1
|
Eka Rani YD, Rahmadi M, Hariyadi DM. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres. Ther Deliv 2023; 14:689-704. [PMID: 38084393 DOI: 10.4155/tde-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Aim: Inhalable microspheres made of polymers as a targeted drug delivery system have been developed to overcome the limitation of current treatments in Tuberculosis. Materials & methods: Isoniazid inhalable microspheres were created using a gelation ionotropic method with sodium alginate, carrageenan and calcium chloride in four different formulations. Result: The particle morphology has smooth surfaces and round spherical shapes with sizes below 5 μm; good flowability. The drug loading and entrapment efficiency values ranged from 1.69 to 2.75% and 62.44 to 85.30%, respectively. The microspheres drug release followed the Korsmeyer-Peppas model, indicating Fickian diffusion. Conclusion: Isoniazid inhalable microspheres achieved as targeted lung delivery for tuberculosis treatment.
Collapse
Affiliation(s)
- Yotomi Desia Eka Rani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Nanotechnology & Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
2
|
Banat H, Ambrus R, Csóka I. Drug combinations for inhalation: Current products and future development addressing disease control and patient compliance. Int J Pharm 2023; 643:123070. [PMID: 37230369 DOI: 10.1016/j.ijpharm.2023.123070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary delivery is an alternative route of administration with numerous advantages over conventional routes of administration. It provides low enzymatic exposure, fewer systemic side effects, no first-pass metabolism, and concentrated drug amounts at the site of the disease, making it an ideal route for the treatment of pulmonary diseases. Owing to the thin alveolar-capillary barrier, and large surface area that facilitates rapid absorption to the bloodstream in the lung, systemic delivery can be achieved as well. Administration of multiple drugs at one time became urgent to control chronic pulmonary diseases such as asthma and COPD, thus, development of drug combinations was proposed. Administration of medications with variable dosages from different inhalers leads to overburdening the patient and may cause low therapeutic intervention. Therefore, products that contain combined drugs to be delivered via a single inhaler have been developed to improve patient compliance, reduce different dose regimens, achieve higher disease control, and boost therapeutic effectiveness in some cases. This comprehensive review aimed to highlight the growth of drug combinations by inhalation over time, obstacles and challenges, and the possible progress to broaden the current options or to cover new indications in the future. Moreover, various pharmaceutical technologies in terms of formulation and device in correlation with inhaled combinations were discussed in this review. Hence, inhaled combination therapy is driven by the need to maintain and improve the quality of life for patients with chronic respiratory diseases; promoting drug combinations by inhalation to a higher level is a necessity.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Hungary.
| |
Collapse
|
3
|
Shao Z, Chow MYT, Chow SF, Lam JKW. Co-Delivery of D-LAK Antimicrobial Peptide and Capreomycin as Inhaled Powder Formulation to Combat Drug-Resistant Tuberculosis. Pharm Res 2023; 40:1073-1086. [PMID: 36869245 PMCID: PMC9984245 DOI: 10.1007/s11095-023-03488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
INTRODUCTION The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria. AIMS As both capreomycin and peptides are not orally available, this study aimed to formulate combined formulations of capreomycin and D-LAK peptides as inhalable dry powder by spray drying. METHODS AND RESULTS A total of 16 formulations were prepared with different levels of drug content and capreomycin to peptide ratios. A good production yield of over 60% (w/w) was achieved in most formulations. The co-spray dried particles exhibited spherical shape with a smooth surface and contained low residual moisture of below 2%. Both capreomycin and D-LAK peptides were enriched at the surface of the particles. The aerosol performance of the formulations was evaluated with Next Generation Impactor (NGI) coupled with Breezhaler®. While no significant difference was observed in terms of emitted fraction (EF) and fine particle fraction (FPF) among the different formulations, lowering the flow rate from 90 L/min to 60 L/min could reduce the impaction at the throat and improve the FPF to over 50%. CONCLUSIONS Overall, this study showed the feasibility of producing co-spray dried formulation of capreomycin and antimicrobial peptides for pulmonary delivery. Future study on their antibacterial effect is warranted.
Collapse
Affiliation(s)
- Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
4
|
Ke WR, Chang RYK, Chan HK. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev 2022; 191:114561. [PMID: 36191861 DOI: 10.1016/j.addr.2022.114561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Dry powder inhalers (DPIs) can be used with a wide range of drugs such as small molecules and biologics and offer several advantages for inhaled therapy. Early DPI products were intended to treat asthma and lung chronic inflammatory disease by administering low-dose, high-potency drugs blended with lactose carrier particles. The use of lactose blends is still the most common approach to aid powder flowability and dose metering in DPI products. However, this conventional approach may not meet the high demand for formulation physical stability, aerosolisation performance, and bioavailability. To overcome these issues, innovative techniques coupled with modification of the traditional methods have been explored to engineer particles for enhanced drug delivery. Different particle engineering techniques have been utilised depending on the types of the active pharmaceutical ingredient (e.g., small molecules, peptides, proteins, cells) and the inhaled dose. This review discusses the challenges of formulating DPI formulations of low-dose and high-dose small molecule drugs, and biologics, followed by recent and emerging particle engineering strategies utilised in developing the right inhalable powder formulations for enhanced drug delivery.
Collapse
Affiliation(s)
- Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022; 14:pharmaceutics14122667. [PMID: 36559160 PMCID: PMC9781681 DOI: 10.3390/pharmaceutics14122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dry powder inhalation therapy has been effective in treating localized lung diseases such asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and lung infections. In vitro characterization of dry powder formulations includes the determination of physicochemical nature and aerosol performance of powder particles. The relationship between particle properties (size, shape, surface morphology, porosity, solid state nature, and surface hydrophobicity) and aerosol performance of an inhalable dry powder formulation has been well established. However, unlike oral formulations, there is no standard dissolution method for evaluating the dissolution behavior of the inhalable dry powder particles in the lungs. This review focuses on various dissolution systems and absorption models, which have been developed to evaluate dry powder formulations. It covers a summary of airway epithelium, hurdles to developing an in vitro dissolution method for the inhaled dry powder particles, fine particle dose collection methods, various in vitro dissolution testing methods developed for dry powder particles, and models commonly used to study absorption of inhaled drug.
Collapse
|
6
|
Pathak V, Park H, Zemlyanov D, Bhujbal SV, Ahmed MU, Azad MAK, Li J, Zhou QT. Improved Aerosolization Stability of Inhalable Tobramycin Powder Formulation by Co-Spray Drying with Colistin. Pharm Res 2022; 39:2781-2799. [PMID: 35915320 PMCID: PMC10019100 DOI: 10.1007/s11095-022-03344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Tobramycin shows synergistic antibacterial activity with colistin and can reduce the toxic effects of colistin. The purpose of this study is to prepare pulmonary powder formulations containing both colistin and tobramycin and to assess their in vitro aerosol performance and storage stability. METHODS The dry powder formulations were manufactured using a lab-scale spray dryer. In vitro aerosol performance was measured using a Next Generation Impactor. The storage stability of the dry powder formulations was measured at 22°C and two relative humidity levels - 20 and 55%. Colistin composition on the particle surface was measured using X-ray photoelectron spectroscopy. RESULTS Two combination formulations, with 1:1 and 1:5 molar ratios of colistin and tobramycin, showed fine particle fractions (FPF) of 85%, which was significantly higher than that of the spray dried tobramycin (45%). FPF of the tobramycin formulation increased significantly when stored for four weeks at both 20% and 55% RH. In contrast, FPF values of both combination formulations and spray dried colistin remained stable at both humidity levels. Particle surface of each combination was significantly enriched in colistin molecules; 1:5 combination showed 77% by wt. colistin. CONCLUSIONS The superior aerosol performance and aerosolization stability of 1:1 and 1:5 combination formulations of colistin and tobramycin could be attributed to enrichment of colistin on the co-spray dried particle surface. The observed powder properties may be the result of a surfactant-like assembly of these colistin molecules during spray drying, thus forming a hydrophobic particle surface.
Collapse
Affiliation(s)
- Vaibhav Pathak
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN, 47907, USA
| | - Sonal V Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Maizbha Uddin Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Mohammad A K Azad
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| | - Jian Li
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Valiulin SV, Onischuk AA, Baklanov AM, Dubtsov SN, Dultseva GG, An’kov SV, Tolstikova TG, Belogorodtsev SN, Schwartz YS. Studies of the Specific Activity of Aerosolized Isoniazid against Tuberculosis in a Mouse Model. Antibiotics (Basel) 2022; 11:antibiotics11111527. [PMID: 36358182 PMCID: PMC9686539 DOI: 10.3390/antibiotics11111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The aerosol inhalation delivery of isoniazid in mice was investigated, and the specific activity of the aerosol form of isoniazid was studied with the mouse model of tuberculosis infection, the M. tuberculosis H37Rv strain. Aerosol delivery was performed using a laminar-flow horizontal nucleation chamber. The inhalation dose was measured in real-time mode using a diffusion aerosol spectrometer. The mean particle diameter was 0.6 ± 0.03 μm, and the inhalation dose was 5–9 mg/kg. Pharmacokinetic measurements were carried out in nose-only and whole-body chambers. Isoniazid concentration in blood serum and its mass in the lungs were measured as a function of time using high-performance liquid chromatography. Studies of the specific activity of aerosolized isoniazid reveal that treatment with the aerosol lead to the complete recovery of the experimental tuberculosis infection as early as after 28 days after the start of inhalation treatment, while in the animals from the group receiving isoniazid per-orally, sole revivable tuberculosis mycobacteria were detected. Histologic examinations show that only a few macrophagal (nonspecific) granulomas without mycobacteria were detected in the spleen after per-oral and aerosol treatment, the number of granulomas on the 28th day being three times smaller in the latter case. The results show that the developed technique of isoniazid aerosol inhalation may have clinical potential.
Collapse
Affiliation(s)
- Sergey V. Valiulin
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| | - Andrey A. Onischuk
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anatoly M. Baklanov
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey N. Dubtsov
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Galina G. Dultseva
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey V. An’kov
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Tatiana G. Tolstikova
- Voevodsky Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Yakov Sh. Schwartz
- Novosibirsk Tuberculosis Research Institute, Novosibirsk, 630040 Novosibirsk, Russia
| |
Collapse
|
8
|
Srichana T, Eze FN, Thawithong E. A facile one-step jet-millingapproach for the preparation of proliposomal dry powder for inhalationaseffective delivery system for anti-TBtherapeutics. Drug Dev Ind Pharm 2022; 48:528-538. [PMID: 36214588 DOI: 10.1080/03639045.2022.2135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective: Physicochemical characterization and assessmentof aerosol dispersion performance of anti-TB proliposome dry powders for inhalation (DPIs) prepared using a single-step jet-milling (JM) approach. Significance: Conventional tuberculosis treatment involves isoniazid and rifampicin as first-line agents in extended oral multi-drug regimes. Liposomal DPIs are emerging as promising alternatives for targeted delivery of anti-TB agents to alveolar macrophages harboring Mycobacterium tuberculosis. However, traditional approaches for liposomal DPI preparation are tedious, time consuming and require sophisticated/expensive equipment. The proposed JM technique for preparation of proliposome DPIs could obviate these limitations and facilitate use of these drugs for more effective and safer treatment. Methods: Proliposome DPIs containing isoniazid and/or rifampicin, cholesterol and cholesterol sulfate were successfully prepared via JM (injection pressure, 7.4 bar; milling pressure, 3.68 bar). Their physicochemical, content uniformity, and in vitro aerosol dispersion performance were assessed using scanning electron microscopy/energy-dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering/Zeta potential, X-ray diffraction spectroscopy, thermogravimetric analysis, high performance liquid chromatography, and the Next Generation Impactor. Results: The DPIs exhibited consistent, spherically shaped, smooth particles. Drug particles were evenly distributed with acceptable content uniformity. Drug crystallinity was not significantly affected by milling and the formulations had minimal (<2.0%) water content. After reconstitution of theDPIs, the hydrodynamic size was about 370.9 - 556.2nm and charge was-12.3 - -47.3mV. Furthermore, the proliposome DPIs presented emitted dose (69.04 - 89.03%), fine particle fraction,< 4.4 µm (13.7 - 57.8%), and mass median aerodynamic diameter (<3.0 µm), which satisfied the requirements for deep lung delivery. Conclusion: The proposed approach was suitable for preparation of proliposome DPIs that could be deployed for local targeting of the lower respiratory tract for treatment of tuberculosis.
Collapse
Affiliation(s)
- Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Fredrick Nwude Eze
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ekawat Thawithong
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
9
|
Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res 2022; 13:1246-1271. [PMID: 36131190 PMCID: PMC9491662 DOI: 10.1007/s13346-022-01238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Inhaled drug delivery is a promising approach to achieving high lung drug concentrations to facilitate efficient treatment of tuberculosis (TB) and to reduce the overall duration of treatment. Rifampicin is a good candidate for delivery via the pulmonary route. There have been no clinical studies yet at relevant inhaled doses despite the numerous studies investigating its formulation and preclinical properties for pulmonary delivery. This review discusses the clinical implications of pulmonary drug delivery in TB treatment, the drug delivery systems reported for pulmonary delivery of rifampicin, animal models, and the animal studies on inhaled rifampicin formulations, and the research gaps hindering the transition from preclinical development to clinical investigation. A review of reports in the literature suggested there have been minimal attempts to test inhaled formulations of rifampicin in laboratory animals at relevant high doses and there is a lack of appropriate studies in animal models. Published studies have reported testing only low doses (≤ 20 mg/kg) of rifampicin, and none of the studies has investigated the safety of inhaled rifampicin after repeated administration. Preclinical evaluations of inhaled anti-TB drugs, such as rifampicin, should include high-dose formulations in preclinical models, determined based on allometric conversions, for relevant high-dose anti-TB therapy in humans.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
10
|
Development of excipients free inhalable co-spray-dried tobramycin and diclofenac formulations for cystic fibrosis using two and three fluid nozzles. Int J Pharm 2022; 624:121989. [PMID: 35809834 DOI: 10.1016/j.ijpharm.2022.121989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
This study aims to investigate the effect of physicochemical properties and aerosol performance of two (2FN) and three-fluid nozzles (3FN) on the inhalable co-formulation of tobramycin and diclofenac dry powders. Combination formulations of tobramycin and diclofenac at 2:1 and 4:1 w/w ratios were prepared at a laboratory scale using a spray dryer in conjunction with a 2FN or 3FN. Powder size, morphology, solid-state characteristics, and aerodynamic and dissolution properties were characterised. The nozzle types and the formulation composition influenced the yield, particle size, solid-state properties, aerosolization behaviour and dissolution of the co-spray dried formulations. In particular, using the 2FN the co-spray dried formulation of tobramycin and diclofenac at 2:1 w/w showed smaller particle size (D50, 3.01 ± 0.06 μm), high fine particle fractions (FPF) (61.1 ± 3.6% for tobramycin and 65.92 ± 3 for diclofenac) and faster dissolution with approx. 70% diclofenac released within 3 h and approx. 90% tobramycin was released within 45 min. However, the 3FN for the co-spray dried formulation of tobramycin and diclofenac at a 2:1 w/w ratio showed a larger particle size (D50, 3.42 ± 0.02 μm), lower FPF (40.6 ± 3.4% for tobramycin and 36.9 ± 0.84 for diclofenac) and comparative slower dissolution with approx. 60% diclofenac was released within 3 h and 80% tobramycin was released within 45 min. A similar trend was observed when the tobramycin to diclofenac ratio was increased to 4:1 w/w. Overall results suggest that spray drying with 2FN showed a superior and viable approach to producing excipients-free inhalable co-spray dried formulations of tobramycin and diclofenac. However, the formulation produced using the 3FN showed higher enrichment of hydrophobic diclofenac and an ability to control the tobramycin drug release in vitro.
Collapse
|
11
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
12
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Spray freeze drying to solidify Nanosuspension of Cefixime into inhalable microparticles. Daru 2022; 30:17-27. [PMID: 34997567 PMCID: PMC9114214 DOI: 10.1007/s40199-021-00426-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/07/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Spray-freeze drying (SFD) incorporating diverse carbohydrates and leucine was employed to obtain dried nanosuspension of cefixime with improved dissolution profile, good dispersibility, and excellent inhalation performance. METHODS Nanoprecipitation was utilized to prepare nanoparticles (NPs). Nanosuspensions of cefixime were solidified via SFD to access inhalable microparticles. The aerosolization efficiencies were evaluated through twin stage impinger (TSI). Laser light scattering and scanning electron microscopy (SEM) provided assistance to determine the particle size/size distribution and morphology, respectively. Amorphous/ crystalline states of materials were examined via differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Release profiles of candidate preparations were evaluated. RESULTS The fine particle fraction (FPF) ranged from 18.96 ± 0.76 to 79.28 ± 0.45%. The highest value resulted from trehalose with NP/carrier ratio of 1:1 and leucine 20%. The particle size varied from 5.24 ± 0.97 to 10.17 ± 1.01 μm. The most and the least size distribution were achieved in mannitol and trehalose containing formulations, respectively. The majority of samples demonstrated ideally spherical morphology with diverse degrees of porosity and without needle-shaped structure. Percentages of release in F7 and F8 were 89.33 ± 0.88% and 93.54 ± 1.02%, respectively, via first 10 min. CONCLUSION SFD of nanosuspensions can be established as a platform for the pulmonary delivery of poorly water-soluble molecules of cefixime. Trehalose and raffinose with a lower ratio of NP to the carrier and higher level of leucine could be introduced as favorable formulations for further respiratory delivery of cefixime.
Collapse
|
14
|
Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa. Int J Pharm 2021; 610:121160. [PMID: 34624446 DOI: 10.1016/j.ijpharm.2021.121160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.
Collapse
|
15
|
A triple combination 'nano' dry powder inhaler for tuberculosis: in vitro and in vivo pulmonary characterization. Drug Deliv Transl Res 2021; 11:1520-1531. [PMID: 34041715 DOI: 10.1007/s13346-021-01005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Inhalation route of drug delivery is the most favorable for pulmonary infections wherein direct drug delivery is desired to the lungs. Tuberculosis is one such infection suffering from poor therapeutic efficacy because of low patient compliance due to high drug dosing and lengthy treatment protocols. The current research work was undertaken to develop a dry powder inhaler (DPI) for administration of three first-line antitubercular antibiotics directly to the lungs to improve the treatment rates. Nanoformulations of isoniazid, pyrazinamide, and rifampicin were prepared, spray-dried to obtain a dry powder system, and blended with inhalation grade lactose to develop the DPI. The DPI was evaluated for its flow properties, pulmonary deposition, dissolution profile, and stability. The DPI possessed excellent flow properties with a fine particle fraction of 45% and a mass median aerodynamic diameter of approximately 5 µm indicating satisfactory lung deposition. In vitro drug release exhibited a sustained release of the formulations. In vivo studies showed a prolonged deposition in the lung at elevated concentrations compared to oral therapy. Stability studies proved that the formulation remained stable at accelerated and long-term stability conditions. The DPI could complement the existing oral therapy in enhancing the therapeutic efficacy in patients.
Collapse
|
16
|
Yang R, Hong Y, Wang Y, Zhao L, Shen L, Feng Y. The embodiment of the strategy of “using active chemicals as excipients” in compound preparation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ke WR, Chang RYK, Kwok PCL, Tang P, Chen L, Chen D, Chan HK. Administration of dry powders during respiratory supports. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:596. [PMID: 33987294 DOI: 10.21037/atm-20-3946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inhaled drugs are routinely used for the treatment of respiratory-supported patients. To date, pressurized metered dose inhalers and nebulizers are the two platforms routinely employed in the clinical setting. The scarce utilization of the dry powder inhaler (DPI) platform is partly due to the lack of in vivo data that proves optimal delivery and drug efficacy are achievable. Additionally, fitting a DPI in-line to the respiratory circuit is not as straightforward as with the other aerosol delivery platforms. Importantly, there is a common misconception that the warm and humidified inspiratory air in respiratory supports, even for a short exposure, will deteriorate powder formulation compromising its delivery and efficacy. However, some recent studies have dispelled this myth, showing successful delivery of dry powders through the humidified circuit of respiratory supports. Compared with other aerosol delivery devices, the use of DPIs during respiratory supports possesses unique advantages such as rapid delivery and high dose. In this review, we presented in vitro studies showing various setups employing commercial DPIs and effects of ventilator parameters on the aerosol delivery. Inclusion of novel DPIs was also made to illustrate characteristics of an ideal inhaler that would give high lung dose with low powder deposition loss in tracheal tubes and respiratory circuits. Clinical trials are urgently needed to confirm the benefits of administration of dry powders in ventilated patients, thus enabling translation of powder delivery into practice.
Collapse
Affiliation(s)
- Wei-Ren Ke
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Lan Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Donghao Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Brunaugh AD, Sharma S, Smyth H. Inhaled fixed-dose combination powders for the treatment of respiratory infections. Expert Opin Drug Deliv 2021; 18:1101-1115. [PMID: 33632051 DOI: 10.1080/17425247.2021.1886074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Respiratory infections are a major cause of morbidity and mortality. As an alternative to systemic drug administration, inhaled drug delivery can produce high drug concentrations in the lung tissue to overcome resistant bacteria. The development of inhaled fixed-dose combination powders (I-FDCs) is promising next step in this field, as it would enable simultaneous drug-drug or drug-adjuvant delivery at the site of infection, thereby promoting synergistic activity and improving patient compliance. AREAS COVERED This review covers the clinical and pharmaceutical rationales for the development of I-FDCs for the treatment of respiratory infections, relevant technologies for particle and powder generation, and obstacles which must be addressed to achieve regulatory approval. EXPERT OPINION I-FDCs have been widely successful in the treatment of asthma and chronic obstructive pulmonary disease; however, application of I-FDCs towards the treatment of respiratory infections carries additional challenges related to the high dose requirements and physicochemical characteristics of anti-infective drugs. At present, co-spray drying is an especially promising approach for the development of composite fixed-dose anti-infective particles for inhalation. Though the majority of fixed-dose research has thus far focused on the combination of multiple antibiotics, future work may shift to the additional inclusion of immunomodulatory agents or repurposed non-antibiotics.
Collapse
Affiliation(s)
| | - Shivam Sharma
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Hugh Smyth
- College of Pharmacy, University of Texas at Austin, Austin, USA
| |
Collapse
|
19
|
Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020; 325:276-292. [PMID: 32652109 DOI: 10.1016/j.jconrel.2020.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
The rise of antimicrobial resistance has created an urgent need for the development of new methods for antibiotics delivery to patients with pulmonary infections in order to mainly increase the effectiveness of the drugs administration, to minimize the risk of emergence of resistant strains, and to prevent patients reinfection. Since bacterial resistance is often related to antibiotic concentration, their pulmonary administration could eradicate strains resistant to the same drug at the concentration achieved through the systemic circulation. Pulmonary administration offers several advantages; it directly targets the site of the infection which allows the inhaled dose of the drug to be reduced compared to that administered orally or parenterally while keeping the same local effect. The review article is made with an objective to compile information about various existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drugs. In conclusion, aerosol antibiotic delivery appears as one of the best technologies for the treatment of pulmonary infectious diseases and able to limit the systemic adverse effects related to the high drug dose and to make life easier for the patients.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | | |
Collapse
|
20
|
Adeleke OA, Hayeshi RK, Davids H. Development and Evaluation of a Reconstitutable Dry Suspension Containing Isoniazid for Flexible Pediatric Dosing. Pharmaceutics 2020; 12:E286. [PMID: 32210125 PMCID: PMC7151029 DOI: 10.3390/pharmaceutics12030286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/01/2023] Open
Abstract
Tuberculosis (TB) is a major cause of childhood death. Despite the startling statistics, it is neglected globally as evidenced by treatment and clinical care schemes, mostly extrapolated from studies in adults. The objective of this study was to formulate and evaluate a reconstitutable dry suspension (RDS) containing isoniazid, a first-line anti-tubercular agent used in the treatment and prevention of TB infection in both children and adults. The RDS formulation was prepared by direct dispersion emulsification of an aqueous-lipid particulate interphase coupled with lyophilization and dry milling. The RDS appeared as a cream-white free-flowing powder with a semi-crystalline and microparticulate nature. Isoniazid release was characterized with an initial burst up to 5 minutes followed by a cumulative release of 67.88% ± 1.88% (pH 1.2), 60.18% ± 3.33% (pH 6.8), and 49.36% ± 2.83% (pH 7.4) over 2 hours. An extended release at pH 7.4 and 100% drug liberation was achieved within 300 minutes. The generated release profile best fitted the zero order kinetics (R2 = 0.976). RDS was re-dispersible and remained stable in the dried and reconstituted states over 4 months and 11 days, respectively, under common storage conditions.
Collapse
Affiliation(s)
- Oluwatoyin A. Adeleke
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Rose K. Hayeshi
- Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| |
Collapse
|
21
|
Berkenfeld K, McConville JT, Lamprecht A. Inhalable dry powders of rifampicin highlighting potential and drawbacks in formulation development for experimental tuberculosis aerosol therapy. Expert Opin Drug Deliv 2020; 17:305-322. [PMID: 32017637 DOI: 10.1080/17425247.2020.1720644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Introduction: Recently, tuberculosis was reported as the leading cause of death from a single infectious agent. Standard therapy includes administration of four first-line antibiotics, i.e. rifampicin, isoniazid, ethambutol, and pyrazinamide over a period of at least 26 weeks, which in case of rifampicin oftentimes is accompanied by unwanted side effects and variable bioavailability that compromise a positive therapeutic outcome. As the main site of infection is the lungs, it is desirable to develop a therapeutic formulation to be administered via the pulmonary route.Areas covered: This work presents a literature review on studies investigating inhalable dry powder formulations including rifampicin in the context of an experimental tuberculosis therapy, with a special focus on aerosol performance.Expert opinion: It was found that formulation approaches involving different strategies and functional excipients are under investigation but as of now, no formulation has managed to leap into commercial clinical testing. Reasons for this might not primarily be associated with a lack of suitable candidates, but amongst others a lack of suitable in vitro models to assess the efficacy, therapeutic benefit, and cost-effectiveness of the candidate formulations.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Department of Pharmaceutics, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutics, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
22
|
Zhang Y, MacKenzie B, Koleng JJ, Maier E, Warnken ZN, Williams RO. Development of an Excipient-Free Peptide Dry Powder Inhalation for the Treatment of Pulmonary Fibrosis. Mol Pharm 2020; 17:632-644. [PMID: 31913640 DOI: 10.1021/acs.molpharmaceut.9b01085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The caveolin scaffolding domain peptide (CSP) is being developed for the therapeutic intervention of a lethal lung disease, idiopathic pulmonary fibrosis. While direct respiratory delivery of CSP7 (a 7-mer fragment of CSP) is considered an effective route, proper formulation and processing of the peptide are required. First, air-jet milling technology was performed in order to micronize the neat peptide powder. Next, the fine particles were subjected to a stability study with physical and chemical characterizations. In addition, the in vivo efficacy of processed CSP7 powder was evaluated in an animal model of lung fibrosis. The results revealed that, with jet milling, the particle size of CSP7 was reduced to a mass median aerodynamic diameter of 1.58 ± 0.1 μm and 93.3 ± 3.3% fine particle fraction, optimal for deep lung delivery. A statistically significant reduction of collagen was observed in diseased lung tissues of mice that received CSP7 powder for inhalation. The particles remained chemically and physically stable after micronization and during storage. This work demonstrated that jet milling is effective in the manufacturing of a stable, excipient-free CSP7 inhalation powder for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| | - BreAnne MacKenzie
- Lung Therapeutics Inc. , 2600 Via Fortuna, Suite 360 , Austin , Texas 78746 , United States
| | - John J Koleng
- Lung Therapeutics Inc. , 2600 Via Fortuna, Suite 360 , Austin , Texas 78746 , United States
| | - Esther Maier
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| | - Zachary N Warnken
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| |
Collapse
|
23
|
Dry powder formulation combining bedaquiline with pyrazinamide for latent and drug-resistant tuberculosis. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Rangnekar B, Momin MA, Eedara BB, Sinha S, Das SC. Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis. Int J Pharm 2019; 570:118689. [DOI: 10.1016/j.ijpharm.2019.118689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 12/23/2022]
|
25
|
Momin MAM, Rangnekar B, Sinha S, Cheung CY, Cook GM, Das SC. Inhalable Dry Powder of Bedaquiline for Pulmonary Tuberculosis: In Vitro Physicochemical Characterization, Antimicrobial Activity and Safety Studies. Pharmaceutics 2019; 11:pharmaceutics11100502. [PMID: 31581469 PMCID: PMC6836091 DOI: 10.3390/pharmaceutics11100502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Bedaquiline is a newly developed anti-tuberculosis drug, conditionally approved by the United States Food and Drug Administration (USFDA) for treating drug-resistant tuberculosis in adults. Oral delivery of bedaquiline causes severe side effects such as increased hepatic aminotransferase levels and cardiac arrhythmias (prolongation of QT-interval). This study aimed to develop inhalable dry powder particles of bedaquiline with high aerosolization efficiency to reduce the side-effects of oral bedaquiline. Bedaquiline (with or without l-leucine) powders were prepared using a Buchi Mini Spray-dryer. The powders were characterized for physicochemical properties and for their in vitro aerosolization efficiency using a next-generation impactor (NGI). The formulation with maximum aerosolization efficiency was investigated for physicochemical and aerosolization stability after one-month storage at 20 ± 2 °C/30 ± 2% relative humidity (RH) and 25 ± 2 °C/75% RH in an open Petri dish. The cytotoxicity of the powders on A549 and Calu-3 cell-lines was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The powders were also evaluated for antimicrobial activity against Mycobacterium tuberculosis. The aerodynamic diameter of the l-leucine-containing powder was 2.4 µm, and the powder was amorphous in nature. The aerosolization efficiency (fine-particle fraction) of l-leucine-containing powder (fine-particle fraction (FPF): 74.4%) was higher than the bedaquiline-only powder (FPF: 31.3%). l-leucine containing powder particles were plate-shaped with rough surfaces, but the bedaquiline-only powder was spherical and smooth. The optimized powder was stable at both storage conditions during one-month storage and non-toxic (up to 50 µg/mL) to the respiratory cell-lines. Bedaquiline powders were effective against Mycobacterium tuberculosis and had a minimal inhibitory concentration (MIC) value of 0.1 µg/mL. Improved aerosolization may help to combat pulmonary tuberculosis by potentially reducing the side-effects of oral bedaquiline. Further research is required to understand the safety of the optimized inhalable powder in animal models.
Collapse
Affiliation(s)
- Mohammad A M Momin
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0533, USA.
| | | | - Shubhra Sinha
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
26
|
Pitner RA, Durham PG, Stewart IE, Reed SG, Cassell GH, Hickey AJ, Carter D. A Spray-Dried Combination of Capreomycin and CPZEN-45 for Inhaled Tuberculosis Therapy. J Pharm Sci 2019; 108:3302-3311. [PMID: 31152746 PMCID: PMC6759370 DOI: 10.1016/j.xphs.2019.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) remains the single most serious infectious disease attributable to a single-causative organism. A variety of drugs have been evaluated for pulmonary delivery as dry powders: capreomycin sulfate has shown efficacy and was safely delivered by inhalation at high doses to human volunteers, whereas CPZEN-45 is a new drug that has also been shown to kill resistant TB. The studies here combine these drugs-acting by different mechanisms-as components of single particles by spray-drying, yielding a new combination drug therapy. The spray-dried combination powder was prepared in an aerodynamic particle size range suitable for pulmonary delivery. Physicochemical storage stability was demonstrated for a period of 6 months. The spray-dried combination powders of capreomycin and CPZEN-45 have only moderate affinity for mucin, indicating that delivered drug will not be bound by these mucins in the lung and available for microbicidal effects. The pharmacokinetics of disposition in guinea pigs demonstrated high local concentrations of drug following direct administration to the lungs and subsequent systemic bioavailability. Further studies are required to demonstrate the in vivo efficacy of the combination to confirm the therapeutic potential of this novel combination.
Collapse
Affiliation(s)
- Ragan A Pitner
- PAI Life Sciences, Seattle, Washington 98102; Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109
| | - Phillip G Durham
- RTI International, Research Triangle Park, North Carolina 27709; Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ian E Stewart
- RTI International, Research Triangle Park, North Carolina 27709
| | - Steven G Reed
- Infectious Disease Research Institute (IDRI), Seattle, Washington 98102
| | - Gail H Cassell
- Infectious Disease Research Institute (IDRI), Seattle, Washington 98102
| | - Anthony J Hickey
- RTI International, Research Triangle Park, North Carolina 27709; Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Darrick Carter
- PAI Life Sciences, Seattle, Washington 98102; Infectious Disease Research Institute (IDRI), Seattle, Washington 98102.
| |
Collapse
|
27
|
Inhaled Antibiotics for Mycobacterial Lung Disease. Pharmaceutics 2019; 11:pharmaceutics11070352. [PMID: 31331119 PMCID: PMC6680843 DOI: 10.3390/pharmaceutics11070352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mycobacterial lung diseases are an increasing global health concern. Tuberculosis and nontuberculous mycobacteria differ in disease severity, epidemiology, and treatment strategies, but there are also a number of similarities. Pathophysiology and disease progression appear to be relatively similar between these two clinical diagnoses, and as a result these difficult to treat pulmonary infections often require similarly extensive treatment durations of multiple systemic drugs. In an effort to improve treatment outcomes for all mycobacterial lung diseases, a significant body of research has investigated the use of inhaled antibiotics. This review discusses previous research into inhaled development programs, as well as ongoing research of inhaled therapies for both nontuberculous mycobacterial lung disease, and tuberculosis. Due to the similarities between the causative agents, this review will also discuss the potential cross-fertilization of development programs between these similar-yet-different diseases. Finally, we will discuss some of the perceived difficulties in developing a clinically utilized inhaled antibiotic for mycobacterial diseases, and potential arguments in favor of the approach.
Collapse
|
28
|
Sibum I, Hagedoorn P, Frijlink HW, Grasmeijer F. Characterization and Formulation of Isoniazid for High-Dose Dry Powder Inhalation. Pharmaceutics 2019; 11:pharmaceutics11050233. [PMID: 31086107 PMCID: PMC6572553 DOI: 10.3390/pharmaceutics11050233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis is a major health problem and remains one of the main causes of mortality. In recent years, there has been an increased interest in the pulmonary delivery of antibiotics to treat tuberculosis. Isoniazid is one of these antibiotics. In this study, we aimed to characterize isoniazid and formulate it into a dry powder for pulmonary administration with little or no excipient, and for use in the disposable Twincer® inhaler. Isoniazid was jet milled and spray dried with and without the excipient l-leucine. Physiochemical characterization showed that isoniazid has a low Tg of −3.99 ± 0.18 °C and starts to sublimate around 80 °C. Milling isoniazid with and without excipients did not result in a suitable formulation, as it resulted in a low and highly variable fine particle fraction. Spray drying pure isoniazid resulted in particles too large for pulmonary administration. The addition of 5% l-leucine resulted in a fraction <5 µm = 89.61% ± 1.77% from spray drying, which dispersed well from the Twincer®. However, storage stability was poor at higher relative humidity, which likely results from dissolution-crystallization. Therefore, follow up research is needed to further optimize this spray dried formulation.
Collapse
Affiliation(s)
- Imco Sibum
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AB Groningen, The Netherlands.
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AB Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AB Groningen, The Netherlands.
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AB Groningen, The Netherlands.
| |
Collapse
|
29
|
Rossi I, Buttini F, Sonvico F, Affaticati F, Martinelli F, Annunziato G, Machado D, Viveiros M, Pieroni M, Bettini R. Sodium Hyaluronate Nanocomposite Respirable Microparticles to Tackle Antibiotic Resistance with Potential Application in Treatment of Mycobacterial Pulmonary Infections. Pharmaceutics 2019; 11:pharmaceutics11050203. [PMID: 31052403 PMCID: PMC6571635 DOI: 10.3390/pharmaceutics11050203] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis resistant cases have been estimated to grow every year. Besides Mycobacterium tuberculosis, other mycobacterial species are responsible for an increasing number of difficult-to-treat infections. To increase efficacy of pulmonary treatment of mycobacterial infections an inhalable antibiotic powder targeting infected alveolar macrophages (AMs) and including an efflux pump inhibitor was developed. Low molecular weight sodium hyaluronate sub-micron particles were efficiently loaded with rifampicin, isoniazid and verapamil, and transformed in highly respirable microparticles (mean volume diameter: 1 μm) by spray drying. These particles were able to regenerate their original size upon contact with aqueous environment with mechanical stirring or sonication. The in vitro drugs release profile from the powder was characterized by a slow release rate, favorable to maintain a high drug level inside AMs. In vitro antimicrobial activity and ex vivo macrophage infection assays employing susceptible and drug resistant strains were carried out. No significant differences were observed when the powder, which did not compromise the AMs viability after a five-day exposure, was compared to the same formulation without verapamil. However, both preparations achieved more than 80% reduction in bacterial viability irrespective of the drug resistance profile. This approach can be considered appropriate to treat mycobacterial respiratory infections, regardless the level of drug resistance.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Filippo Affaticati
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Martinelli
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Giannamaria Annunziato
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, 1349-008 Lisbon, Portugal.
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, 1349-008 Lisbon, Portugal.
| | - Marco Pieroni
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
30
|
Excipient-free isoniazid aerosol administration in mice: Evaporation-nucleation particle generation, pulmonary delivery and body distribution. Int J Pharm 2019; 563:101-109. [PMID: 30928214 DOI: 10.1016/j.ijpharm.2019.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
Excipient-free isoniazid aerosol formation and pulmonary delivery in mice are studied. An evaporation-nucleation route is used for the generation of isoniazid aerosol. Particle diameters and number concentrations are measured with an aerosol spectrometer consisting of a diffusion battery, condensation chamber, and photoelectric counter. The pulmonary delivery of isoniazid particles is studied in both nose-only (NO) and whole-body (WB) inhalation chambers for the particle mean diameter and number concentration to be 600 nm and 6 × 106 cm-3, respectively. It is found that the rate of drug systemic absorption in the WB chamber is 27% higher than that for the NO one because of an additional consumption of drug orally from the fur in the WB chamber. The particle deposition efficiency ε in the mouse respiratory tract is measured as a function of mean diameter. The quantity ε is equal to 0.7 for the particle diameter d = 10 nm and decreases to 0.2 with the diameter increasing to 300 nm, and then, at d > 300 nm the deposition efficiency increases with diameter to 0.5 at d = 2000 nm. The bioavailability of the aerosol form of isoniazid (72 ± 10%) is very close to that for the per-oral form (61 ± 10%).
Collapse
|
31
|
Radivojev S, Zellnitz S, Paudel A, Fröhlich E. Searching for physiologically relevant in vitro dissolution techniques for orally inhaled drugs. Int J Pharm 2019; 556:45-56. [DOI: 10.1016/j.ijpharm.2018.11.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023]
|
32
|
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control. Curr Drug Deliv 2019; 16:400-429. [PMID: 30714523 PMCID: PMC6637229 DOI: 10.2174/1567201816666190201144815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.
Collapse
Affiliation(s)
| | | | | | | | | | - Faiyaz Shakeel
- Address correspondence to this author at the Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Tel: +966-14673139; E-mail:
| |
Collapse
|
33
|
Tse JY, Kadota K, Hirata Y, Taniguchi M, Uchiyama H, Tozuka Y. Characterization of matrix embedded formulations for combination spray-dried particles comprising pyrazinamide and rifampicin. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S791-S806. [DOI: 10.1080/21691401.2018.1513938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance Technique, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - C. Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| |
Collapse
|
35
|
High dose dry powder inhalers to overcome the challenges of tuberculosis treatment. Int J Pharm 2018; 550:398-417. [PMID: 30179703 DOI: 10.1016/j.ijpharm.2018.08.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a major global health burden. The emergence of the human immunodeficiency virus (HIV) epidemic and drug resistance has complicated global TB control. Pulmonary delivery of drugs using dry powder inhalers (DPI) is an emerging approach to treat TB. In comparison with the conventional pulmonary delivery for asthma and chronic obstructive pulmonary disease (COPD), TB requires high dose delivery to the lung. However, high dose delivery depends on the successful design of the inhaler device and the formulation of highly aerosolizable powders. Particle engineering techniques play an important role in the development of high dose dry powder formulations. This review focuses on the development of high dose dry powder formulations for TB treatment with background information on the challenges of the current treatment of TB and the potential for pulmonary delivery. Particle engineering techniques with a particular focus on the spray drying and a summary of the developed dry powder formulations using different techniques are also discussed.
Collapse
|
36
|
Giuliani A, Balducci AG, Zironi E, Colombo G, Bortolotti F, Lorenzini L, Galligioni V, Pagliuca G, Scagliarini A, Calzà L, Sonvico F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv 2018; 25:376-387. [PMID: 29382237 PMCID: PMC6058489 DOI: 10.1080/10717544.2018.1428242] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nasal administration has been proposed as a potential approach for the delivery of drugs to the central nervous system. Ribavirin (RBV), an antiviral drug potentially useful to treat viral infections both in humans and animals, has been previously demonstrated to attain several brain compartments after nasal administration. Here, a powder formulation in the form of agglomerates comprising micronized RBV and spray-dried microparticles containing excipients with potential absorption enhancing properties, i.e. mannitol, chitosan, and α-cyclodextrin, was developed for nasal insufflation. The agglomerates were characterized for particle size, agglomeration yield, and ex vivo RBV permeation across rabbit nasal mucosa as well as delivery from an animal dry powder insufflator device. Interestingly, permeation enhancers such as chitosan and mannitol showed a lower amount of RBV permeating across the excised nasal tissue, whereas α-cyclodextrin proved to outperform the other formulations and to match the highly soluble micronized RBV powder taken as a reference. In vivo nasal administration to rats of the agglomerates containing α-cyclodextrin showed an overall higher accumulation of RBV in all the brain compartments analyzed as compared with the micronized RBV administered as such without excipient microparticles. Hence, powder agglomerates are a valuable approach to obtain a nasal formulation potentially attaining nose-to-brain delivery of drugs with minimal processing of the APIs and improvement of the technological and biopharmaceutical properties of micronized API and excipients, as they combine optimal flow properties for handling and dosing, suitable particle size for nasal deposition, high surface area for drug dissolution, and penetration enhancing properties from excipients such as cyclodextrins.
Collapse
Affiliation(s)
- Alessandro Giuliani
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Anna Giulia Balducci
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| | - Elisa Zironi
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Gaia Colombo
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | - Fabrizio Bortolotti
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | | | - Viola Galligioni
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Giampiero Pagliuca
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Alessandra Scagliarini
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Laura Calzà
- e IRET Foundation , Ozzano , (BO) , Italy.,f Department of Pharmacy and Biotechnology , Ozzano , Italy
| | - Fabio Sonvico
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| |
Collapse
|
37
|
Newman SP. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev 2018; 133:5-18. [PMID: 29653129 DOI: 10.1016/j.addr.2018.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/01/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
The repurposing of drug delivery by the pulmonary route has been applied to treatment and prophylaxis of an increasingly wide range of respiratory diseases. Repurposing has been most successful for the delivery of inhaled bronchodilators and corticosteroids in patients with asthma and chronic obstructive pulmonary disease (COPD). Repurposing utilizes the advantages that the pulmonary route offers in terms of more targeted delivery to the site of action, the use of smaller doses, and a lower incidence of side-effects. Success has been more variable for other drugs and treatment indications. Pulmonary delivery is now well established for delivery of inhaled antibiotics in cystic fibrosis (CF), and in the treatment of pulmonary arterial hypertension (PAH). Other inhaled treatments such as those for idiopathic pulmonary fibrosis (IPF), lung transplant rejection or tuberculosis may also become routine. Repurposing has progressed in parallel with the development of new drugs, inhaler devices and formulations.
Collapse
|
38
|
Eedara BB, Rangnekar B, Sinha S, Doyle C, Cavallaro A, Das SC. Development and characterization of high payload combination dry powders of anti-tubercular drugs for treating pulmonary tuberculosis. Eur J Pharm Sci 2018; 118:216-226. [DOI: 10.1016/j.ejps.2018.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 11/27/2022]
|
39
|
Sverdlov Arzi R, Sosnik A. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv Drug Deliv Rev 2018; 131:79-100. [PMID: 30031740 DOI: 10.1016/j.addr.2018.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
In recent years, nanotechnology has offered attractive opportunities to overcome the (bio)pharmaceutical drawbacks of most drugs such as low aqueous solubility and bioavailability. Among the numerous methodologies that have been applied to improve drug performance, a special emphasis has been made on those that increase the dissolution rate and the saturation solubility by the reduction of the particle size of pure drugs to the nanoscale and the associated increase of the specific surface area. Different top-down and bottom-up methods have been implemented, each one with its own pros and cons. Over the last years, the latter that rely on the dissolution of the drug in a proper solvent and its crystallization or co-crystallization by precipitation in an anti-solvent or, conversely, by solvent evaporation have gained remarkable impulse owing to the ability to adjust features such as size, size distribution, morphology and to control the amorphous/crystalline nature of the product. In this framework, electrohydrodynamic atomization (also called electrospraying) and spray-drying excel due to their simplicity and potential scalability. Moreover, they do not necessarily require suspension stabilizers and dry products are often produced during the formation of the nanoparticles what ensures physicochemical stability for longer times than liquid products. This review overviews the potential of these two technologies for the production of pure drug nanocrystals and co-crystals and discusses the recent technological advances and challenges for their implementation in pharmaceutical research and development.
Collapse
|
40
|
Eedara BB, Rangnekar B, Doyle C, Cavallaro A, Das SC. The influence of surface active l-leucine and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) in the improvement of aerosolization of pyrazinamide and moxifloxacin co-spray dried powders. Int J Pharm 2018. [DOI: 10.1016/j.ijpharm.2018.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Yu J, Romeo MC, Cavallaro AA, Chan HK. Protective effect of sodium stearate on the moisture-induced deterioration of hygroscopic spray-dried powders. Int J Pharm 2018; 541:11-18. [PMID: 29454904 DOI: 10.1016/j.ijpharm.2018.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
Amorphous powders are thermodynamically unstable, significantly impacting the processing, storage and performance of a product. Therefore, stabilization of the amorphous contents is in demand. In this study, disodium cromoglycate (DSCG) powder was chosen as a model drug because it is amorphous and highly hygroscopic after spray drying. Sodium stearate (NaSt) was co-spray dried with DSCG at various concentrations (10, 50 and 90% w/w) to investigate its effect against moisture-induced deterioration on the in vitro aerosolization performance of DSCG. Particle size distribution and morphology were measured by laser diffraction and scanning electron microscopy (SEM). Physicochemical properties of the powders were analysed by X-ray powder diffraction (XRPD) and dynamic vapour sorption (DVS). Particle surface chemistry was analysed by the time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro dissolution behaviours of the spray-dried (SD) powders were tested by the Franz cell apparatus. In vitro aerosolization performance of SD formulations stored at different relative humidity (RH) was evaluated by a multi-stage liquid impinger (MSLI), using an Osmohaler® at 100 L/min. Results showed that adding NaSt in the formulation not only increased the aerosolization performance of DSCG significantly, but also effectively reduced the deleterious impact of moisture. No significant difference was found in the fine particle fraction (FPF) of formulations containing NaSt before and after storage at both 60% and 75% RH for one week. However, after one month storage at 75% RH, SD formulation containing 10% NaSt showed a reduction in FPF, while formulations containing 50% or 90% NaSt showed no change. The underlying mechanism was that NaSt increased the crystallinity of the powders and its presence on the particle surface reduced particle aggregations and cohesiveness. However, NaSt at high concentration could reduce dissolution rate, which needs to be taken into consideration.
Collapse
Affiliation(s)
- Jiaqi Yu
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia
| | - Maria-Cristina Romeo
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia
| | - Alex A Cavallaro
- Future Industries Institute, University of South Australia, 5095, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
42
|
Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur J Pharm Sci 2018; 113:18-28. [DOI: 10.1016/j.ejps.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
|
43
|
Shah K, Chan LW, Wong TW. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv 2017; 24:1631-1647. [PMID: 29063794 PMCID: PMC8241194 DOI: 10.1080/10717544.2017.1384298] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022] Open
Abstract
The study investigated aerosolization, pulmonary inhalation, intracellular trafficking potential in macrophages and pharmacokinetics profiles of rifampicin-oleic acid first-generation nanoemulsion and its respective chitosan- and chitosan-folate conjugate-decorated second and third-generation nanoemulsions, delivered via nebulization technique. The nanoemulsions were prepared by conjugate synthesis and spontaneous emulsification techniques. They were subjected to physicochemical, drug release, aerosolization, inhalation, cell culture and pharmacokinetics analysis. The nanoemulsions had average droplet sizes of 40-60 nm, with narrow polydispersity indices. They exhibited desirable pH, surface tension, viscosity, refractive index, density and viscosity attributes for pulmonary rifampicin administration. All nanoemulsions demonstrated more than 95% aerosol output and inhalation efficiency greater than 75%. The aerosol output, aerosolized and inhaled fine particle fractions were primarily governed by the size and surface tension of nanoemulsions in an inverse relationship. The nanoemulsions were found to be safe with third-generation nanoemulsion exhibiting higher cell internalization potential, reduced plasma drug concentration, and higher lung drug content.
Collapse
Affiliation(s)
- Kifayatullah Shah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Selangor, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, Malaysia
| | - Lai Wah Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Selangor, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
44
|
Dry powder inhaler for pulmonary drug delivery: human respiratory system, approved products and therapeutic equivalence guideline. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0359-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
|
46
|
Hasan S, Thomas N, Thierry B, Prestidge CA. Biodegradable nitric oxide precursor-loaded micro- and nanoparticles for the treatment of Staphylococcus aureus biofilms. J Mater Chem B 2017; 5:1005-1014. [PMID: 32263879 DOI: 10.1039/c6tb03290g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteria in biofilms are more difficult to eradicate than planktonic bacteria and result in treatment challenges for many chronic infectious diseases. Nitric oxide (NO) is an endogenous molecule that offers potential as an alternative to conventional antibiotics; however its sustained topical delivery to biofilms is not readily achieved. With this in mind, we report the development of biodegradable poly(lactide-co-glycolide) (PLGA) based microparticles (MP) and nanoparticles (NP) for encapsulation of the NO precursor isosorbide mononitrate (ISMN) and the controlled delivery to Staphylococcus aureus (S. aureus) biofilms. Firstly, water-in-oil-in-water (w/o/w) emulsification/solvent evaporation methods for PLGA NP and MP syntheses were experimentally optimised with respect to particle size and ISMN loading/encapsulation efficiency. The influence of various experiment parameters, such as the volume of inner aqueous phase, concentration of surfactants, mixing time on the particle size, drug loading and encapsulation efficiency were investigated systematically. Both PLGA MP and NP formulations enabled sustained ISMN release in physiological media over 3 to 5 days. PLGA MP with diameters of ∼3 μm and ISMN loading of 2.2% (w/w) were identified as the optimum delivery system and demonstrated significant antibacterial activity in S. aureus biofilms. This behaviour is considered to be due to targeted biofilm delivery through a combination of effective penetration and sustained release of ISMN.
Collapse
Affiliation(s)
- Sayeed Hasan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
47
|
Parumasivam T, Chan JGY, Pang A, Quan DH, Triccas JA, Britton WJ, Chan HK. In vitro evaluation of novel inhalable dry powders consisting of thioridazine and rifapentine for rapid tuberculosis treatment. Eur J Pharm Biopharm 2016; 107:205-14. [PMID: 27422209 DOI: 10.1016/j.ejpb.2016.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 02/03/2023]
Abstract
Thioridazine is an orally administered antipsychotic drug with potential for treatment of drug-resistant tuberculosis (TB). However, drug-induced adverse cardiac effects have been reported when thioridazine was used at an efficacious oral dose of 200mg/day to treat TB. Pulmonary delivery of thioridazine could be a rational approach to reduce dose-related side effects while enabling high drug concentrations at the primary site of infection. The present study compares in vitro aerosol performance, storage stability, and in vitro antimicrobial activity and cytotoxicity of two inhalable powders composed of thioridazine and a first-line anti-TB drug, rifapentine. Formulation 1 is a combination of amorphous thioridazine and crystalline rifapentine, while Formulation 2 consisted of both drugs as amorphous forms. Both thioridazine-rifapentine formulations were found suitable for inhalation with a total fine particle fraction (<5μm) of 68-76%. The two powders had similar MIC90 to rifapentine alone, being 0.000625μg/mL and 0.005μg/ml against Mycobacterium tuberculosis H37Ra and M. tuberculosis H37Rv, respectively. In contrast, thioridazine alone had a MIC90 of 12.5μg/mL and 500μg/mL, against M. tuberculosis H37Ra and M. tuberculosis H37Rv, respectively, demonstrating no synergistic anti-TB activity. However, thioridazine and rifapentine in a ratio of 1:3 enhanced the killing of M. tuberculosis H37Ra within the human monocyte-derived macrophages (THP-1) compared to the single drug treatments. Both powders showed an acceptable half maximal inhibitory concentration (IC50) of 31.25μg/mL on both THP-1 and human lung epithelial (A549) cells. However, Formulation 1 showed greater chemical stability than Formulation 2 after three months of storage under low humidity (vacuum) at 20±3°C. In conclusion, we have demonstrated a novel inhalable powder consisted of amorphous thioridazine and crystalline rifapentine (Formulation 1) with a good aerosol performance, potent anti-TB activity and storage stability, which deserves further in vivo investigations.
Collapse
Affiliation(s)
- T Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia
| | - J G Y Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia; JHL Biotech, Inc., Hsinchu County, Taiwan
| | - A Pang
- Tuberculosis Research Program, Centenary Institute, and The University of Sydney, Sydney 2042, NSW, Australia
| | - D H Quan
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia
| | - J A Triccas
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia
| | - W J Britton
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia; Tuberculosis Research Program, Centenary Institute, and The University of Sydney, Sydney 2042, NSW, Australia
| | - H K Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia.
| |
Collapse
|
48
|
Costa A, Pinheiro M, Magalhães J, Ribeiro R, Seabra V, Reis S, Sarmento B. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev 2016; 102:102-115. [PMID: 27108703 DOI: 10.1016/j.addr.2016.04.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/08/2016] [Accepted: 04/13/2016] [Indexed: 12/30/2022]
Abstract
Recent estimates indicate that tuberculosis (TB) is the leading cause of death worldwide, alongside the human immunodeficiency virus (HIV) infection. The current treatment is effective, but is associated with severe adverse-effects and noncompliance to prescribed regimens. An alternative route of drug delivery may improve the performance of existing drugs, which may have a key importance in TB control and eradication. Recent advances and emerging technologies in nanoscale systems, particularly nanoparticles (NPs), have the potential to transform such approach to human health and disease. Until now, several nanodelivery systems for the pulmonary administration of anti-TB drugs have been intensively studied and their utility as an alternative to the classical TB treatment has been suggested. In this context, this review provides a comprehensive analysis of recent progress in nanodelivery systems for pulmonary administration of anti-TB drugs. Additionally, more convenient and cost-effective alternatives for the lung delivery, different types of NPs for oral and topical are also being considered, and summarized in this review. Lastly, the future of this growing field and its potential impact will be discussed.
Collapse
Affiliation(s)
- Ana Costa
- ICBAS - Instituto Ciências Biomédicas Abel Salazar,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal; I3S,Instituto de Investigação e Inovação em Saúde, INEB-Instituto de Engenharia Biomédica,Universidade do Porto,Rua Alfredo Allen 208,4200-135 Porto,Portugal; CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal
| | - Marina Pinheiro
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Joana Magalhães
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Ricardo Ribeiro
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Vitor Seabra
- CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal
| | - Salette Reis
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Bruno Sarmento
- I3S,Instituto de Investigação e Inovação em Saúde, INEB-Instituto de Engenharia Biomédica,Universidade do Porto,Rua Alfredo Allen 208,4200-135 Porto,Portugal; CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal; Universidade Estadual do Oeste do Paraná,Centro de Ciências Médicas e Farmacêuticas,Rua Universitária,2069 Cascavel,Paraná, Brazil.
| |
Collapse
|
49
|
O'Connor G, Gleeson LE, Fagan-Murphy A, Cryan SA, O'Sullivan MP, Keane J. Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev 2016; 102:33-54. [PMID: 27151307 DOI: 10.1016/j.addr.2016.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.
Collapse
Affiliation(s)
- Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Laura E Gleeson
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Aidan Fagan-Murphy
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Joseph Keane
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| |
Collapse
|
50
|
Parumasivam T, Chang RYK, Abdelghany S, Ye TT, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev 2016; 102:83-101. [PMID: 27212477 DOI: 10.1016/j.addr.2016.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman 1192, Jordan
| | - Tian Tian Ye
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Warwick John Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, NSW 2006, Australia; Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|