1
|
Xia S, Liu Z, Cai J, Ren H, Li Q, Zhang H, Yue J, Zhou Q, Zhou T, Wang L, Liu X, Zhou X. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release 2023; 355:54-67. [PMID: 36693527 DOI: 10.1016/j.jconrel.2023.01.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Liver fibrosis is one of the most common liver diseases with substantial morbidity and mortality. However, effective therapy for liver fibrosis is still lacking. Considering the key fibrogenic role of activated hepatic stellate cells (aHSCs), here we reported a strategy to deplete aHSCs by inducing apoptosis as well as quiescence. Therefore, we engineered biomimetic all-trans retinoic acid (ATRA) loaded PLGA nanoparticles (NPs). HSC (LX2 cells) membranes, presenting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were coated on the surface of the nanoparticles, while the clinically approved agent ATRA with anti-fibrosis ability was encapsulated in the inner core. The biomimetic coating of TRAIL-expressing HSC membranes does not only provide homologous targeting to HSCs, but also effectively triggers apoptosis of aHSCs. ATRA could induce quiescence of activated fibroblasts. While TM-NPs (i.e. membrane coated NPs without ATRA) and ATRA/NPs (i.e. non-coated NPs loaded with ATRA) only showed the ability to induce apoptosis and decrease the α-SMA expression in aHSCs, respectively, TM-ATRA/NPs induced both apoptosis and quiescence in aHSCs, ultimately leading to improved fibrosis amelioration in both carbon tetrachloride-induced and methionine and choline deficient L-amino acid diet induced liver fibrosis mouse models. We conclude that biomimetic TM-ATRA/NPs may provide a novel strategy for effective antifibrosis therapy.
Collapse
Affiliation(s)
- Shenglong Xia
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zimo Liu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jieru Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Huiming Ren
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi Li
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Jing Yue
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Quan Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tianhua Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xuefei Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
2
|
Gonçalves A, Estevinho BN, Rocha F. Microencapsulation of retinoic acid by atomization into biopolymeric matrices: Binary and ternary blends of alginic acid sodium, xanthan gum and modified chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
4
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
5
|
Zafar A, Alruwaili NK, Imam SS, Alharbi KS, Afzal M, Alotaibi NH, Yasir M, Elmowafy M, Alshehri S. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Guo P, Si M, Wu D, Xue HY, Hu W, Wong HL. Incorporation of docosahexaenoic acid (DHA) enhances nanodelivery of antiretroviral across the blood-brain barrier for treatment of HIV reservoir in brain. J Control Release 2020; 328:696-709. [PMID: 33010335 PMCID: PMC7749038 DOI: 10.1016/j.jconrel.2020.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
Although the newer antiretroviral (ARV) drugs are highly active against the human immunodeficiency virus (HIV) in the body compartment, they often fail to effectively tackle the HIV reservoir in the brain because of inefficient penetration to the blood-brain barrier (BBB). In this study, we investigated the potential benefits of incorporating docosahexaenoic acid (DHA), an omega-3 fatty acid essential for brain development, in lipid nanocarriers for facilitating the BBB passage of an ARV darunavir. The resulting nanocarriers (nanoARVs) containing 5-15% DHA were 90-140 nm in size, had high darunavir payload (~11-13% w/w), good stability and minimal cellular toxicity, and could be further decorated with transferrin (Tf) for Tf-receptor targeting. In BBB models of hCMEC/d3 cells, nanoARVs with higher DHA content achieved increased nanocarrier uptake and up to 8.99-fold higher darunavir permeation than free darunavir. In animals, nanoARVs were able to achieve 3.38-5.93-fold increase in brain darunavir level over free darunavir. Tf-conjugated nanoARVs also achieved significantly higher anti-HIV activity than free darunavir (viral titer 2 to 2.6-fold higher in latter group). Comparison of DHA incorporation and Tf-receptor targeting showed that while both strategies could enhance the cellular uptake and brain accumulation of the nanocarriers, DHA was more effective (P < 0.05) for improving BBB permeation and brain accumulation of the darunavir payload. Substituting DHA with another oil noticeably reduced the cellular uptake of nanoARVs. Overall, this proof-of-concept study has supported the development of DHA-based nanoARVs as an effective, safe yet technically simple strategy to enhance brain delivery of darunavir and potentially other lipophilic ARVs for treatment of HIV reservoir.
Collapse
Affiliation(s)
- Pengbo Guo
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Mengjie Si
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Di Wu
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S, Carafa M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020; 12:E707. [PMID: 32731612 PMCID: PMC7465813 DOI: 10.3390/pharmaceutics12080707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
All-Trans Retinoic Acid (ATRA) is the most active metabolite of vitamin A. It is critically involved in the regulation of multiple processes, such as cell differentiation and apoptosis, by activating specific genomic pathways or by influencing key signaling proteins. Furthermore, mounting evidence highlights the anti-tumor activity of this compound. Notably, oral administration of ATRA is the first choice treatment in Acute Promyelocytic Leukemia (APL) in adults and NeuroBlastoma (NB) in children. Regrettably, the promising results obtained for these diseases have not been translated yet into the clinics for solid tumors. This is mainly due to ATRA-resistance developed by cancer cells and to ineffective delivery and targeting. This up-to-date review deals with recent studies on different ATRA-loaded Drug Delivery Systems (DDSs) development and application on several tumor models. Moreover, patents, pre-clinical, and clinical studies are also reviewed. To sum up, the main aim of this in-depth review is to provide a detailed overview of the several attempts which have been made in the recent years to ameliorate ATRA delivery and targeting in cancer.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| |
Collapse
|
8
|
Predicting the drug loading efficiency into hybrid nanocarriers based on PLGA-vegetable oil using molecular dynamic simulation approach and Flory-Huggins theory. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Gonçalves A, Estevinho BN, Rocha F. Formulation approaches for improved retinoids delivery in the treatment of several pathologies. Eur J Pharm Biopharm 2019; 143:80-90. [PMID: 31446044 DOI: 10.1016/j.ejpb.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023]
Abstract
Retinoid acid (RA) and other retinoids are extensively used as therapeutic agents in the treatment of several types of cancer and skin disorders. However, the efficiency of these medical agents is compromised due to the unsatisfactory concentration of retinoids in the target cells/tissues. Furthermore, severe side-effects are related to retinoids administration. Incorporation of retinoids into carrier-based delivery systems using encapsulation technology has been proposed in order to overcome the limitations of using free retinoids in the treatment of several pathologies. The present work starts exploring the competences and the difficulties of using retinoids in health care. The metabolism and the main considerations about the mechanism of action of retinoids are also discussed. The final sections are focused on the most recent studies about RA controlled delivery systems to be used in the medical field.
Collapse
Affiliation(s)
- Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Jeon SH, Na YG, Lee HK, Cho CW. Hybrid polymeric microspheres for enhancing the encapsulation of phenylethyl resorcinol. J Microencapsul 2019; 36:130-139. [DOI: 10.1080/02652048.2019.1607598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sung-Hoon Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| |
Collapse
|
11
|
Gonçalves A, Estevinho BN, Rocha F. Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Development of bi-polymer lipid hybrid nanocarrier (BLN) to improve the entrapment and stability of insulin for efficient oral delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Cafferata EA, Alvarez C, Diaz KT, Maureira M, Monasterio G, González FE, Covarrubias C, Vernal R. Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies. Oral Dis 2019; 25:1866-1878. [PMID: 30565778 DOI: 10.1111/odi.13023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Periodontitis is an inflammatory disease, in which the host immuno-inflammatory response against the dysbiotic subgingival biofilm leads to the breakdown of periodontal tissues. Most of the available treatments seem to be effective in the short-term; nevertheless, permanent periodical controls and patient compliance compromise long-term success. Different strategies have been proposed for the modulation of the host immune response as potential therapeutic tools to take a better care of most susceptible periodontitis patients, such as drug local delivery approaches. Though, maintaining an effective drug concentration for a prolonged period of time has not been achieved yet. In this context, advanced drug delivery strategies using biodegradable nanocarriers have been proposed to avoid toxicity and frequency-related problems of treatment. The versatility of distinct nanocarriers allows the improvement of their loading and release capabilities and could be potentially used for microbiological control, periodontal regeneration, and/or immunomodulation. In the present review, we revise and discuss the most frequent biodegradable nanocarrier strategies proposed for the treatment of periodontitis, including polylactic-co-glycolic acid (PLGA), chitosan, and silica-derived nanoparticles, and further suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Carla Alvarez
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Karla T Diaz
- School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Maureira
- Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Fermín E González
- Laboratory of Experimental Immunology and Cancer, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
14
|
Lokman NA, Ho R, Gunasegaran K, Bonner WM, Oehler MK, Ricciardelli C. Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:10. [PMID: 30621740 PMCID: PMC6325857 DOI: 10.1186/s13046-018-1017-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Background Annexin A2 is increased in serous ovarian cancer and plays an essential role in ovarian cancer invasion and metastasis. In combination with S100A10, annexin A2 plays an important role in the plasminogen activator system regulating plasmin production. The aim of this study was to investigate the potential utility of all-trans retinoid acid (ATRA), an inhibitor of the annexin A2-S100A10 signalling pathway, as a new therapeutic against serous ovarian cancer. Methods In this study we determined the effects of ATRA treatment (1-5 μM) on annexin A2 and S100A10 expression, plasmin activation, and the ability of ATRA to inhibit serous ovarian cancer cell survival, motility and invasion in vitro. We also employed an ex vivo tissue explant assay to assess response to ATRA treatment in serous ovarian cancers. Cryopreserved serous ovarian cancer tissues were cultured on gelatin sponges for 72 h with ATRA (1 μM). Effects on apoptosis and proliferation were assessed by immunohistochemistry using antibodies to cleaved caspase 3 or Ki67, respectively. Results Survival of serous ovarian cancer cells (OVCAR-3, OV-90, & OAW28) was significantly decreased by ATRA treatment (1-5 μM). ATRA (1 μM) also significantly decreased proliferation (Ki67 positivity, p = 0.0034), S100A10 protein levels (p = 0.0273), and increased cell apoptosis (cleaved caspase-3 positivity, p = 0.0024) in serous ovarian cancer tissues using the ex vivo tissue explant assay. In OAW28 cells, reduced cell survival following ATRA treatment was associated with a reduction of S100A10 mRNA and protein levels, S100A10 and annexin A2 membrane localization, plasmin generation, motility and invasion. In contrast, ATRA inhibited OV-90 cell survival and invasion but did not affect plasmin activation or S100A10 and annexin A2 expression or membrane localization. Conclusions These findings suggest that ATRA inhibits serous ovarian cancer proliferation and invasion via both S100A10 dependant and S100A10 independent mechanisms. Our results show that ATRA has promising potential as a novel therapy against serous ovarian cancer that warrants further evaluation. Electronic supplementary material The online version of this article (10.1186/s13046-018-1017-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Rachel Ho
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kavyadharshini Gunasegaran
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
15
|
Ghitman J, Stan R, Cecoltan S, Chifiriuc MC, Iovu H. Hybrid nanocarriers based on PLGA-vegetable oil: A novel approach for high lipophilic drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Ghitman J, Stan R, Ghebaur A, Cecoltan S, Vasile E, Iovu H. Novel PEG-Modified Hybrid PLGA-Vegetable Oils Nanostructured Carriers for Improving Performances of Indomethacin Delivery. Polymers (Basel) 2018; 10:polym10060579. [PMID: 30966613 PMCID: PMC6403762 DOI: 10.3390/polym10060579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
The purpose of this work was to more exhaustively study the influence of nanocarrier matrix composition and also the polyethylene glycol (PEG)-modified surface on the performances of formulations as lipophilic drug delivery systems. Poly (d,l-lactide-co-glycolide), two vegetable oils (Nigella sativa oil and Echium oil) and indomethacin were employed to prepare novel PEG-coated nanocarriers through emulsion solvent evaporation method. The surface modification was achieved by physical PEG adsorption (in the post-production step). Transmission electron microscopy (TEM) nanographs highlighted the core-shell structure of hybrid formulations while scanning electron microscopy (SEM) images showed no obvious morphological changes after PEG adsorption. Drug loading (DL) and entrapment efficiency (EE) varied from 4.6% to 16.4% and 28.7% to 61.4%, solely depending on the type of polymeric matrix. The oil dispersion within hybrid matrix determined a more amorphous structure, as was emphasized by differential scanning calorimetry (DSC) investigations. The release studies highlighted the oil effect upon the ability of nanocarrier to discharge in a more sustained manner the encapsulated drug. Among the kinetic models employed, the Weibull and Korsmeyer-Peppas models showed the better fit (R2 = 0.999 and 0.981) with n < 0.43 indicating a Fickian type release pattern. According to cytotoxic assessment the PEG presence on the surface increased the cellular viability with ~1.5 times as compared to uncoated formulations.
Collapse
Affiliation(s)
- Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Raluca Stan
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-5 Gh. Polizu Street, 011061 Bucharest, Romania.
| | - Adi Ghebaur
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Sergiu Cecoltan
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, 060042 Bucharest, Romania.
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania.
| |
Collapse
|
17
|
Yang D, Luo W, Wang J, Zheng M, Liao XH, Zhang N, Lu W, Wang L, Chen AZ, Wu WG, Liu H, Wang SB, Zhou XZ, Lu KP. A novel controlled release formulation of the Pin1 inhibitor ATRA to improve liver cancer therapy by simultaneously blocking multiple cancer pathways. J Control Release 2018; 269:405-422. [PMID: 29170140 PMCID: PMC6290999 DOI: 10.1016/j.jconrel.2017.11.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths worldwide largely due to lack of effective targeted drugs to simultaneously block multiple cancer-driving pathways. The identification of all-trans retinoic acid (ATRA) as a potent Pin1 inhibitor provides a promising candidate for HCC targeted therapy because Pin1 is overexpressed in most HCC and activates numerous cancer-driving pathways. However, the efficacy of ATRA against solid tumors is limited due to its short half-life of 45min in humans. A slow-releasing ATRA formulation inhibits solid tumors such as HCC, but can be used only in animals. Here, we developed a one-step, cost-effective route to produce a novel biocompatible, biodegradable, and non-toxic controlled release formulation of ATRA for effective HCC therapy. We used supercritical carbon dioxide process to encapsulate ATRA in largely uniform poly L-lactic acid (PLLA) microparticles, with the efficiency of 91.4% and yield of 68.3%, and ~4-fold higher Cmax and AUC over the slow-releasing ATRA formulation. ATRA-PLLA microparticles had good biocompatibility, and significantly enhanced the inhibitory potency of ATRA on HCC cell growth, improving IC50 by over 3-fold. ATRA-PLLA microparticles exerted its efficacy likely through degrading Pin1 and inhibiting multiple Pin1-regulated cancer pathways and cell cycle progression. Indeed, Pin1 knock-down abolished ATRA inhibitory effects on HCC cells and ATRA-PLLA did not inhibit normal liver cells, as expected because ATRA selectively inhibits active Pin1 in cancer cells. Moreover ATRA-PLLA microparticles significantly enhanced the efficacy of ATRA against HCC tumor growth in mice through reducing Pin1, with a better potency than the slow-releasing ATRA formulation, consistent with its improved pharmacokinetic profiles. This study illustrates an effective platform to produce controlled release formulation of anti-cancer drugs, and ATRA-PLLA microparticles might be a promising targeted drug for HCC therapy as PLLA is biocompatible, biodegradable and nontoxic to humans.
Collapse
Affiliation(s)
- Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Wensong Luo
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Xin-Hua Liao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Nan Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Wenxian Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Wen-Guo Wu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Xiao Zhen Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China; Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Kun Ping Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China; Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Liposomes assembled from dimeric retinoic acid phospholipid with improved pharmacokinetic properties. Eur J Pharm Sci 2017; 112:186-194. [PMID: 29162478 DOI: 10.1016/j.ejps.2017.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Abstract
All-trans-retinoic acid (ATRA) exhibits potent cytotoxicities against different cancer cells by binding to retinoic acid receptors (RARs), which is regarded as the first example of targeted therapy in acute promyelocytic leukemia (APL). However, its extensive clinical applications have been limited because of poor aqueous solubility, short half-life time and side effects. In this report, dimeric ATRA phosphorylcholine prodrug (Di-ATRA-PC) was designed and assembled into nanoliposomes to improve its pharmacokinetic properties. Di-ATRA-PC prodrug was synthesized by a facile esterification and characterized by mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). The Di-ATRA-PC assembled liposomes were prepared by thin film hydration method with ATRA loading efficiency up to 73wt%. The liposomes have a uniform particle size (73.1±3.6nm) with negatively charged surface (-20.5±2.5mV) and typical lipid bilayer structure as measured by dynamic light scattering (DLS), transmission electron microscope (TEM) and cryogenic transmission electron microscope (cryo-TEM). In vitro drug release study confirmed that Di-ATRA-PC liposomes could sustainedly release free ATRA in a weakly acidic condition. Furthermore, cellular uptake, MTT and cell apoptosis analysis demonstrated that the liposomes could be successfully internalized into tumor cells to induce apoptosis of MCF-7 and HL-60 cells. More importantly, in vivo pharmacokinetic assay indicated that Di-ATRA-PC liposomes had much longer retention time in comparison with ATRA. In conclusion, Di-ATRA-PC liposomal formulation could be a potential drug delivery system of ATRA with enhanced pharmacokinetic properties.
Collapse
|
19
|
Sabzichi M, Mohammadian J, Ghorbani M, Saghaei S, Chavoshi H, Ramezani F, Hamishehkar H. Fabrication of all-trans-retinoic acid-loaded biocompatible precirol: A strategy for escaping dose-dependent side effects of doxorubicin. Colloids Surf B Biointerfaces 2017; 159:620-628. [PMID: 28865358 DOI: 10.1016/j.colsurfb.2017.08.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Drug delivery-based nanoparticles have been emerged to be an alternative and efficient approach to cancer therapy compared to conventional systems. Here, we investigated the role of all-trans retinoic acid (ATRA) formulated with precirol in increasing doxorubicin (Dox) induced apoptosis and cell cycle arrest in MDA-MB-231 breast cancer cells. METHODS ATRA-loaded Nano structured lipid carriers (NLCs) were evaluated in terms of particle size, zeta potential, Fourier transforms infrared spectroscopy (FTIR), cell internalization, and scanning electron microscope (SEM). To understand molecular mechanism of apoptosis and cell cycle progression flow cytometric assay, MTT and DAPI staining was applied. Real time (RT)-PCR analysis was employed to investigate the expression of apoptosis related genes, including Survivin, Bcl-2 and Bax. RESULTS The optimized ATRA formulation exhibited average particle size of 95±5nm with nearly narrow size distribution. The IC50 values for ATRA and doxorubicin were 48±0.4μM and 0.81±0.02μM, respectively. ATRA-loaded NLCs decreased percentage of cell proliferation from 51±7.2% to 36±4.1% (p <0.05). Co-treatment of the MDA-MB-231 cells with ATRA formulation and doxorubicin caused two-fold increase in the percentage of apoptosis (p<0.05). The results from gene expression exhibited a significant decrease in survivin along with increase at Bax mRNA levels accompanied by a slight increase in Bax/Bcl-2 ratio. CONCLUSION Our results propose that ATRA encapsulated in precirol as a biocompatible compound augments the efficacy of Dox in cancer therapy.
Collapse
Affiliation(s)
- Mehdi Sabzichi
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell & Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaiyeh Saghaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Chavoshi
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery. Int J Pharm 2016; 511:462-472. [DOI: 10.1016/j.ijpharm.2016.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/12/2016] [Accepted: 07/09/2016] [Indexed: 01/15/2023]
|
21
|
Kumar S, Sangwan P, Lather V, Pandita D. Biocompatible PLGA-oil hybrid nanoparticles for high loading and controlled delivery of resveratrol. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Young MJ, Wu YH, Chiu WT, Weng TY, Huang YF, Chou CY. All-trans retinoic acid downregulates ALDH1-mediated stemness and inhibits tumour formation in ovarian cancer cells. Carcinogenesis 2015; 36:498-507. [DOI: 10.1093/carcin/bgv018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/25/2015] [Indexed: 12/16/2022] Open
|