1
|
Chen K, Chang HHR, Lugtu-Pe J, Gao Y, Liu FC, Kane A, Wu XY. Exploration of a Novel Terpolymer Nanoparticle System for the Prevention of Alcohol-Induced Dose Dumping. Mol Pharm 2024. [PMID: 39526842 DOI: 10.1021/acs.molpharmaceut.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol-induced dose dumping (AIDD) remains a serious challenge in the controlled delivery of high potency drugs, such as opioids, which requires extensive investigation and innovative solutions. Current technologies rely on ethanol-insoluble excipients, such as guar gum and sodium alginate, to counteract the increased solubility of hydrophobic polymeric excipients in ethanol. However, these excipients pose several shortcomings, such as high viscosity of coating dispersion, high solution temperature, rapid gelation, and heterogeneity of resulted film. In this work, we explored the application of a cross-linked terpolymer nanoparticle (TPN) as an alcohol-resistant excipient in a water-insoluble controlled release film of ethylcellulose (EC) for the prevention of AIDD. Herein, we optimized the composition of TPN using a central composite design (CCD) to minimize swelling and weight loss of TPN-EC film in the presence of 20% ethanol. The optimized TPN showed a negligible effect on the viscosity of the coating dispersion, while guar gum increased the viscosity by 76-fold. Permeability studies in a pH 1.2 media containing 0% or 40% v/v ethanol revealed that cationic drugs (propranolol HCl, diltiazem HCl, and naloxone HCl (an opioid receptor-binding model drug)) exhibited significantly lower permeability ratios (P40%/P0%) than un-ionized drugs (theophylline and salicylic acid). FTIR analysis indicated an increase in ionic hydrogen bonding between TPN and the cationic drug in the presence of ethanol. These results suggest that drug-polymer-solvent interactions play an important role in alcohol-independent drug permeability through the TPN-EC film. By leveraging the drug permeability altering capability of the TPN-EC system, the release of cationic drugs in hydroethanolic media appeared to be suppressed, suggesting a promising new mechanism of alcohol resistance.
Collapse
Affiliation(s)
- Kuan Chen
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hao Han R Chang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jamie Lugtu-Pe
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yuan Gao
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Anil Kane
- Patheon by Thermo Fisher Scientific, Toronto Region Operations (TRO), Mississauga, Ontario L5N 3 × 4, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
2
|
Abdel Rahim S, Al-Zoubi N, Khader H, Alwaraydat R, Al-Akayleh F. Ethanol-induced dose dumping from sodium alginate matrix tablets: Investigation of the effects of medium viscosity and pH. Int J Pharm 2023; 632:122568. [PMID: 36587774 DOI: 10.1016/j.ijpharm.2022.122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
In this work, the swelling and disintegration of drug-free sodium alginate (SA) compacts and the release of metformin HCl from SA matrix tablets were investigated in acidic media of different ethanol concentrations (0, 10, 20, and 40 % v/v), pH (1.2 and 4.5) and HPMC K4M concentrations (0-1 % w/v). The investigated dissolution media represented the consumption of different alcoholic beverages, the pH of fasted and fed states, and a range of viscosity resembling diluted homogenized FDA meal. The dissolution efficiency and the time to 50 % release (t50%) were selected as release parameters. It was found that both ethanol concentration and medium pH affected drug release from SA matrix tablets and the swelling of SA compacts. Dose dumping occurred at high ethanol concentration (40 %) at both media pH with almost complete drug release within 15-30 min associated with rapid matrix disintegration. HPMC at 0.5-1 % concentrations increased the medium's viscosity, preventing dose dumping at high ethanol concentrations. Erosion and disintegration of SA compacts were decelerated by increasing HPMC concentration in hydroethanolic media in consonance with decreased release rate from matrix tablets. ANOVA tests showed significant effects of pH and concentrations of ethanol and HPMC in the dissolution medium on the release parameters.
Collapse
Affiliation(s)
- Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, 13115 Zarqa, Jordan; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, 26150 Jerash, Jordan.
| | - Heba Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, 13115 Zarqa, Jordan
| | - Rahaf Alwaraydat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, 13115 Zarqa, Jordan
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Petra University, Amman, Jordan
| |
Collapse
|
3
|
3D-Printed Coating of Extended-Release Matrix Tablets: Effective Tool for Prevention of Alcohol-Induced Dose Dumping Effect. Pharmaceutics 2021; 13:pharmaceutics13122123. [PMID: 34959404 PMCID: PMC8705548 DOI: 10.3390/pharmaceutics13122123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Tablets used for extended drug release commonly contain large amounts of drugs. The corresponding drug release mechanism thus has to be well-known and invariable under numerous conditions in order to prevent any uncontrolled drug release. Particularly important is the stability and invariability of the release mechanism in the presence of alcohol due to the possible occurrence of the dose dumping effect. The effect of 3D printing (3DP) coating on the drug release mechanism and the drug release rate was studied as a possible tool for the prevention of the alcohol-induced dose dumping effect. Three types of matrix tablets (hydrophilic, lipophilic, and hydrophilic-lipophilic) were prepared by the direct compression method and coated using 3DP. The commercial filament of polyvinyl alcohol (PVA) and the filament prepared from hypromellose by hot melt extrusion (HME) were used as coating materials. Both coating materials were characterized by SEM, DSC, Raman spectroscopy, and PXRD during particular stages of the processing/coating procedure. The dissolution behavior of the uncoated and coated tablets was studied in the strongly acidic (pH 1.2) and alcoholic (40% of ethanol) dissolution media. The dissolution tests in the alcoholic medium showed that the Affinisol coating was effective in preventing the dose dumping incidence. The dissolution tests in the acidic dissolution media showed that the Affinisol coating can also be useful for the delayed release of active substances.
Collapse
|
4
|
Banerjee S, Joshi U, Singh A, Saharan VA. Lipids for Taste masking and Taste assessment in pharmaceutical formulations. Chem Phys Lipids 2020; 235:105031. [PMID: 33352198 DOI: 10.1016/j.chemphyslip.2020.105031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Pharmaceutical products often have drawbacks of unacceptable taste and palatability which makes it quite difficult for oral administration to some special populations like pediatrics and geriatrics. To curb this issue different approaches like coating, granulation, extrusion, inclusion complexation, ion-exchange resins, etc for taste masking are employed and among them use of lipids have drawn special attention of researchers. Lipids have a lower melting point which is ideal for incorporating drugs in some of these methods like hot-melt extrusion, melt granulation, spray drying/congealing and emulsification. Lipids play a significant role as a barrier to sustain the release of drugs and biocompatible nature of lipids increases their acceptability by the human body. Further, lipids provide vast opportunities of altering pharmacokinetics of the active ingredients by modulating release profiles. In taste sensors, also known as electronic tongue or e-tongue, lipids are used in preparing taste sensing membranes which are subsequently used in preparing taste sensors. Lipid membrane taste sensors have been widely used in assessing taste and palatability of pharmaceutical and food formulations. This review explores applications of lipids in masking the bitter taste in pharmaceutical formulations and significant role of lipids in evaluation of taste and palatability.
Collapse
Affiliation(s)
- Surojit Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Ujjwal Joshi
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Anupama Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Vikas Anand Saharan
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
5
|
Butreddy A, Sarabu S, Dumpa N, Bandari S, Repka MA. Extended release pellets prepared by hot melt extrusion technique for abuse deterrent potential: Category-1 in-vitro evaluation. Int J Pharm 2020; 587:119624. [PMID: 32653597 PMCID: PMC7484191 DOI: 10.1016/j.ijpharm.2020.119624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/08/2023]
Abstract
The objective of the present study was to develop extended-release (ER) hot-melt extruded (HME) abuse-deterrent pellets of acetaminophen, a model drug, by utilizing high molecular weight polyethylene oxide (PEO) and gelling agents (xanthan gum, guar gum, and gellan gum). The HME pellets were evaluated for their abuse-deterrence (AD) potential by Category-1 laboratory in-vitro evaluation parameters, including particle size reduction (PSR), small volume extraction, dissolution, viscosity, syringeability, and injectability. Further, the pellets were investigated for resistance to physical (crushing) and thermal (oven and microwave) manipulation to evaluate the strength of the AD properties. Physical manipulation studies demonstrated that the pellets were intact, extremely hard, and resistant to PSR and manipulation to bypass ER properties. Dissolution of all intact and physically manipulated pellets led to complete drug release within 8 h, and resistance to dose-dumping in 40% ethanol was observed. The drug extraction was <50% in 10 mL of ingestible and non-ingestible solvents under static, agitation, and thermal manipulation conditions with an incubation time of 30 min. The PEO/xanthan gum-based formulation showed higher viscosity, syringe and injection forces, and lower syringeable volume in all manipulation conditions compared with plain PEO pellets. These findings supported the AD potential of PEO and xanthan gum pellets against intravenous abuse.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Imaging of the Effect of Alcohol-Containing Media on the Performance of Hypromellose Hydrophilic Matrix Tablets: Comparison of Direct Compression and Regular Grades of Polymer. Pharmaceutics 2020; 12:pharmaceutics12090889. [PMID: 32961942 PMCID: PMC7559722 DOI: 10.3390/pharmaceutics12090889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
As the ingestion of drug products with alcohol could have adverse effects on the release of drugs from dosage forms, it is important to understand the mechanisms underpinning the influence on drug release by evaluating the effect of alcohol-containing media on the behaviour of pharmaceutical excipients. In this work, the effect of hydroalcoholic media containing up to 40% v/v absolute ethanol was evaluated, employing both the regular (CR) and direct compression grades (DC) of hypromellose. X-ray microtomography (XµT) and magnetic resonance imaging (MRI) were used as complementary techniques in determining the influence of the media composition on the ability of the CR and DC polymers to form and evolve the gel layer that controls drug release. Particle and powder properties of the polymer were characterised to determine any relationship to performance in hydroalcoholic media. Triboelectrification results showed the CR grade formulation to charge electropositively whereas the DC grade charged electronegatively. The flow properties also showed the DC grade to have a superior flow as compared to its CR counterpart. Differences in particle morphology between the grades influenced charging and flow behaviour of the powders; however, it did not seem to impact significantly either on the mechanical strength or the drug release properties of the compacted formulation using the model drug propranolol HCl. XµT and MRI imaging were successfully used as complementary techniques in determining the gel layer/hydration layer thickness measurements as the layer developed, as well as following ingress of hydroalcoholic media and its impact on the dry core. The result showed that although differences were present in the gel layer thickness potentially due to differences in particle morphology, this also did not impact significantly on the dissolution process, especially in acidic and hydroalcoholic media.
Collapse
|
7
|
The effect of alcohol on ionizing and non-ionizing drug release from hydrophilic, lipophilic and dual matrix tablets. Saudi Pharm J 2020; 28:187-195. [PMID: 32042257 PMCID: PMC7000342 DOI: 10.1016/j.jsps.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to investigate and quantitatively evaluate the effect of presence of alcohol on in vitro release of ionizing and non-ionizing drug from hydrophilic, lipophilic and hydrophilic-lipophilic matrix tablets. The Food and Drug Administration (FDA) recommends in vitro dissolution testing of extended release formulations in ethanolic media up to 40% because of possible alcohol-induced dose dumping effect. This study is focused on comparison of the dissolution behavior of matrix tablets (based on hypromellose and/or glyceryl behenate as retarding agent) of the same composition containing different type of drug – ionizing tramadol hydrochloride (TH) and non-ionizing pentoxifylline (PTX). The dissolution tests were performed in acidic medium (pH 1.2) and in alcoholic medim (20%, 40% of ethanol) and the changes of tablets were observed also photographically. It was found that the alcohol resistence of the hydrophilic-lipophilic formulations with TH and the hydrophilic-lipophilic formulations with PTX containing a higher amount of hypromellose does not reflect the alcohol resistence of the formulations with pure hypromellose or glyceryl behenate. Both hydrophilic-lipophilic formulation with TH and more lipophilic formulation with PTX show significant alcohol dose dumping effect.
Collapse
|
8
|
Issa MG, Souza NVD, Duque MD, Ferraz HG. Physical characterization of multiparticulate systems. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000400216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Pergolizzi JV, Taylor R, LeQuang JA, Raffa RB. Managing severe pain and abuse potential: the potential impact of a new abuse-deterrent formulation oxycodone/naltrexone extended-release product. J Pain Res 2018; 11:301-311. [PMID: 29445297 PMCID: PMC5810535 DOI: 10.2147/jpr.s127602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proper management of severe pain represents one of the most challenging clinical dilemmas. Two equally important goals must be attained: the humanitarian/medical goal to relieve suffering and the societal/legal goal to not contribute to the drug abuse problem. This is an age-old problem, and the prevailing emphasis placed on one or the other goal has resulted in pendulum swings that have resulted in either undertreatment of pain or the current epidemic of misuse and abuse. In an effort to provide efficacious strong pain relievers (opioids) that are more difficult to abuse by the most dangerous routes of administration, pharmaceutical companies are developing products in which the opioid is manufactured in a formulation that is designed to be tamper resistant. Such a product is known as an abuse-deterrent formulation (ADF). ADF opioid products are designed to deter or resist abuse by making it difficult to tamper with the product and extracting the opioid for inhalation or injection. To date, less than a dozen opioid formulations have been approved by the US Food and Drug Administration to carry specific ADF labeling, but this number will likely increase in the coming years. Most of these products are extended-release formulations.
Collapse
Affiliation(s)
| | | | | | - Robert B Raffa
- University of Arizona College of Pharmacy, Tucson, AZ, USA.,Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
10
|
Al-Zoubi N, Al-Rusasi A, Sallam AS. Ethanol effect on acid resistance of selected enteric polymers. Pharm Dev Technol 2017; 24:24-34. [DOI: 10.1080/10837450.2017.1412461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Ahmad Al-Rusasi
- Faculty of Pharmacy, Applied Science University, Amman, Jordan
| | | |
Collapse
|
11
|
Nep EI, Mahdi MH, Adebisi AO, Dawson C, Walton K, Bills PJ, Conway BR, Smith AM, Asare-Addo K. The influence of hydroalcoholic media on the performance of Grewia polysaccharide in sustained release tablets. Int J Pharm 2017; 532:352-364. [PMID: 28903068 DOI: 10.1016/j.ijpharm.2017.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/23/2017] [Accepted: 09/09/2017] [Indexed: 11/15/2022]
Abstract
Co-administration of drugs with alcohol can affect the plasma concentration of drugs in patients. It is also known that the excipients used in the formulation of drugs may not always be resistant to alcohol. This study evaluates effect of varying alcohol concentrations on theophylline release from two grades of Grewia mollis polysaccharides. X-ray microtomography showed that native polysaccharide formulation compacts were not homogenous after the mixing process resulting in its failure in swelling studies. Removal of starch from the native polysaccharide resulted in homogenous formulation compacts resistant to damage in high alcoholic media in pH 6.8 (40%v/v absolute ethanol). Destarched polymer compacts had a significantly higher hardness (375N) than that of the native polysaccharide (82N) and HPMC K4M (146N). Dissolution studies showed similarity at all levels of alcohol tested (f2=57-91) in simulated gastric media (pH 1.2). The dissolution profiles in the simulated intestinal fluids were also similar (f2=60-94), with the exception of the native polysaccharide in pH 6.8 (40%v/v absolute ethanol) (f2=43). This work highlights the properties of Grewia polysaccharide as a matrix former that can resist high alcoholic effects therefore; it may be suitable as an alternative to some of the commercially available matrix formers with wider applications for drug delivery as a cheaper alternative in the developing world.
Collapse
Affiliation(s)
- E I Nep
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Science, University of Jos, PMB 2084, Jos 930001, Nigeria.
| | - M H Mahdi
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - A O Adebisi
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - C Dawson
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - K Walton
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - P J Bills
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - B R Conway
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - A M Smith
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - K Asare-Addo
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
12
|
D’Souza S, Mayock S, Salt A. A review of in vivo and in vitro aspects of alcohol-induced dose dumping. AAPS OPEN 2017. [DOI: 10.1186/s41120-017-0014-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Schrank S, Jedinger N, Wu S, Piller M, Roblegg E. Pore blocking: An innovative formulation strategy for the design of alcohol resistant multi-particulate dosage forms. Int J Pharm 2016; 509:219-228. [PMID: 27282540 DOI: 10.1016/j.ijpharm.2016.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
In this work calcium stearate (CaSt) multi-particulates loaded with codeine phosphate (COP) were developed in an attempt to provide extended release (ER) combined with alcohol dose dumping (ADD) resistance. The pellets were prepared via wet/extrusion spheronization and ER characteristics were obtained after fluid bed drying at 30°C. Pore blockers (i.e., xanthan, guar gum and TiO2) were integrated to control the uptake of ethanolic media, the CaSt swelling and consequently, the COP release. While all three pore blockers are insoluble in ethanol, xanthan dissolves, guar gum swells and TiO2 does not interact with water. The incorporation of 10 and 15% TiO2 still provided ER characteristics and yielded ADD resistance in up to 40v% ethanol. The in-vitro data were subjected to PK simulations, which revealed similar codeine plasma levels when the medication is used concomitantly with alcoholic beverages. Taken together the in-vitro and in-silico results demonstrate that the incorporation of appropriate pore blockers presents a promising strategy to provide ADD resistance of multi-particulate systems.
Collapse
Affiliation(s)
- Simone Schrank
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Universitaetsplatz 1, 8010 Graz, Austria; BioTechMed-Graz, Austria
| | - Nicole Jedinger
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Shengqian Wu
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Michael Piller
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Eva Roblegg
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Universitaetsplatz 1, 8010 Graz, Austria; BioTechMed-Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
14
|
Eggenreich K, Windhab S, Schrank S, Treffer D, Juster H, Steinbichler G, Laske S, Koscher G, Roblegg E, Khinast J. Injection molding as a one-step process for the direct production of pharmaceutical dosage forms from primary powders. Int J Pharm 2016; 505:341-51. [DOI: 10.1016/j.ijpharm.2016.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/25/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
15
|
Jedinger N, Schrank S, Fischer JM, Breinhälter K, Khinast J, Roblegg E. Development of an Abuse- and Alcohol-Resistant Formulation Based on Hot-Melt Extrusion and Film Coating. AAPS PharmSciTech 2016. [PMID: 26206403 DOI: 10.1208/s12249-015-0373-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study focused on the development of flexible (i.e., deformable) multiple-unit pellets that feature (i) a prolonged drug release, (ii) drug abuse deterrence, and (iii) a minimal risk of alcohol-induced dose dumping (ADD). Deformable pellets were prepared via an advanced continuous one-step hot-melt extrusion (HME) technique, with the drug (i.e., antipyrine and codeine phosphate) fed as an aqueous solution into the molten matrix material (i.e., cornstarch, gum arabic, and xanthan). Formulations that had suitable mechanical characteristics (i.e., high compression strength) were coated with a flexible Aquacoat(®) ARC film to ensure prolonged release and to avoid ADD. The pellets were characterized in terms of their mechanical properties and in vitro drug release behavior in alcoholic media. All formulations were abuse deterrent: they had a high compression strength and grinding the pellets into powder was impossible. Since the pellets comprising gum arabic and xanthan as a matrix did not remain intact during dissolution testing, they had a very fast drug release rate. Cornstarch-based pellets that swelled but remained intact in the dissolution media had a slower drug release. Coated cornstarch-based pellets had a prolonged release over 8 h and resistance to dose dumping in 20 and 40% ethanol. Our results indicate that cornstarch-based pellets manufactured via the advanced HME process followed by coating are a promising formulation that makes tampering difficult due to a high compression strength combined with robustness in alcoholic media.
Collapse
|
16
|
Mercuri A, Fares R, Bresciani M, Fotaki N. An in vitro–in vivo correlation study for nifedipine immediate release capsules administered with water, alcoholic and non-alcoholic beverages: Impact of in vitro dissolution media and hydrodynamics. Int J Pharm 2016; 499:330-342. [DOI: 10.1016/j.ijpharm.2015.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022]
|