1
|
Catanzaro E, Feron O, Skirtach AG, Krysko DV. Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy. Front Immunol 2022; 13:925290. [PMID: 35844506 PMCID: PMC9280641 DOI: 10.3389/fimmu.2022.925290] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 07/20/2023] Open
Abstract
Immunogenic cell death (ICD) is a rapidly growing research area representing one of the emerging therapeutic strategies of cancer immunotherapy. ICD is an umbrella term covering several cell death modalities including apoptosis, necroptosis, ferroptosis and pyroptosis, and is the product of a balanced combination of adjuvanticity (damage-associated molecular patterns and chemokines/cytokines) and antigenicity (tumor associated antigens). Only a limited number of anti-cancer therapies are available to induce ICD in experimental cancer therapies and even much less is available for clinical use. To overcome this limitation, nanomaterials can be used to increase the immunogenicity of cancer cells killed by anti-cancer therapy, which in themselves are not necessarily immunogenic. In this review, we outline the current state of knowledge of ICD modalities and discuss achievements in using nanomaterials to increase the immunogenicity of dying cancer cells. The emerging trends in modulating the immunogenicity of dying cancer cells in experimental and translational cancer therapies and the challenges facing them are described. In conclusion, nanomaterials are expected to drive further progress in their use to increase efficacy of anti-cancer therapy based on ICD induction and in the future, it is necessary to validate these strategies in clinical settings, which will be a challenging research area.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Olivier Feron
- Cancer Translational Research Laboratory, Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - André G. Skirtach
- Cancer Research Institute Ghent, Ghent, Belgium
- Nano-BioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Van der Weken H, Sanz Garcia R, Sanders NN, Cox E, Devriendt B. Antibody-Mediated Targeting of Antigens to Intestinal Aminopeptidase N Elicits Gut IgA Responses in Pigs. Front Immunol 2021; 12:753371. [PMID: 34721427 PMCID: PMC8551371 DOI: 10.3389/fimmu.2021.753371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022] Open
Abstract
Many pathogens enter the host via the gut, causing disease in animals and humans. A robust intestinal immune response is necessary to protect the host from these gut pathogens. Despite being best suited for eliciting intestinal immunity, oral vaccination remains a challenge due to the gastrointestinal environment, a poor uptake of vaccine antigens by the intestinal epithelium and the tolerogenic environment pervading the gut. To improve uptake, efforts have focused on targeting antigens towards the gut mucosa. An interesting target is aminopeptidase N (APN), a conserved membrane protein present on small intestinal epithelial cells shown to mediate epithelial transcytosis. Here, we aimed to further optimize this oral vaccination strategy in a large animal model. Porcine APN-specific monoclonal antibodies were generated and the most promising candidate in terms of epithelial transcytosis was selected to generate antibody fusion constructs, comprising a murine IgG1 or porcine IgA backbone and a low immunogenic antigen: the F18-fimbriated E. coli tip adhesin FedF. Upon oral delivery of these recombinant antibodies in piglets, both mucosal and systemic immune responses were elicited. The presence of the FedF antigen however appeared to reduce these immune responses. Further analysis showed that F18 fimbriae were able to disrupt the antigen presenting capacity of intestinal antigen presenting cells, implying potential tolerogenic effects of FedF. Altogether, these findings show that targeted delivery of molecules to epithelial aminopeptidase N results in their transcytosis and delivery to the gut immune systems. The results provide a solid foundation for the development of oral subunit vaccines to protect against gut pathogens.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Raquel Sanz Garcia
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene therapy, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Zhang Y, Li L, Jiang Y, Huang B. Analysis of COVID-19 Prevention and Control Effects Based on the SEITRD Dynamic Model and Wuhan Epidemic Statistics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9309. [PMID: 33322791 PMCID: PMC7764079 DOI: 10.3390/ijerph17249309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Since December 2019, millions of people worldwide have been diagnosed with COVID-19, which has caused enormous losses. Given that there are currently no effective treatment or prevention drugs, most countries and regions mainly rely on quarantine and travel restrictions to prevent the spread of the epidemic. How to find proper prevention and treatment methods has been a hot topic of discussion. The key to the problem is to understand when these intervention measures are the best strategies for disease control and how they might affect disease dynamics. In this paper, we build a transmission dynamic model in combination with the transmission characteristics of COVID-19. We thoroughly study the dynamical behavior of the model and analyze how to determine the relevant parameters, and how the parameters influence the transmission process. Furthermore, we subsequently compare the impact of different control strategies on the epidemic, the variables include intervention time, control duration, control intensity, and other model parameters. Finally, we can find a better control method by comparing the results under different schemes and choose the proper preventive control strategy according to the actual epidemic stage and control objectives.
Collapse
Affiliation(s)
- Yusheng Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; (Y.Z.); (L.L.)
| | - Liang Li
- Department of Automation, Tsinghua University, Beijing 100084, China; (Y.Z.); (L.L.)
| | - Yuewen Jiang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430072, China
| | - Biqing Huang
- Department of Automation, Tsinghua University, Beijing 100084, China; (Y.Z.); (L.L.)
| |
Collapse
|
4
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
5
|
De Pelsmaeker S, Devriendt B, De Regge N, Favoreel HW. Porcine NK Cells Stimulate Proliferation of Pseudorabies Virus-Experienced CD8 + and CD4 +CD8 + T Cells. Front Immunol 2019; 9:3188. [PMID: 30705681 PMCID: PMC6344446 DOI: 10.3389/fimmu.2018.03188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and play a central role in the defense against viral infections and cancer development, but also contribute to shaping adaptive immune responses. NK cells are particularly important in the first line defense against herpesviruses, including alphaherpesviruses. In addition to their ability to kill target cells and produce interferon-γ, porcine and human NK cell subsets have been reported to display features associated with professional antigen presenting cells (APC), although it is currently unclear whether NK cells may internalize debris of virus-infected cells and whether this APC-like activity of NK cells may stimulate proliferation of antiviral T cells. Here, using the porcine alphaherpesvirus pseudorabies virus (PRV), we show that vaccination of pigs with a live attenuated PRV vaccine strain triggers expression of MHC class II on porcine NK cells, that porcine NK cells can internalize debris from PRV-infected target cells, and that NK cells can stimulate proliferation of CD8+ and CD4+CD8+ PRV-experienced T cells. These results highlight the potential of targeting these NK cell features in future vaccination strategies.
Collapse
Affiliation(s)
- Steffi De Pelsmaeker
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nick De Regge
- Department of Enzootic, Vector-Borne and Bee Diseases, Sciensano, Brussels, Belgium
| | - Herman W Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
De Pelsmaeker S, Devriendt B, Leclercq G, Favoreel HW. Porcine NK cells display features associated with antigen-presenting cells. J Leukoc Biol 2017; 103:129-140. [DOI: 10.1002/jlb.4a0417-163rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Steffi De Pelsmaeker
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine; Ghent University; Ghent Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine; Ghent University; Ghent Belgium
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine; Ghent University; Ghent Belgium
| |
Collapse
|
7
|
Bosschem I, Flahou B, Van Deun K, De Koker S, Volf J, Smet A, Ducatelle R, Devriendt B, Haesebrouck F. Species-specific immunity to Helicobacter suis. Helicobacter 2017; 22. [PMID: 28124467 DOI: 10.1111/hel.12375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Helicobacter (H.) suis is mainly associated with pigs, but is also the most prevalent gastric non-H. pylori Helicobacter species found in humans. Both H. pylori and H. suis may cause persistent infection of the stomach. Several immune evasion mechanisms have been proposed for H. pylori, which focus to a great extent on its major virulence factors, which are absent in H. suis. The aim of this study was to gain more knowledge on immune evasion by H. suis. MATERIALS AND METHODS Cytokine expression kinetics were monitored in the stomach of BALB/c mice experimentally infected with H. suis. The cytokine expression profile in the stomach of naturally H. suis-infected pigs was also determined. Subsequently, the effect of H. suis on murine and porcine dendritic cell (DC) maturation and their ability to elicit T-cell effector responses was analyzed. RESULTS Despite a Th17/Th2 response in the murine stomach, the inflammatory cell influx was unable to clear H. suis infection. H. suis-stimulated murine bone marrow-derived dendritic cells induced IL-17 secretion by CD4+ cells in vitro. Natural H. suis infection in pigs evoked increased expression levels of IL-17 mRNA in the antrum and IL-10 mRNA in the fundus. In contrast to mice, H. suis-stimulated porcine monocyte-derived dendritic cells were unable to express MHCII molecules on their cell surface. These semimature DCs induced proliferation of T-cells, which showed an increased expression of TGF-β and FoxP3 mRNA levels. CONCLUSIONS Helicobacter suis might evade host immune responses by skewing toward a Treg-biased response.
Collapse
Affiliation(s)
- Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kim Van Deun
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefaan De Koker
- Department of Biomedical molecular biology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F. Innovation in Layer-by-Layer Assembly. Chem Rev 2016; 116:14828-14867. [PMID: 27960272 DOI: 10.1021/acs.chemrev.6b00627] [Citation(s) in RCA: 470] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.
Collapse
Affiliation(s)
- Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.,Manufacturing, CSIRO , Clayton, Victoria 3168, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Julia A Braunger
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Hirotaka Ejima
- Institute of Industrial Science, The University of Tokyo , Tokyo 153-8505, Japan
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Pseudorabies virus triggers glycoprotein gE-mediated ERK1/2 activation and ERK1/2-dependent migratory behavior in T cells. J Virol 2014; 89:2149-56. [PMID: 25473050 DOI: 10.1128/jvi.02549-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The interaction between viruses and immune cells of the host may lead to modulation of intracellular signaling pathways and to subsequent changes in cellular behavior that are of benefit for either virus or host. ERK1/2 (extracellular signal regulated kinase 1/2) signaling represents one of the key cellular signaling axes. Here, using wild-type and gE null virus, recombinant gE, and gE-transfected cells, we show that the gE glycoprotein of the porcine Varicellovirus pseudorabies virus (PRV) triggers ERK1/2 phosphorylation in Jurkat T cells and primary porcine T lymphocytes. PRV-induced ERK1/2 signaling resulted in homotypic T cell aggregation and increased motility of T lymphocytes. Our study reveals a new function of the gE glycoprotein of PRV and suggests that PRV, through activation of ERK1/2 signaling, has a substantial impact on T cell behavior. IMPORTANCE Herpesviruses are known to be highly successful in evading the immune system of their hosts, subverting signaling pathways of the host to their own advantage. The ERK1/2 signaling pathway, being involved in many cellular processes, represents a particularly attractive target for viral manipulation. Glycoprotein E (gE) is an important virulence factor of alphaherpesviruses, involved in viral spread. In this study, we show that gE has the previously uncharacterized ability to trigger ERK1/2 phosphorylation in T lymphocytes. We also show that virus-induced ERK1/2 signaling leads to increased migratory behavior of T cells and that migratory T cells can spread the infection to susceptible cells. In conclusion, our results point to a novel function for gE and suggest that virus-induced ERK1/2 activation may trigger PRV-carrying T lymphocytes to migrate and infect other cells susceptible to PRV replication.
Collapse
|
10
|
De Koker S, Fierens K, Dierendonck M, De Rycke R, Lambrecht BN, Grooten J, Remon JP, De Geest BG. Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses. J Control Release 2014; 195:99-109. [PMID: 25078552 DOI: 10.1016/j.jconrel.2014.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
Abstract
In this paper we report on the design, characterization and immuno-biological evaluation of nanoporous polyelectrolyte microparticles as vaccine carrier. Relative to soluble antigen, formulation of antigen as a sub-10 μm particle can strongly enhance antigen-specific cellular immune responses. The latter is crucial to confer protective immunity against intracellular pathogens and for anti-cancer vaccines. However, a major bottleneck in microparticulate vaccine formulation is the development of generic strategies that afford antigen encapsulation under benign and scalable conditions. Our strategy is based on spray drying of a dilute aqueous solution of antigen, oppositely charged polyelectrolytes and mannitol as a pore-forming component. The obtained solid microparticles can be redispersed in aqueous medium, leading to leaching out of the mannitol, thereby creating a highly porous internal structure. This porous structure enhances enzymatic processing of encapsulated proteins. After optimizing the conditions to process these microparticles we demonstrate that they strongly enhance cross-presentation in vitro by dendritic cells to CD8 T cells. In vivo experiments in mice confirm that this vaccine formulation technology is capable of enhancing cellular immune responses.
Collapse
Affiliation(s)
- Stefaan De Koker
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent, Belgium
| | - Kaat Fierens
- VIB Inflammation Research Center, University of Ghent, Ghent, Belgium; Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium
| | | | - Riet De Rycke
- VIB Inflammation Research Center, University of Ghent, Ghent, Belgium; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, University of Ghent, Ghent, Belgium; Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent, Belgium
| | - Jean Paul Remon
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
11
|
Shugart JA, Bambina S, Alice AF, Montler R, Bahjat KS. A self-help program for memory CD8+ T cells: positive feedback via CD40-CD40L signaling as a critical determinant of secondary expansion. PLoS One 2013; 8:e64878. [PMID: 23717671 PMCID: PMC3662717 DOI: 10.1371/journal.pone.0064878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The ability of memory CD8+ T cells to rapidly proliferate and acquire cytolytic activity is critical for protective immunity against intracellular pathogens. The signals that control this recall response remain unclear. We show that CD40L production by memory CD8+ T cells themselves is an essential catalyst for secondary expansion when systemic inflammation is limited. Secondary immunization accompanied by high levels of systemic inflammation results in CD8+ T cell secondary expansion independent of CD4+ T cells and CD40-CD40L signaling. Conversely, when the inflammatory response is limited, memory CD8+ T cell secondary expansion requires CD40L-producing cells, and memory CD8+ T cells can provide this signal. These results demonstrate that vaccination regimens differ in their dependence on CD40L-expressing CD8+ T cells for secondary expansion, and propose that CD40L-expression by CD8+ T cells is a fail-safe mechanism that can promote memory CD8+ T cell secondary expansion when inflammation is limited.
Collapse
Affiliation(s)
- Jessica A. Shugart
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Center, Portland, Oregon, United States of America
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Center, Portland, Oregon, United States of America
| | - Alejandro F. Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Center, Portland, Oregon, United States of America
| | - Ryan Montler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Center, Portland, Oregon, United States of America
| | - Keith S. Bahjat
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Center, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|