. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget 2017; 8:24337-24353. [PMID: 28212584 PMCID: PMC5421851 DOI: 10.18632/oncotarget.15363] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/27/2017] [Indexed: 01/17/2023] Open
Abstract
Multiple carcinomas including breast, ovarian, colon, lung and stomach cancer, overexpress the hyaluronic acid (HA) receptor, CD44. Overexpression of CD44 contributes to key cancer processes including tumor invasion, metastasis, recurrence, and chemoresistance. Herein, we devised novel targeted nanoparticles (NPs) for delivery of anticancer chemotherapeutics, comprised of self-assembling Maillard reaction-based conjugates of HA and bovine serum albumin (BSA). HA served as the hydrophilic block, and as the ligand for actively targeting cancer cells overexpressing CD44. We demonstrate that Maillard reaction-based covalent conjugates of BSA-HA self-assemble into NPs, which efficiently entrap hydrophobic cytotoxic drugs including paclitaxel and imidazoacridinones. Furthermore, BSA-HA conjugates stabilized paclitaxel and prevented its aggregation and crystallization. The diameter of the NPs was < 15 nm, thus enabling CD44 receptor-mediated endocytosis. These NPs were selectively internalized by ovarian cancer cells overexpressing CD44, but not by cognate cells lacking this HA receptor. Moreover, free HA abolished the endocytosis of drug-loaded BSA-HA conjugates. Consistently, drug-loaded NPs were markedly more cytotoxic to cancer cells overexpressing CD44 than to cells lacking CD44, due to selective internalization, which could be competitively inhibited by excess free HA. Finally, a CD44-targeted antibody which blocks receptor activity, abolished internalization of drug-loaded NPs. In conclusion, a novel cytotoxic drug-loaded nanomedicine platform has been developed, which is based on natural biocompatible biopolymers, capabale of targeting cancer cells with functional surface expression of CD44.
Collapse
Affiliation(s)
- Ravit Edelman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yehuda G. Assaraf
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Inna Levitzky
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Tal Shahar
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yoav D. Livney
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
44
|
Bugde P, Biswas R, Merien F, Lu J, Liu DX, Chen M, Zhou S, Li Y. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert Opin Ther Targets 2017; 21:511-530. [DOI: 10.1080/14728222.2017.1310841] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Piyush Bugde
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Merien
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Science, AUT Roche Diagnostic Laboratory, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shufeng Zhou
- Department of Biotechnology and Bioengineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
45
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Israeli-Lev G, Pitchkhadze M, Nevo S, Fahoum L, Meyron-Holtz E, Livney YD. Harnessing proteins to control crystal size and morphology, for improved delivery performance of hydrophobic bioactives, using genistein as a model. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Bhattarai P, Vance D, Hatefi A, Khaw BA. An in vitro demonstration of overcoming drug resistance in SKOV3 TR and MCF7 ADR with targeted delivery of polymer pro-drug conjugates. J Drug Target 2017; 25:436-450. [PMID: 27937085 DOI: 10.1080/1061186x.2016.1271421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug resistance is a common phenomenon that occurs in cancer chemotherapy. Delivery of chemotherapeutic agents as polymer pro-drug conjugates (PPDCs) pretargeted with bispecific antibodies could circumvent drug resistance in cancer cells. To demonstrate this approach to overcome drug resistance, Paclitaxel (Ptxl)-resistant SKOV3 TR human ovarian- and doxorubicin (Dox)-resistant MCF7 ADR human mammary-carcinoma cell lines were used. Pre-targeting over-expressed biotin or HER2/neu receptors on cancer cells was conducted by biotinylated anti-DTPA or anti-HER2/neu affibody - anti-DTPA Fab bispecific antibody complexes. The targeting PPDCs are either D-Dox-PGA or D-Ptxl-PGA. Cytotoxicity studies demonstrate that the pretargeted approach increases cytotoxicity of Ptxl or Dox in SKOV3 TR or MCF7 ADR resistant cell lines by 5.4 and 27 times, respectively. Epifluorescent microscopy - used to track internalization of D-Dox-PGA and Dox in MCF7 ADR cells - shows that the pretargeted delivery of D-Dox-PGA resulted in a 2- to 4-fold increase in intracellular Dox concentration relative to treatment with free Dox. The mechanism of internalization of PPDCs is consistent with endocytosis. Enhanced drug delivery and intracellular retention following pretargeted delivery of PPDCs resulted in greater tumor cell toxicity in the current in vitro studies.
Collapse
Affiliation(s)
- Prashant Bhattarai
- a Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| | - Dylan Vance
- b Department of Biology , College of Sciences, Northeastern University , Boston , MA , USA
| | - Arash Hatefi
- c Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers University , Piscataway , NJ , USA
| | - Ban An Khaw
- a Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
48
|
Ranadheera C, Liyanaarachchi W, Chandrapala J, Dissanayake M, Vasiljevic T. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27:14-29. [DOI: 10.1016/j.drup.2016.05.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
|
50
|
Nakagawa K, Jarunglumlert T, Adachi S. Structural changes in casein aggregates under frozen conditions affect the entrapment of hydrophobic materials and the digestibility of aggregates. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|