1
|
Girase R, Gujarathi NA, Sukhia A, Kota SSN, Patil TS, Aher AA, Agrawal YO, Ojha S, Sharma C, Goyal SN. Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and in vivo potential. Drug Deliv 2025; 32:2459772. [PMID: 39891600 PMCID: PMC11789225 DOI: 10.1080/10717544.2025.2459772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. In vitro studies interpreted stable release profiles and improved stability. Ex vivo studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. In vivo experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.
Collapse
Affiliation(s)
- Rushikesh Girase
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Amey Sukhia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sri Sai Nikitha Kota
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | | | - Abhijeet A. Aher
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| |
Collapse
|
2
|
Chavhan R. Nanosuspensions: Enhancing drug bioavailability through nanonization. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:251-271. [PMID: 38945393 DOI: 10.1016/j.pharma.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Nanosuspensions have emerged as a promising avenue in pharmaceutical innovation, particularly for enhancing the bioavailability of poorly soluble medications. This article explores the transformative potential of nanosuspensions, emphasizing the critical role of particle size reduction through nanonization techniques. With conventional approaches often falling short in addressing the bioavailability challenges of hydrophobic drugs, nanosuspensions offer multifaceted applications and distinctive advantages in drug delivery. METHODS The study delves into various nanosuspension preparation techniques, including high-pressure homogenization, media milling, emulsification-solvent evaporation, precipitation, and supercritical fluid processes. Each method brings unique advantages and limitations, contributing to the expanding repertoire of nanosuspension formulation methods. The article emphasizes the necessity for meticulous planning, evaluation, and ongoing research across different drugs to optimize their use effectively. RESULTS Nanosuspensions exhibit versatility in administration routes, spanning parenteral, peroral, ocular, and pulmonary pathways, making them applicable across diverse dosage forms. Current efforts are directed towards furthering their application in site-specific medication administration, indicating their potential in tailored therapeutic strategies. Nanosuspensions offer a promising solution for enhancing drug solubility and bioavailability, addressing the persistent challenge of poor solubility in pharmaceutical compounds. DISCUSSION The significance of careful formulation and stabilization using polymers and surfactants is underscored, ensuring the efficacy and safety of nanosuspensions. By discussing the benefits, drawbacks, and nuances of each preparation technique, the article aims to simplify future research endeavors in the field of nanosuspensions. Additionally, a comprehensive overview of nanosuspensions, including their preparation methods, benefits, characterization, patents, marketed products, and intended uses, sheds light on this evolving domain in pharmaceutical sciences. CONCLUSION Nanosuspensions represent a promising approach for overcoming bioavailability challenges associated with poorly soluble medications. The article highlights their transformative potential in pharmaceutical innovation, emphasizing the importance of continued research and optimization to harness their benefits effectively. Nanosuspensions offer a viable solution for enhancing drug solubility and bioavailability, with implications for improving therapeutic outcomes in various medical conditions.
Collapse
|
3
|
Zhang P, Tang J, Cheng L, Xue Y, Yang J, Sun Z, Liu J. Hyaluronic acid modified liposomes with enhanced transdermal delivery of methotrexate for psoriasis treatment. Colloids Surf B Biointerfaces 2025; 247:114457. [PMID: 39689591 DOI: 10.1016/j.colsurfb.2024.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by immune dysregulation and cutaneous symptoms. Methotrexate (MTX), efficacious in psoriasis, suffers from limited transdermal permeability due to its hydrophilic nature. Liposomal nanomedicine, which offers increased bioavailability and targeted delivery with minimized systemic effects, is a promising approach. The application of hyaluronic acid (HA) as a penetration enhancer and modifier leverages its binding to the upregulated CD44 receptor in psoriasis, enhancing the efficacy of liposomes. In this study, we synthesized HA-modified liposomes by conjugating HA with distearoyl phosphatidyl ethanolamine-poly (ethylene glycol) (DSPE-PEG) and encapsulated methotrexate for targeted treatment of psoriasis. The research entailed the meticulous preparation and physicochemical characterization of these HA-modified liposomes, followed by in vitro transdermal delivery assays, cellular uptake studies, and the development of a psoriasis animal model to rigorously assess therapeutic efficacy. Our findings underscore the significant improvement in methotrexate's transdermal penetration and retention within psoriatic lesions afforded by the HA-modified liposomes, indicating a novel and efficacious therapeutic approach for the management of dermatological disorders.
Collapse
Affiliation(s)
- Penglei Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jiahuan Yang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhongsheng Sun
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Yanikoglu R, Karakas CY, Ciftci F, Insel MA, Karavelioglu Z, Varol R, Yilmaz A, Cakir R, Uvet H, Ustundag CB. Development of Graphene Oxide-Based Anticancer Drug Combination Functionalized with Folic Acid as Nanocarrier for Targeted Delivery of Methotrexate. Pharmaceutics 2024; 16:837. [PMID: 38931957 PMCID: PMC11207743 DOI: 10.3390/pharmaceutics16060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Graphene has become a prominent material in cancer research in recent years. Graphene and its derivatives also attract attention as carriers in drug delivery systems. In this study, we designed a graphene oxide (GO)-based methotrexate (MTX)-loaded and folic acid (FA)-linked drug delivery system. MTX and FA were bound to GO synthesized from graphite. MTX/FA/GO drug delivery system and system components were characterized using Fourier transform infrared spectroscopy (FTIR), differential calorimetric analysis (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), zeta potential analysis, and dimension measurement (DLS) studies. SEM and TEM images confirmed the nanosheet structure of GO synthesized from graphite, and it was shown that MTX/FA binding to GO transformed the two-dimensional GO into a three-dimensional structure. FTIR and DSC graphs confirmed that oxygen atoms were bound to GO with the formation of carboxylic, hydroxyl, epoxide, and carbonyl groups as a result of the oxidation of graphite, and GO was successfully synthesized. Additionally, these analyses showed that MTX and FA bind physicochemically to the structure of GO. The in vitro Franz diffusion test was performed as a release kinetic test. The release kinetics mathematical model and correlation coefficient (R2) of MTX-loaded GO/FA nanomaterials were found to be the Higuchi model and 0.9785, respectively. Stiffness analyses showed that adding FA to this release system facilitated the entry of the drug into the cell by directing the system to target cells. As a result of the stiffness analyses, the stiffness values of the control cell group, free MTX, and MTX/FA/GO applied cells were measured as 2.34 kPa, 1.87 kPa, and 1.56 kPa, respectively. According to these results, it was seen that MTX/FA/GO weakened the cancer cells. Combined use of the MTX/FA/GO drug delivery system had a higher cytotoxic effect than free MTX on the MDA-MB-231 breast cancer cell line. The results showed that the synthesized MTX/FA/GO material has promising potential in cancer cell-specific targeted therapy for MTX as a drug delivery system.
Collapse
Affiliation(s)
- Reyhan Yanikoglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul 34210, Türkiye
| | - Canan Yagmur Karakas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul 34210, Türkiye
| | - Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul 34445, Türkiye
| | - Mert Akın Insel
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul 34210, Türkiye
| | - Zeynep Karavelioglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul 34210, Türkiye
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Rahmetullah Varol
- Department of Mechatronics Engineering, Yildiz Technical University, Istanbul 34349, Türkiye
- Business Administration Department, Bundeswehr University Munich, 85579 Munich, Germany
| | - Abdurrahim Yilmaz
- Department of Mechatronics Engineering, Yildiz Technical University, Istanbul 34349, Türkiye
| | - Rabia Cakir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul 34210, Türkiye
- Türkiye Biotechnology Institute, Health Institutes of Türkiye, Istanbul 34718, Türkiye
| | - Hüseyin Uvet
- Department of Mechatronics Engineering, Yildiz Technical University, Istanbul 34349, Türkiye
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul 34210, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34220, Türkiye
| |
Collapse
|
5
|
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023; 9:753. [PMID: 37754434 PMCID: PMC10529964 DOI: 10.3390/gels9090753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The delivery of active molecules via the skin seems to be an efficient technology, given the various disadvantages of oral drug administration. Skin, which is the largest human organ of the body, has the important role of acting as a barrier for pathogens and other molecules including drugs; in fact, it serves as a primary defense system blocking any particle from entering the body. Therefore, to overcome the skin barriers and poor skin permeability, researchers implement novel carriers which can effectively carry out transdermal delivery of the molecules. Another significant issue which medical society tries to solve is the effective dermal delivery of molecules especially for topical wound delivery. The application of nanogels is only one of the available approaches offering promising results for both dermal and transdermal administration routes. Nanogels are polymer-based networks in nanoscale dimensions which have been explored as potent carriers of poorly soluble drugs, genes and vaccines. The nanogels present unique physicochemical properties, i.e., high surface area, biocompatibility, etc., and, importantly, can improve solubility. In this review, authors aimed to summarize the available applications of nanogels as possible vehicles for dermal and transdermal delivery of active pharmaceutical ingredients and discuss their future in the pharmaceutical manufacturing field.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Life Sciences, School of Sciences, Faculty of Pharmacy, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, 34116 Istanbul, Turkey;
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey;
| |
Collapse
|
6
|
Zhang Y, Pan W, Wang D, Wang H, Hou Y, Zou M, Piao H. Solid-in-oil nanodispersion as a novel topical transdermal delivery to enhance stability and skin permeation and retention of hydrophilic drugs l-ascorbic acid. Eur J Pharm Biopharm 2023; 185:82-93. [PMID: 36791884 DOI: 10.1016/j.ejpb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
l-ascorbic acid (Vitamin C, VC) is the most abundant antioxidant in human skin. But its poor penetration into the skin and unstability limit the application. The aim of the study was to promote the topical skin permeation and retention of VC, increase the stability as well as effectiveness by a novel solid in oil nanodispersion. In the nanodispersions system, nano-sized particles of hydrophilic molecules are dispersed in an oil vehicle with the assistance of hydrophobic surfactants. The optimized formula composed of O170 and S1570 (12.5:1, w/w) showed high EE% of 98% and good stability. FTIR analysis confirmed that there may be hydrogen bond between VC and surfactants. The results of DSC, and XRD revealed that the drug was successfully encapsulated in the surfactants, which maintained the stability of drug. By analyzing and fitting the release data in vitro, the drug release mechanism of SONDs was predicted as a multi-dynamic model. Skin permeation of VC was improved 3.43-fold for SONDs compared with VC aqueous solution, highlighting that the lipophilicity and nano size of the carrier more easily penetrated into the skin. Finally, the photoaging study revealed that topical application of VC-SONDs provided the highest skin protection compared UV and VC aqueous solution treated group which was evident by the normal thick epidermal morphology, no obvious melanocytes and the densely arranged dermal elastic fibers. These results demonstrated that the solid-in-oil nanodispersions may be a potential transdermal delivery system for hydrophilic bioactive ingredients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxiu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dequan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Han Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yanting Hou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Hongyu Piao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Preparation and evaluation of ascorbyl glucoside and ascorbic acid solid in oil nanodispersions for corneal epithelial wound healing. Int J Pharm 2022; 627:122227. [PMID: 36155791 DOI: 10.1016/j.ijpharm.2022.122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to develop and evaluate an effective topical formulation to promote corneal epithelial wound healing. Ascorbyl glucoside (AA-2G), a stable prodrug of AA, was formulated in solid in oil (S/O) nanodispersions by emulsifying AA-2G solutions in cyclohexane using Span 85 as an emulsifying agent and freeze-drying emulsions to produce AA-2G - surfactant complex. The complexes were then dispersed in castor oil to produce S/O nanodispersions which were evaluated in terms of their particle size, polydispersity index, encapsulation efficiency, morphology, physical stability as well as the transcorneal permeation and accumulation of AA-2G. The same preparation procedure was used to prepare S/O nanodispersions of AA. S/O nanodispersions of AA and AA-2G were formulated into oily drops that were tested for efficacy in promoting wound healing after corneal epithelial depredation. AA-2G was loaded efficiently in S/O nanodispersions (EE > 99%) in the form of spherical nanoparticles. S/O nanodispersions were physically stable and resulted in improved permeation (18x) and accumulation (7x) of AA-2G in transcorneal diffusion experiments in comparison to AA-2G solutions. Oily eye drops of AA-2G and AA showed no irritation and significant improvement in epithelial healing in vivo in comparison to AA-2G and AA solutions.
Collapse
|
8
|
Mousa IA, Hammady TM, Gad S, Zaitone SA, El-Sherbiny M, Sayed OM. Formulation and Characterization of Metformin-Loaded Ethosomes for Topical Application to Experimentally Induced Skin Cancer in Mice. Pharmaceuticals (Basel) 2022; 15:657. [PMID: 35745575 PMCID: PMC9227071 DOI: 10.3390/ph15060657] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
To achieve the best treatment of skin cancer, drug penetration inside the deepest layers of the skin is an important scientific interest. We designed an ethosome formulation that serves as a carrier for metformin and measured the in vitro skin permeation. We also aimed to measure the antitumor activity of the optimal ethosomal preparation when applied topically to chemically induced skin cancer in mice. We utilized a statistical Box-Behnken experimental design and applied three variables at three levels: lecithin concentration, cholesterol concentration and a mixture of ethanol and isopropyl alcohol concentrations. All formulations were prepared to calculate the entrapment efficiency %, zeta potential, size of the vesicles and drug release % after 1, 2, 4, 8 and 24 h. The size of the vesicles for the formulations was between 124 ± 14.2 nm and 560 ± 127 nm, while the entrapment efficiency was between 97.8 ± 0.23% and 99.4 ± 0.24%, and the drug release % after 8 h was between 38 ± 0.82% and 66 ± 0.52%. All formulations were introduced into the Box-Behnken software, which selected three formulations; then, one was assigned as an optimal formula. The in vivo antitumor activity of metformin-loaded ethosomal gel on skin cancer was greater than the antitumor activity of the gel preparation containing free metformin. Lower lecithin, high ethanol and isopropyl alcohol and moderate cholesterol contents improved the permeation rate. Overall, we can conclude that metformin-loaded ethosomes are a promising remedy for treating skin cancers, and more studies are warranted to approve this activity in other animal models of skin cancers.
Collapse
Affiliation(s)
- Ibrahim A. Mousa
- General Authority of Health Care, Ismailia Governorate, Ismailia 11517, Egypt;
| | - Taha M. Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh P.O. Box 71666, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 3155, Egypt
| | - Ossama M. Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantra 41636, Egypt;
| |
Collapse
|
9
|
Jung SY, Kim S, Kang Z, Kwon S, Lee J, Park JW, Kim KS, Kim DK. Efficiency of a dexamethasone nanosuspension as an intratympanic injection for acute hearing loss. Drug Deliv 2021; 29:149-160. [PMID: 34967280 PMCID: PMC8725939 DOI: 10.1080/10717544.2021.2021320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dexamethasone sodium phosphate (Dex-SP) is the most commonly used drug administered via intratympanic injection for the treatment of acute hearing loss, but its penetration efficiency into the inner ear is very low. To address this problem, we evaluated the possibility of administering dexamethasone nanosuspensions via intratympanic injection because hydrophobic drugs might be more effective in penetrating the inner ear. Three types of dexamethasone nanosuspensions were prepared; the dexamethasone nanoparticles in the three nanosuspensions were between approximately 250 and 350 nm in size. To compare the efficiency of Dex-SP and dexamethasone nanosuspension in delivering dexamethasone to the inner ear, the concentrations of dexamethasone in perilymph and cochlear tissues were compared by liquid chromatography–mass spectrometry. The dexamethasone nanosuspensions resulted in significantly higher drug concentrations in perilymph and cochlear tissues than Dex-SP at 6 h; interestingly, animals treated with nanosuspensions showed a 26-fold higher dexamethasone concentrations in their cochlear tissues than animals treated with Dex-SP. In addition, dexamethasone nanosuspension caused better glucocorticoid receptor phosphorylation than Dex-SP both in vitro and in vivo, and in the ototoxic animal model, the nanosuspension showed a significantly better hearing-protective effect against ototoxic drugs than Dex-SP. In the in vivo safety evaluation, the nanosuspension showed no toxicity at concentrations up to 20 mg/mL. In conclusion, a nanosuspension of dexamethasone was able to deliver dexamethasone to the cochlea very safely and efficiently and showed potential as a formula for intratympanic injection.
Collapse
Affiliation(s)
- So-Young Jung
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Subin Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Zion Kang
- Bio-Synectics, Inc., Seoul, Republic of Korea
| | - Soonmin Kwon
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Juhye Lee
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | | | - Kab Sig Kim
- Bio-Synectics, Inc., Seoul, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Bernardes MTCP, Agostini SBN, Pereira GR, da Silva LP, da Silva JB, Bruschi ML, Novaes RD, Carvalho FC. Preclinical study of methotrexate-based hydrogels versus surfactant based liquid crystal systems on psoriasis treatment. Eur J Pharm Sci 2021; 165:105956. [PMID: 34314841 DOI: 10.1016/j.ejps.2021.105956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Psoriasis is an autoimmune, inflammatory and chronic skin disease in which cell growth and proliferation are increased, causing erythema, lesions and skin's peeling. Oral methotrexate (MTX) is the first-choice drug when phototherapy or retinoid treatment are not effective. Topical administration can be advantageous to better orientate the drug's delivery; however, the stratum corneum performs as a barrier for hydrofilic drugs penetration. This study sought to evaluate two different types of vehicles for MTX on the psoriasis treatment - hydrogel and liquid crystal systems (LCs). Lamellar and hexagonal liquid crystalline phases were selected from a ternary phase diagram based on polysorbate 80, isopropyl miristate and water. The hydrogel was based on alkylated carbomer (ACH). Rheological analysis showed ACH was more elastic than lamellar and hexagonal phases. ACH interacted better with pig skin than LCs in bioadhesion assay. Preclinical study revealed the ACH decreased inflammation in mice with induced psoriasis, being as effective as dexamethasone to regulate epidermis thickness, COX-2 and myeloperoxidase activity and TNF-α level, while LCs demonstrated inflammatory effect. Therefore, MTX-loaded hydrogel based platforms are indicated for local treatment of psoriasis and present great potential for further studies.
Collapse
Affiliation(s)
| | | | - Gislaine Ribeiro Pereira
- Faculdade de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| | - Laíla Pereira da Silva
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Jéssica Bassi da Silva
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Rômulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Flávia Chiva Carvalho
- Faculdade de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil.
| |
Collapse
|
11
|
Sawarkar SP, Yadav V. Novel drug delivery strategies and gene therapy regimen as a promising perspective for management of psoriasis. Indian J Dermatol Venereol Leprol 2021; 87:333-340. [PMID: 33943062 DOI: 10.25259/ijdvl_470_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/01/2020] [Indexed: 01/13/2023]
Abstract
Psoriasis is an autoimmune disorder; however, an exact underlying mechanism responsible for psoriasis is yet not known. A hypothesis put forward is an abnormal proliferation of keratinocytes due to faulty signals brought about by T-cells. Due to the lack of evidence of the exact cause, a variety of treatments have been used of which topical therapy is usually the first option in most patients. Topical therapy has several shortcomings and barriers of drug delivary which may be effectively overcome using novel drug carrier systems which exhibit maximum penetration, controlled release, reduced irritancy and, overall, a better efficacy. Thus, novel treatment strategies based on gene therapy such as antisensing nucleotide, silencing RNA complex, stem cell therapy and antibody-based therapy are being envisaged. This review article discusses the concepts and background of current novel delivery systems and gene therapy tools for effective management of psoriasis.
Collapse
Affiliation(s)
- Sujata Pralhad Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati Collegeof Pharmacy, University of Mumbai, Mumbai, Maharashtra, India
| | - Vijay Yadav
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati Collegeof Pharmacy, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Maeda R, Ito T, Tagami T, Takii T, Ozeki T. Development of Dried Emulsion/Mannitol Composite Microparticles through a Unique Spray Nozzle for Efficient Delivery of Hydrophilic Anti-tuberculosis Drug against Alveolar Macrophages. Biol Pharm Bull 2020; 42:1846-1853. [PMID: 31685768 DOI: 10.1248/bpb.b19-00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As alveolar macrophages are attractive targets for the treatment of tuberculosis, effective methods for delivery to alveolar macrophages are under development. We investigated a pulmonary formulation for the efficient delivery of high water-soluble drugs at high concentration targeting alveolar macrophages. In this study, a surfactant-coated high water-soluble drug complex (SDC, a hydrophobic dried emulsion), which can preferably target alveolar macrophages and be expected to deliver drug at a high concentration, was prepared in the first process. OCT313, a high water-soluble sugar derivative with anti-tuberculosis activity was used. Then, a unique two-solution, mixing-type nozzle was used to prepare the SDC nanoparticles in mannitol (MAN) microparticles (SDC/MAN microparticles) because it was difficult to disperse the SDC nanoparticles in aqueous solution. The single micron size of OCT313-SDC/MAN microparticles contained OCT313-SDC nanoparticles (mean particle size of OCT313-SDC nanoparticles, 277.9 nm; drug contents, 1.31 ± 0.041 wt%). We found that the treatment of SDC/MAN microparticles exhibited significantly higher drug accumulation in macrophage cells (Raw264.7 cells, 7.5-fold, at 4 h after treatment) in vitro and in alveolar macrophages in rats (9.1-fold, at 4 h after treatment) in vivo than that of drug alone. These results suggest that the SDC/MAN microparticle formulation prepared by spray drying through a two-solution mixing-type nozzle provides efficient delivery of a water-soluble drug targeting alveolar macrophages and may be useful for tuberculosis treatment.
Collapse
Affiliation(s)
- Ryo Maeda
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuya Ito
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takemasa Takii
- Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University.,Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
13
|
Qindeel M, Khan D, Ahmed N, Khan S. Surfactant-Free, Self-Assembled Nanomicelles-Based Transdermal Hydrogel for Safe and Targeted Delivery of Methotrexate against Rheumatoid Arthritis. ACS NANO 2020; 14:4662-4681. [PMID: 32207921 DOI: 10.1021/acsnano.0c00364] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methotrexate (MTX) is the first line agent for therapy against rheumatoid arthritis (RA); however, orally its efficacy is hampered by poor solubility, less permeability, short plasma half-life, and reduced bioavailability. Meanwhile, parenteral formulations are associated with severe adverse effects. In an attempt to improve the efficacy of MTX, we synthesized polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) triblock copolymer by a ring-opening copolymerization reaction and used it as a carrier for the fabrication of MTX-loaded nanomicelles. Surfactant-free, self-assembled nanomicelles were prepared by nanoprecipitation technique and optimized through central composite design. The optimized nanomicelles exhibited a size distribution of 31 nm and an encapsulation efficiency of 91%. In vitro, the nanomicelles exhibited hemocompatibility, sustained release, and significantly high uptake in lipopolysaccharide activated macrophages. To facilitate application on the skin, optimized nanomicelles were loaded into a Carbopol 934-based hydrogel with eucalyptus oil as a penetration enhancer. Eucalyptus oil significantly improved the permeation of nanomicelles through the skin (p < 0.001). When the hydrogel was applied on the RA mice model, nanomicelles exhibited preferentially highest accumulation in the inflamed joints than other organs. As compared with the free MTX, MTX nanomicelles significantly improved the pharmacokinetic (4.34-fold greater half-life, 3.68-fold higher AUC0-t, and 3.15-fold higher mean residence time) and pharmacodynamic profile ascertained through low inflammatory cytokines expression, improved oxidation protection, recovered behavioral responses, and radiological analysis. MTX nanomicelles-based hydrogel also significantly reduced the hepatotoxicity and did not activate the immune system. These results suggest that the MTX-loaded nanomicelles-based transdermal hydrogel can prove to be a promising agent against RA.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Dildar Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
14
|
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res 2020; 24:3. [PMID: 31969986 PMCID: PMC6964012 DOI: 10.1186/s40824-020-0184-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Rapid advancement in drug discovery process is leading to a number of potential new drug candidates having excellent drug efficacy but limited aqueous solubility. By virtue of the submicron particle size and distinct physicochemical properties, nanosuspension has the potential ability to tackle many formulation and drug delivery issues typically associated with poorly water and lipid soluble drugs. Conventional size reduction equipment such as media mill and high-pressure homogenizers and formulation approaches such as precipitation, emulsion-solvent evaporation, solvent diffusion and microemulsion techniques can be successfully implemented to prepare and scale-up nanosuspensions. Maintaining the stability in solution as well as in solid state, resuspendability without aggregation are the key factors to be considered for the successful production and scale-up of nanosuspensions. Due to the considerable enhancement of bioavailability, adaptability for surface modification and mucoadhesion for drug targeting have significantly expanded the scope of this novel formulation strategy. The application of nanosuspensions in different drug delivery systems such as oral, ocular, brain, topical, buccal, nasal and transdermal routes are currently undergoing extensive research. Oral drug delivery of nanosuspension with receptor mediated endocytosis has the promising ability to resolve most permeability limited absorption and hepatic first-pass metabolism related issues adversely affecting bioavailability. Advancement of enabling technologies such as nanosuspension can solve many formulation challenges currently faced among protein and peptide-based pharmaceuticals.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, UAE
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat India
| |
Collapse
|
15
|
Sadarani B, Majumdar A, Paradkar S, Mathur A, Sachdev S, Mohanty B, Chaudhari P. Enhanced skin permeation of Methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation. Biomed Pharmacother 2019; 114:108770. [DOI: 10.1016/j.biopha.2019.108770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
|
16
|
Ionic liquids with methotrexate moieties as a potential anticancer prodrug: Synthesis, characterization and solubility evaluation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Wakabayashi R, Sakuragi M, Kozaka S, Tahara Y, Kamiya N, Goto M. Solid-in-Oil Peptide Nanocarriers for Transcutaneous Cancer Vaccine Delivery against Melanoma. Mol Pharm 2018; 15:955-961. [DOI: 10.1021/acs.molpharmaceut.7b00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Hardiningtyas SD, Wakabayashi R, Kitaoka M, Tahara Y, Minamihata K, Goto M, Kamiya N. Mechanistic investigation of transcutaneous protein delivery using solid-in-oil nanodispersion: A case study with phycocyanin. Eur J Pharm Biopharm 2018; 127:44-50. [PMID: 29408222 DOI: 10.1016/j.ejpb.2018.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/29/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022]
Abstract
Phycocyanin (PC), a water-soluble protein-chromophore complex composed of hexameric (αβ)6 subunits, has important biological functions in blue-green algae as well as pharmacological activities in biomedicine. We have previously developed a solid-in-oil (S/O) nanodispersion method to deliver biomacromolecules through the skin, although the transcutaneous mechanism has not yet been fully elucidated. To study the mechanism of transcutaneous protein delivery, we therefore enabled S/O nanodispersion by coating PC with hydrophobic surfactants and evaluated how the proteinaceous macromolecules formulated in an oil phase might permeate the skin. The extent of S/O nanodispersion of PC was dependent on the type of surfactant, suggesting that the selection of a suitable surfactant is crucial for encapsulating a large protein having a subunit structure. By measuring the intrinsic fluorescence of PC, we found that S/O nanodispersion facilitated the accumulation of PC in the stratum corneum (SC) of Yucatan micropig skin. Furthermore, after crossing the SC layer, the fluorescent recovery of PC was evident, indicating the release of the biologically active form of PC from the SC into the deeper skin layer.
Collapse
Affiliation(s)
- Safrina Dyah Hardiningtyas
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, Japan.
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, Japan.
| |
Collapse
|
19
|
Zeb A, Qureshi OS, Yu CH, Akram M, Kim HS, Kim MS, Kang JH, Majid A, Chang SY, Bae ON, Kim JK. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int J Pharm 2017; 525:92-100. [DOI: 10.1016/j.ijpharm.2017.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/18/2017] [Accepted: 04/15/2017] [Indexed: 01/09/2023]
|
20
|
Zeb A, Qureshi OS, Kim HS, Cha JH, Kim HS, Kim JK. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine 2016; 11:3813-24. [PMID: 27540293 PMCID: PMC4982511 DOI: 10.2147/ijn.s109565] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to investigate methotrexate-entrapped ultradeformable liposomes (MTX-UDLs) for potential transdermal application. MTX-UDLs were prepared by extrusion method with phosphatidylcholine as a bilayer matrix and sodium cholate or Tween 80 as an edge activator. The physicochemical properties of MTX-UDLs were determined in terms of particle size, polydispersity index, zeta potential, and entrapment efficiency. The deformability of MTX-UDLs was compared with that of methotrexate-entrapped conventional liposomes (MTX-CLs) using a steel pressure filter device. The skin permeation of MTX-UDLs was investigated using Franz diffusion cell, and the skin penetration depth of rhodamine 6G-entrapped UDLs was determined by confocal laser scanning microscopy. MTX-UDLs showed a narrow size distribution, with the particle size of ~100 nm. The deformability of MTX-UDLs was two to five times greater than that of MTX-CLs. The skin permeation of MTX-UDLs was significantly improved compared with MTX-CLs and free MTX solution. The optimized UDLs (phosphatidylcholine: Tween 80 =7:3, w/w) showed a higher fluorescence intensity than conventional liposomes at every increment of skin depth. Thus, the optimized UDLs could be promising nanocarriers for systemic delivery of MTX across skin.
Collapse
Affiliation(s)
- Alam Zeb
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Omer Salman Qureshi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Hyung-Seo Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Ji-Hye Cha
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Hoo-Seong Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| |
Collapse
|
21
|
The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers. Eur J Pharm Sci 2016; 86:75-83. [PMID: 26965004 DOI: 10.1016/j.ejps.2016.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation.
Collapse
|
22
|
Garg NK, Tyagi RK, Singh B, Sharma G, Nirbhavane P, Kushwah V, Jain S, Katare OP. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int J Pharm 2016; 499:301-320. [PMID: 26768725 DOI: 10.1016/j.ijpharm.2015.12.061] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/24/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
Present study was designed to develop novel nano-structured lipid carriers (NLCs) formulated by lipid mixture and chemical permeation enhancer-based hydrogel for an effective transdermal delivery of methotrexate (MTX). The prepared NLCs were optimized with different preparative variables such as particle size <200 nm, poly-dispersity index (PDI) <0.2, and entrapment efficiency ∼85%. The drug incorporated into NLCs-gel base showed excellent spread ability without any grittiness during rheological behavior and texture profile analysis. The in vitro release showed biphasic release pattern with initial fast release of drug (>50%) in 8h followed by sustained release (up to 85%) by the end of 48thh. NLCs showed greater uptake in human hyper-proliferative keratinocyte cell line (HaCaT). NLCs showed increased expression of inflammatory mediators as well asapoptosis in U937 monocytic cells. The greater expression of pro-apoptotic gene Bim regulated by NF-κB-IkB and FOXO1 is supported by fold regulations calculated for various apoptotic and pro-inflammatory biomarkers carried out by RT-PCR. The immunocytochemistry to detect IL-6 expression and immunofluorescence assay suggested that induced apoptosis occurs in experimentally induced in vitro arthritis model treated with NLCs-MTX. We saw reduced inflammation and triggered apoptosis through NF-κB & FOXO1 pathways induced by MTX loaded NLCs in rheumatoid arthritic cells. In addition, formulated NLCs exhibit better skin permeation with higher permeation flux & enhancement ratio as shown by confocal laser scanning microscopy (CLSM). Moreover, histopathological examinations of skin are suggestive of safety potential of NLCs.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine Georgia Regents University, 1120, 15th Street, Augusta, GA 30912, USA; Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382 481 Gujarat, India
| | - Bhupinder Singh
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160 014, India
| | - Gajanand Sharma
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Pradip Nirbhavane
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| | - Om Prakash Katare
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
23
|
Salim N, Ahmad N, Musa SH, Hashim R, Tadros TF, Basri M. Nanoemulsion as a topical delivery system of antipsoriatic drugs. RSC Adv 2016. [DOI: 10.1039/c5ra14946k] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoemulsion as a potential enhancer for the treatment of psoriasis.
Collapse
Affiliation(s)
- Norazlinaliza Salim
- Department of Chemistry
- Faculty of Science
- University Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Noraini Ahmad
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Siti Hajar Musa
- Department of Chemistry
- Faculty of Science
- University Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Rauzah Hashim
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | | | - Mahiran Basri
- Department of Chemistry
- Faculty of Science
- University Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
24
|
Amarji B, Garg NK, Singh B, Katare OP. Microemulsions mediated effective delivery of methotrexate hydrogel: more than a tour de force in psoriasis therapeutics. J Drug Target 2015. [DOI: 10.3109/1061186x.2015.1058804] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Basant Amarji
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India and
| | - Neeraj K. Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India and
| | - Bhupinder Singh
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India and
- UGC Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Om Prakash Katare
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India and
| |
Collapse
|
25
|
Pund S, Pawar S, Gangurde S, Divate D. Transcutaneous delivery of leflunomide nanoemulgel: Mechanistic investigation into physicomechanical characteristics, in vitro anti-psoriatic and anti-melanoma activity. Int J Pharm 2015; 487:148-56. [PMID: 25869452 DOI: 10.1016/j.ijpharm.2015.04.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Abstract
The present study is a mechanistic validation of 'proof of concept' of effective topical delivery of leflunomide (LFD) nanoemulgel for localized efficient treatment of psoriatic lesions as well as melanoma affected skin regions. Hyperproliferation of keratinocytes in psoriasis and symbiotic relationship between keratinocytes and melanocytes, justifies the need of dual acting treatment. LFD is recently introduced significantly effective disease modifying anti-rheumatic drug and has been considered valuable for the treatment of psoriatic arthritis as well as melanoma. Current available treatments for psoriasis and melanoma are inefficient due to systemic side effects, poor transcutaneous permeation and thus present a challenge for development of novel colloidal carriers. We newly reformulated LFD as a nanoemulgel based on self nanoemulsifying technique using Capryol 90, Cremophor EL, Transcutol HP as nanoemulsifying components and Pluronic F127 as a gelling agent. This thermodynamically stable nanoemuslsifying preconcentrate after gelation showed mean globule size, 123.7 nm and viscosity 9620 ± 93 cp. Complete mechanical characterization was carried out using Texture Analyzer and hardness, adhesiveness and springiness index were found to be 523 gms, 431 gms and 1.02, respectively. Ex vivo permeation through rat abdominal skin revealed significant improvement in flux, apparent permeability coefficient, steady state diffusion coefficient and drug deposition in skin due to nanoemulsification of LFD. The in vitro cytoxicity of LFD nanoemulgel in human HaCaT, melanoma A375 and SK-MEL-2 cell lines showed significantly enhanced therapeutic response. In gist, LFD nanoemulgel for trancutaneous delivery will reduce the overall dose and drug consumption, by effectively localizing at the applied target site and will ultimately minimize systemic side effects.
Collapse
Affiliation(s)
- Swati Pund
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India.
| | - Satish Pawar
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| | - Shashikant Gangurde
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| | - Deepali Divate
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| |
Collapse
|
26
|
Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:509-33. [PMID: 25581024 DOI: 10.1002/wnan.1328] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/27/2014] [Accepted: 11/08/2014] [Indexed: 12/22/2022]
Abstract
Nanogels are hydrogels having size in nanoregime, which is composed of cross-linked polymer networks. The advantages of nanogels include stimuli-responsive nature, easy drug loading, and higher drug-loading capacity, physical stability, versatility in design, stability of entrapped drug, and controlled release of the anti-inflammatory, antimicrobial, protein, peptide and anticancer drugs. Stimuli-responsive nature of nanogel is of particular importance in anticancer and anti-inflammatory drug delivery, as cancer and inflammation are associated with acidic pH, heat generation, and change in ionic content. Nanogels composed of muco-adhesive polymers provide prolonged residence time and increase the ocular availability of loaded drugs. By forming suitably sized complex with proteins or by acting as artificial chaperones, they thus help to keep the proteins and enzymes in proper confirmation necessary for exerting biological activity; nanogels can increase the stability and activity of protein/peptide drugs. Better drug penetrations achieved by prolonged contact with skin contribute much in transdermal drug delivery. When it comes to cancer drug delivery, the presence of multiple interactive functional groups in nanogels different targeting agents can be conjugated for delivery of the selective drugs. This review focuses on applications of nanogels in cancer drug delivery and imaging, anti-inflammatory, anti-psoriatic, transdermal, ocular and protein/peptide drug delivery and therapy.
Collapse
Affiliation(s)
- Amal J Sivaram
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - P Rajitha
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - S Maya
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - R Jayakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | - M Sabitha
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| |
Collapse
|
27
|
Shinde CG, Venkatesh MP, Kumar TMP, Shivakumar HG. Methotrexate: a gold standard for treatment of rheumatoid arthritis. J Pain Palliat Care Pharmacother 2014; 28:351-8. [PMID: 25322199 DOI: 10.3109/15360288.2014.959238] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a painful, debilitating disease characterized by inflammation of the joints, with the proliferation of the synovium and the progressive erosion of cartilage and bone. The treatment of RA is still unsatisfactory, but a number of powerful disease-modifying antirheumatic drugs have become available, such as methotrexate (MTX). Even in the current era of biological targeted therapies, MTX remains the initial preferred antirheumatic drug and is considered to be the gold standard for treatment of RA. The combination of its perceived efficacy, acceptable safety profile, and low cost, as well as decades of clinical experience, makes MTX the cornerstone of treatment for RA and the anchor drug in combination with various biological agents. In this review, the authors aim to summarize the research done in the field of drug delivery systems of MTX according to its routes of administration for treatment of RA. The last part of the review addresses combination therapy with MTX and future direction in the drug delivery of MTX. This review also provides the reader with a general overview of RA and its therapeutic strategies with respect of MTX, which may bring uniformity in medical practice for effective management of RA.
Collapse
|
28
|
Triethanolamine stabilization of methotrexate-β-cyclodextrin interactions in ternary complexes. Int J Mol Sci 2014; 15:17077-99. [PMID: 25257529 PMCID: PMC4200828 DOI: 10.3390/ijms150917077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
The interaction of methotrexate (MTX) with beta-cyclodextrin (β-CD) in the presence of triethanolamine (TEA) was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX–β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TG)/first derivative of TG analysis (DTG) and C,N,H elementary analysis) and structural (X-ray diffraction analysis, (XRD)) studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems.
Collapse
|
29
|
Vincent N, Ramya DD, Vedha HB. Progress in Psoriasis Therapy via Novel Drug Delivery Systems. Dermatol Reports 2014; 6:5451. [PMID: 25386329 PMCID: PMC4224007 DOI: 10.4081/dr.2014.5451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/17/2014] [Accepted: 07/08/2014] [Indexed: 01/08/2023] Open
Abstract
Psoriasis is a lifelong condition which is caused by the negative signals produced by immune system, which leads to hyper proliferation and other inflammatory reactions on the skin. In this case, keratinocytes which are the outermost layer of skin possess shortened life cycle and results in the alteration of desquamation process where the cytokines will come out through lesions of affected patients and as a result, scaling marks appears on the skin. These conditions may negatively affect the patient’s quality of life and lead to psychosocial stress. Psoriasis can be categorized as mild, moderate and severe conditions. Mild psoriasis leads to the formation of rashes, and when it becomes moderate, the skin turns into scaly. In severe conditions, red patches may be present on skin surface and becomes itchy. Topical therapy continues to be one of the pillars for psoriasis management. Drug molecules with target effect on the skin tissues and other inflammations should be selected for the treatment of psoriasis. Most of the existing drugs lead to systemic intoxication and dryness when applied in higher dose. Different scientific approaches for topical delivery are being explored by researches including emollient, modified gelling system, transdermal delivery, spray, nanogels, hydrogels, micro/nano emulsion, liposomes, nano capsules etc. These topical dosage forms are evaluated for various physico chemical properties such as drug content, viscosity, pH, extrudability, spreadability, toxicity, irritancy, permeability and drug release mechanism. This review paper focus attention to the impact of these formulation approaches on various anti-psoriasis drugs for their successful treatment.
Collapse
Affiliation(s)
- Nitha Vincent
- Department of Pharmaceutical Technology, School of Chemical and Biotechnology, SASTRA University , Thanjavur, India
| | - Devi D Ramya
- Department of Pharmaceutical Technology, School of Chemical and Biotechnology, SASTRA University , Thanjavur, India
| | - Hari Bn Vedha
- Department of Pharmaceutical Technology, School of Chemical and Biotechnology, SASTRA University , Thanjavur, India
| |
Collapse
|
30
|
Banerjee C, Kundu N, Ghosh S, Mandal S, Kuchlyan J, Sarkar N. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study. J Phys Chem B 2013; 117:9508-17. [PMID: 23865472 DOI: 10.1021/jp405919y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this article we have reported the fluorescence resonance energy transfer (FRET) study in our earlier characterized surface active ionic liquids (SAILs)-containing microemulsion, i.e., N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P13][Tf2N])/[CTA][AOT]/isopropyl myristate ([IPM]) and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N3111][Tf2N])/[CTA][AOT]/[IPM] microemulsions (Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. J. Phys. Chem. B 2013, 117, 3927-3934). The occurrence of effective FRET from the donor, coumarin-153 (C-153) to the acceptor rhodamine 6G (R6G) is evident from the decrease in the steady state fluorescence intensity of the donor with addition of acceptor and subsequent increase in the fluorescence intensity of the acceptor in the presence of donor. The excitation wavelength dependent FRET from C-153 to R6G has also been performed to assess the dynamic heterogeneity of these confined systems. In time-resolved experiments, the significant rise time of the acceptor in the presence of the donor further confirms the occurrence of FRET. The multiple donor-acceptor (D-A) distances, for various microemulsions, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C-153, in the different regions of the microemulsion. Time-resolved measurement reveals that with increasing excitation wavelength from 408 to 440 nm, the contribution of the faster rise component of FRET increases significantly due to the close proximity of the C-153 and R6G in the polar region of the microemulsion where occurrence of FRET is very high. Moreover, we have also studied the FRET with variation of R (R = [room temperature ionic liquids (RTILs)]/[surfactant]) and shown that the effect of excitation wavelength on FRET is similar irrespective of R values.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | | | | | | | | | | |
Collapse
|
31
|
Banerjee C, Mandal S, Ghosh S, Kuchlyan J, Kundu N, Sarkar N. Unique characteristics of ionic liquids comprised of long-chain cations and anions: a new physical insight. J Phys Chem B 2013; 117:3927-34. [PMID: 23472714 DOI: 10.1021/jp4015405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have designed a unique class of surface active ionic liquids (SAILs) and utilized them to prepare IL-in-oil microemulsions as well as large unilamellar vesicles (LUVs). The IL-in-oil microemulsions were characterized by a phase behavior study, regular swelling behavior, and also by spectral shift of coumarin-480 probe molecules. The LUVs were characterized by dynamic light scattering and transmission electron microscope measurements. Our work opens up the possibility of creating a huge number of IL-in-oil microemulsions as well as LUVs simply by replacing the cation of NaAOT with a long chain cation.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | | | | | | | | | | |
Collapse
|
32
|
Yoshiura H, Tamura M, Aso M, Kamiya N, Goto M. Ionic Liquid-in-Oil Microemulsions as Potential Carriers for the Transdermal Delivery of Methotrexate. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2013. [DOI: 10.1252/jcej.13we009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Miki Tamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Makoto Aso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
| |
Collapse
|