1
|
Rudolph N, Charbe N, Plano D, Shoyaib AA, Pal A, Boyce H, Zhao L, Wu F, Polli J, Dressman J, Cristofoletti R. A physiologically based biopharmaceutics modeling (PBBM) framework for characterizing formulation-dependent food effects: Paving the road towards fed state virtual BE studies for itraconazole amorphous solid dispersions. Eur J Pharm Sci 2025; 209:107047. [PMID: 39983931 DOI: 10.1016/j.ejps.2025.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment.
Collapse
Affiliation(s)
- Niklas Rudolph
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Nitin Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - David Plano
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Abdullah Al Shoyaib
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Arindom Pal
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Heather Boyce
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Fang Wu
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany.
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Senniksen MB, Wyttenbach N, Page S, Dressman J. Combining high throughput ASD screening with the rDCS to streamline development of poorly soluble drugs. Eur J Pharm Sci 2025:107130. [PMID: 40383401 DOI: 10.1016/j.ejps.2025.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Poor aqueous solubility and slow dissolution rate of active pharmaceutical ingredients (APIs) are often encountered challenges during oral drug development, leading to variable and insufficient bioavailability. To overcome these challenges, a so-called "enabling" formulation strategy is often pursued. Among these, amorphous solid dispersions (ASDs) are established as an effective means of improving drug absorption. However, evaluating the outcome of in vitro ASD screening approaches and relating this to the expected bioavailability increase can be difficult if not done systematically. Here we show, for the first time, how the combination of a high throughput ASD screening method with the refined Developability Classification System (rDCS) can streamline the formulation of poorly soluble APIs as ASDs. Using the Screening of Polymers for Amorphous Drug Stabilization (SPADS) approach to rapidly prepare ASD films, the improvement in dissolution performance of three APIs (befetupitant, celecoxib and itraconazole) was investigated with eight polymeric carriers. The results showed that the concentration of dissolved API was highly dependent on both the carrier and the drug load. For the APIs studied, Eudragit E, HPMC 100LV and Soluplus showed especially advantageous effects as carriers. Translating these results into the rDCS framework allowed for the visualization of the left-shift (more favorable for absorption) in classification. Several ASD films were classified as rDCS class I, showing a major improvement from the initial IIb classification of the pure API. This novel approach could be expanded to include a diverse set of screening methods for enabling formulation strategies, where the rDCS can allow for a direct comparison and support formulation selection.
Collapse
Affiliation(s)
- Malte Bøgh Senniksen
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nicole Wyttenbach
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Susanne Page
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Karakitsios E, Angelerou MFG, Kapralos I, Tsakiridou G, Kalantzi L, Dokoumetzidis A. Integrating In Vitro Dissolution and Physiologically Based Pharmacokinetic Modeling for Generic Drug Development: Evaluation of Amorphous Solid Dispersion Formulations for Tacrolimus. Pharmaceutics 2025; 17:227. [PMID: 40006594 PMCID: PMC11858865 DOI: 10.3390/pharmaceutics17020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: Tacrolimus, a Biopharmaceutics Classification System (BCS) class II drug, is widely used for transplant patients to prevent graft rejection. To enhance its bioavailability, amorphous solid dispersion (ASD) formulations were developed and evaluated. The release properties of several ASD-based tacrolimus formulations were studied using an in-house USP IV dissolution method. Methods: The pharmacokinetics of a promising test product were compared with the commercially available Advagraf® in a pilot clinical bioequivalence study with 12 healthy subjects. A previously published PBPK model for tacrolimus was validated using in vivo data and then applied to predict the human pharmacokinetics of several ASD-based tacrolimus formulations. Results: This study compares the pharmacokinetic (PK) parameters-AUC, Cmax, and Tmax-of Advagraf® and a test formulation using two methodologies: one incorporating the dissolution profile directly into the PBPK model and the other utilizing the DLM approach. The results show that both methods provided accurate predictions for Cmax and Tmax, with the dissolution profile approach underestimating AUC slightly, while the DLM method predicted AUC adequately. Sensitivity analysis refining the DLM scalars in the Ileum and Colon led to optimized predictions of PK parameters. Furthermore, this study explores the use of PBPK modeling to predict in vivo behavior for additional tacrolimus formulations, highlighting the influence of formulation composition, such as the inclusion of Eudragit-S100, on dissolution profiles and bioavailability. Conclusions: This study evaluates formulations with different compositions and manufacturing characteristics; key factors that could influence their performance in the body were identified. These insights-spanning qualitative, quantitative, and manufacturing aspects-can greatly simplify the development of generic drugs, offering strong evidence of the critical role that physiologically based pharmacokinetic (PBPK) modeling can play in the early phases of generic drug development, especially in designing and assessing biopredictive dissolution methods.
Collapse
Affiliation(s)
- Evangelos Karakitsios
- Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.K.); (I.K.)
| | | | - Iasonas Kapralos
- Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.K.); (I.K.)
| | | | - Lida Kalantzi
- Pharmathen SA, 15125 Athens, Greece; (M.-F.-G.A.); (G.T.); (L.K.)
| | - Aristides Dokoumetzidis
- Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.K.); (I.K.)
| |
Collapse
|
4
|
Reppas C, Chorianopoulou C, Karkaletsi I, Dietrich S, Bakolia A, Vertzoni M. Simulation of Antral Conditions for Estimating Drug Apparent Equilibrium Solubility after a High-Calorie, High-Fat Meal. Mol Pharm 2025; 22:871-881. [PMID: 39811984 PMCID: PMC11795529 DOI: 10.1021/acs.molpharmaceut.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
The simulation of antral conditions for estimating drug apparent equilibrium solubility after a high-calorie, high-fat meal is challenging. In this study, (1) we measured the apparent equilibrium solubility of two model lipophilic drugs, ketoconazole and danazol, in antral aspirates collected at various time points after a minced high-calorie, high-fat meal and a glass of water 30 min after initiation of meal administration, and we designated one point estimate for ketoconazole and one point estimate for danazol; (2) we evaluated the usefulness of FeSSGF-V2 and FEDGAS pH = 3 in reproducing the two point estimates; (3) we evaluated potential compositions of FeSSGF-V3 that simulate the pH, the buffer capacity toward both less acidic and more acidic values, and the antral lipid and protein contents with easily accessible, commercially available products, and (4) we identified the most useful composition of FeSSGF-V3 for reproducing the two point estimates. For both model drugs, apparent solubility in FeSSGF-V2 and in FEDGAS pH 3 deviated substantially from the corresponding point estimate. For FeSSGF-V3, hydrochloric acid, acetates, and FEDGASbuffer pH 3 were evaluated for regulating the pH and buffer capacity, FEDGASgel was used for simulating the lipid content, and Régilait skimmed milk powder was used for simulating the protein content. Level III FeSSGF-V3 prepared with hydrochloric acid, 6.1% (w/v) Régilait, and 2.83% (w/v) FEDGASgel, i.e., one-sixth of FEDGASgel concentration in FEDGAS pH 3, was comparatively the most useful medium for point estimating ketoconazole and danazol apparent solubility in antral contents after water administration in the fed state, induced as requested by regulatory authorities in oral drug bioavailability studies. Level III FeSSGF-V3 prepared by using hydrochloric acid as the principal pH controlling species could be useful in the evaluation of food effects on drug absorption with in silico physiologically based biopharmaceutics modeling approaches and, also, with biorelevant in vitro methodologies.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | | | - Ioanna Karkaletsi
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Andriani Bakolia
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| |
Collapse
|
5
|
Beran K, Hermans E, Holm R, Sepassi K, Dressman J. Using the refined Developability Classification System (rDCS) to guide the design of oral formulations. J Pharm Sci 2024; 113:3497-3517. [PMID: 39374693 DOI: 10.1016/j.xphs.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The refined Developability Classification System (rDCS) provides a comprehensive animal-free approach for assessing biopharmaceutical risks associated with developing oral formulations. This work demonstrates practical application of a recently advanced rDCS framework guiding formulation design for six diverse active pharmaceutical ingredients (APIs) and compares rDCS classifications with those of the Biopharmaceutics Classification System (BCS). While the BCS assigns five of the APIs to class II/IV, indicating potentially unfavorable biopharmaceutical attributes, the rDCS provides a more nuanced risk assessment. Both BCS and rDCS assign acetaminophen to class I at therapeutic doses. Voriconazole and lemborexant (both BCS II) are classified in rDCS class I at therapeutic doses, indicating suitability for development as conventional oral formulations. Fedratinib is classified as BCS IV but the rDCS indicates a stratified risk (class I, IIa or IIb), depending on the relevance of supersaturation/precipitation in vivo. Voxelotor and istradefylline (both BCS II) belong to rDCS class IIb, requiring solubility enhancement to achieve adequate oral bioavailability. Comparing the rDCS analysis with literature on development and pharmacokinetics demonstrates that the rDCS reliably supports oral formulation design over a wide range of API characteristics, thus providing a strong foundation for guiding development.
Collapse
Affiliation(s)
- Kristian Beran
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Janssen Pharmaceutica NV, Pharmaceutical & Material Sciences, Beerse, Belgium
| | - Eline Hermans
- Janssen Pharmaceutica NV, Pharmaceutical & Material Sciences, Beerse, Belgium
| | - René Holm
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Odense, Denmark
| | - Kia Sepassi
- Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Tsume Y, Ashworth L, Bermejo Sanz M, Cicale V, Dressman J, Fushimi M, Gonzalez-Alvarez I, Haung PS, Jankovsky C, Liu X, Lu X, Matsui K, Patel S, Ruiz-Picazo A, Sun CC, Thakral N, Zöller L. Advancing the Harmonization of Biopredictive Methodologies through the Product Quality Research Institute (PQRI) Consortium: Biopredictive Dissolution of Dipyridamole Tablets. Mol Pharm 2024; 21:5315-5325. [PMID: 39311714 PMCID: PMC11468891 DOI: 10.1021/acs.molpharmaceut.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Biorelevant dissolution and its concept have been widely accepted and further developed to meaningfully predict the bioperformance of oral drug products. Biorelevant methodologies have been applied to design and optimize oral formulations, to facilitate formulation bridging, and to predict the outcome of bioperformance by coupling the results with modeling. Yet, those methodologies have often been independently customized to align with specific aspects of the oral drug products being developed. Therefore, the evolution of biorelevant dissolution methodologies has taken slightly diverse pathways rather than being standardized like compendial quality control (QC) methodologies. This manuscript presents an effort through the Product Quality Research Institute (PQRI, https://pqri.org) consortium entitled: the standardization of "in vivo predictive dissolution methodologies and in silico bioequivalent study working group" to find the key parameters for biorelevant dissolution, to identify the best practices, and to move toward standardization of biorelevant dissolution methodologies. This working group is composed of members from 10 pharmaceutical companies and academic institutes. The consortium project will be accomplished in five phases, whereby the first two phases have already been completed and published. In this paper, the next two phases are addressed by reporting the biorelevant dissolution profiles of dipyridamole, a weak base model drug, then incorporating the dissolution results into physiologically based biopharmaceutics modeling (PBBM) to determine whether they would lead to bioequivalence (BE) or non-BE.
Collapse
Affiliation(s)
- Yasuhiro Tsume
- Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Lee Ashworth
- AstraZeneca, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | | | - Vincent Cicale
- Bristol-Myers
Squibb Company, New Brunswick, New Jersey 08901, United States
| | - Jennifer Dressman
- Fraunhofer
Institute for Translational Medicine Pharmacology, Frankfurt 60596, Germany
| | | | | | - Pin-Syuan Haung
- University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Corinne Jankovsky
- Boehringer
Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 05877, United States
| | - Xiaohong Liu
- University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xujin Lu
- Bristol-Myers
Squibb Company, New Brunswick, New Jersey 08901, United States
| | - Kazuki Matsui
- Sawai Pharmaceutical
Co. Ltd., Osaka 532-0003, Japan
- Ono Pharmaceutical
Co. Ltd., Osaka 618-8585, Japan
| | | | | | | | - Naveen Thakral
- Schrodinger
Inc., New York, New York 10036, United States
| | - Laurin Zöller
- Fraunhofer
Institute for Translational Medicine Pharmacology, Frankfurt 60596, Germany
| |
Collapse
|
7
|
Naing MD, Tsume Y. Dissolution profiles of BCS class II drugs generated by the gastrointestinal simulator alpha has an edge over the compendial USP II method. Eur J Pharm Biopharm 2024; 203:114436. [PMID: 39111581 DOI: 10.1016/j.ejpb.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 09/14/2024]
Abstract
The poor water solubility of orally administered drugs leads to low dissolution in the GI tract, resulting to low oral bioavailability. Traditionally, in vitro dissolution testing using the compendial dissolution apparatuses I and II has been the gold-standard method for evaluating drug dissolution and assuring drug quality. However, these methods don't accurately represent the complex physiologies of the GI tract, making it difficult to predict in vivo behavior of these drugs. In this study, the in vivo predictive method, gastrointestinal simulator alpha (GIS-α), was used to study the dissolution profiles of commercially available BCS Class II drugs, danazol, fenofibrate, celecoxib, and ritonavir. This biorelevant transfer method utilizes multiple compartments alongside peristaltic pumps, to effectively model the transfer of material in the GI tract. In all cases, the GIS-α with biorelevant buffers gave superior dissolution profiles. In silico modeling using GastroPlusTM yielded better prediction when utilizing the results from the GIS-α as input compared to the dissolution profiles obtained from the USP II apparatus. This gives the GIS-α an edge over compendial methods in generating drug dissolution profiles and is especially useful in the early stages of drug and formulation development. This information gives insight into the dissolution behavior and potential absorption patterns of these drugs which can be crucial for formulation development, as it allows for the optimization of drug delivery systems to enhance solubility, dissolution, and ultimately, bioavailability.
Collapse
Affiliation(s)
- Marvin D Naing
- Biopharmaceutics-Sterile Speciality Products, Merck & Co., Inc., Rahway, NJ, USA
| | - Yasuhiro Tsume
- Biopharmaceutics-Sterile Speciality Products, Merck & Co., Inc., Rahway, NJ, USA.
| |
Collapse
|
8
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
9
|
Felicijan T, Rakoše I, Prislan M, Locatelli I, Bogataj M, Trontelj J. Application of a Novel Dissolution Medium with Lipids for In Vitro Simulation of the Postprandial Gastric Content. Pharmaceutics 2024; 16:1040. [PMID: 39204385 PMCID: PMC11359312 DOI: 10.3390/pharmaceutics16081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Food can change various physiological parameters along the gastrointestinal tract, potentially impacting postprandial drug absorption. It is thus important to consider different in vivo conditions during in vitro studies. Therefore, a novel dissolution medium simulating variable postprandial pH values and lipid concentrations was developed and used in this study. Additionally, by establishing and validating a suitable analytical method, the effects of these parameters on the dissolution of a model drug, cinnarizine, and on its distribution between the lipid and aqueous phases of the medium were studied. Both parameters, pH value and lipid concentration, were shown to influence cinnarizine behavior in the in vitro dissolution studies. The amount of dissolved drug decreased with increasing pH due to cinnarizine's decreasing solubility. At pH values 5 and 7, the higher concentration of lipids in the medium increased drug dissolution, and most of the dissolved drug was distributed in the lipid phase. In all media with a lower pH of 3, dissolution was fast and complete, with a significant amount of drug distributed in the lipid phase. These results are in accordance with the in vivo observed positive food effect on cinnarizine bioavailability described in the literature. The developed medium, with its ability to easily adjust the pH level and lipid concentration, thus offers a promising tool for assessing the effect of co-ingested food on the dissolution kinetics of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | | | - Marija Bogataj
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.F.); (I.R.); (M.P.); (I.L.); (J.T.)
| | | |
Collapse
|
10
|
Dietrich S, Dimoula M, Argyropoulos T, Ceulemans J, Goumas K, Vertzoni M, Reppas C. On the processes limiting oral drug absorption when amorphous solid dispersions are administered after a high-calorie, high-fat meal: Sporanox® pellets. Eur J Pharm Sci 2024; 199:106798. [PMID: 38740075 DOI: 10.1016/j.ejps.2024.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES 1) Identify processes limiting the arrival of itraconazole at the intestinal epithelium when Sporanox® amorphous solid dispersion (ASD) pellets are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal. 2) Evaluate whether itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are useful for the assessment of dose effects in the fed state and food effects on plasma levels. METHODS Itraconazole concentrations, apparent viscosity, and solubilization capacity were measured in aspirates from the upper gastrointestinal lumen collected during a recently performed clinical study in healthy adults. Published itraconazole concentrations in plasma, after a high-calorie high-fat meal and Sporanox® ASD pellets, and in contents of the upper small intestine of healthy adults, after administration of Sporanox® ASD pellets in the fasted state, were used to achieve the second objective. RESULTS When Sporanox® ASD pellets (up to 200 mg) are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal, itraconazole concentrations in the colloidal phase or the micellar phase of aqueous contents of the upper small intestine are unsaturated, in most cases. During the first 3 h post-dosing after a high-calorie, high-fat meal, the impact of dose (200 mg vs. 100 mg) on itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine seems to underestimate the impact of dose on plasma levels. When Sporanox® ASD pellets are administered after a high-calorie, high-fat meal at the 200 mg dose level, itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are, on average, lower than those achieved in fasted state. CONCLUSIONS When Sporanox® ASD pellets are transferred from the stomach to the upper small intestine after a high-calorie, high-fat meal, itraconazole's arrival at the intestinal epithelium seems to be limited by its arrival at the colloidal phase of aqueous contents of the upper small intestine. The impact of dose (100 mg vs. 200 mg) on plasma levels after a high-calorie, high-fat meal and during the gastrointestinal transfer of Sporanox® pellets requires consideration of pre-systemic itraconazole metabolism. At the 200 mg dose level, after taking into consideration differences in the volume of the contents of the upper small intestine between the fasted and the fed state during the gastrointestinal transfer of Sporanox® ASD pellets, itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine suggest a mild negative food effect on average plasma levels; published clinical data are inconclusive.
Collapse
Affiliation(s)
- Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece; Pharmaceutical and Material Sciences, Pharmaceutical Product Development and Supply, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Myrto Dimoula
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | | | - Jens Ceulemans
- Pharmaceutical and Material Sciences, Pharmaceutical Product Development and Supply, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Konstantinos Goumas
- Department of Gastroenterology, Red Cross Hospital of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
11
|
Dietrich S, Ceulemans J, Hermans E, Argyropoulos T, Goumas K, Vertzoni M, Reppas C. Understanding the Conditions Under Which Drugs are Transferred from the Stomach Through the Upper Small Intestine After a High-Calorie, High-Fat Meal. J Pharm Sci 2024; 113:1546-1554. [PMID: 38218315 DOI: 10.1016/j.xphs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Information on the conditions under which drugs are transferred from the stomach through the upper small intestine after a high-calorie, high-fat meal is very limited. To simulate the drug presence after disintegration and arrival in the antral region, paracetamol solution and Sporanox® amorphous solid dispersion pellets at two dose levels were administered to the antrum of 8 healthy adults 30 min after administration of a high-calorie, high-fat meal on a crossover basis. The overall median buffer capacity of antral contents was estimated to be 18.0 and 24.0 mmol/ml/ΔpH when titrating with NaOH and HCl, respectively. The corresponding values for the contents of upper the small intestine were 14.0 and 16.8 mmol/ml/ΔpH, respectively. The drug transfer process from the antrum through the upper small intestine occurred with apparent first-order kinetics. The best estimate for the antral emptying half-life was 39min and 45min for paracetamol and itraconazole, respectively, the apparent volume of contents of the upper small intestine was more than double compared with previously reported values in the fasted state, the half-life of drug elimination from the upper small intestine was similar to recent estimates for highly permeable drugs in the fasted state, and the apparent volume of antral contents during the first couple of hours post drug administration was 303mL. Information collected in this study could increase the reliability of in silico and/or in vitro modelling approaches applied in clinical drug development.
Collapse
Affiliation(s)
- Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece; Pharmaceutical and Material Sciences, Pharmaceutical Product Development and Supply, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jens Ceulemans
- Pharmaceutical and Material Sciences, Pharmaceutical Product Development and Supply, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Eline Hermans
- Pharmaceutical and Material Sciences, Pharmaceutical Product Development and Supply, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Konstantinos Goumas
- Department of Gastroenterology, Red Cross Hospital of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
12
|
Favaron A, Hens B, Camotti Montanha M, McAllister M, Tomaszewska I, Moustafa S, de Oliveira MA, Basit AW, Orlu M. Can in vitro/in silico tools improve colonic concentration estimations for oral extended-release formulations? A case study with upadacitinib. J Control Release 2024; 370:182-194. [PMID: 38641022 DOI: 10.1016/j.jconrel.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Upadacitinib, classified as a highly soluble drug, is commercially marketed as RINVOQ®, a modified-release formulation incorporating hydroxypropyl methylcellulose as a matrix system to target extended release throughout the gastrointestinal (GI) tract. Our study aimed to explore how drug release will occur throughout the GI tract using a plethora of in vitro and in silico tools. We built a Physiologically-Based Pharmacokinetic (PBPK) model in GastroPlus™ to predict the systemic concentrations of the drug when administered using in vitro dissolution profiles as input to drive luminal dissolution. A series of in vitro dissolution experiments were gathered using the USP Apparatus I, III and IV in presence of biorelevant media, simulating both fasted and fed state conditions. A key outcome from the current study was to establish an in vitro-in vivo correlation (IVIVC) between (i) the dissolution profiles obtained from the USP I, III and IV methods and (ii) the fraction absorbed of drug as deconvoluted from the plasma concentration-time profile of the drug. When linking the fraction dissolved as measured in the USP IV model, a Level A IVIVC was established. Moreover, when using the different dissolution profiles as input for PBPK modeling, it was also observed that predictions for plasma Cmax and AUC were most accurate for USP IV compared to the other models (based on predicted versus observed ratios). Furthermore, the PBPK model has the utility to extract the predicted concentrations at the level of the colon which can be of utmost interest when working with specific in vitro assays.
Collapse
Affiliation(s)
- Alessia Favaron
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Bart Hens
- Drug Product Design, Pfizer, Sandwich, Kent CT13 9NJ, United Kingdom.
| | | | - Mark McAllister
- Drug Product Design, Pfizer, Sandwich, Kent CT13 9NJ, United Kingdom
| | - Irena Tomaszewska
- Drug Product Design, Pfizer, Sandwich, Kent CT13 9NJ, United Kingdom
| | - Shaimaa Moustafa
- Drug Product Design, Pfizer, Sandwich, Kent CT13 9NJ, United Kingdom
| | | | - Abdul W Basit
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK..
| | - Mine Orlu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK..
| |
Collapse
|
13
|
Oktay AN, Polli JE. Efficiency of single pharmaceutical surfactants to mimic intestinal biorelevant media solubilization and dissolution of etravirine: Comparison of intrinsic and film dissolution models. Eur J Pharm Sci 2024; 196:106746. [PMID: 38499112 DOI: 10.1016/j.ejps.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
We understand that quality control dissolution media may best anticipate in vivo product performance by mimicking in vivo media, but preferably involve at most a single pharmaceutical surfactant for routine laboratory use. The objective here was to estimate the concentrations of six pharmaceutical surfactants to mimic etravirine solubility and intrinsic dissolution rate, as well as dissolution rate from a film model, in each Fed State Simulated Intestinal Fluid Version 2 (FeSSIF-V2) and Fasted State Simulated Intestinal Fluid Version 2 (FaSSIF-V2). Solubility studies and colloid sizing measurements were conducted. Results indicate that all six surfactants were more efficient than FeSSIF-V2 or FaSSIF-V2 at solubilizing drug, and also exhibited higher micelle diffusivities than FeSSIF-V2 and FaSSIF-V2 mixed-micelles. The rank-order potency (on mM basis) of the six pharmaceutical surfactants to mimic etravirine solubility in each FeSSIF-V2 and FaSSIF-V2 was: polysorbate 80 (PS80) > polysorbate 20 (PS20) > polyoxyethylene(23) lauryl ether (POE23) > POE10 > hexadecyltrimethylammonium bromide (HEX) > sodium lauryl sulfate (SLS). This rank-order potency was almost the same to mimic drug dissolution rate into each FeSSIF-V2 and FaSSIF-V2, except POE10 > POE23. For the most potent surfactant, PS80, 0.461 mM and 0.140 mM PS80 was estimated to mimic etravirine's solubility and dissolution rate into FeSSIF-V2, respectively, using the intrinsic dissolution model. The low PS80 concentration to mimic dissolution rate reflects the relatively high diffusivity of PS80 micelles, compared to FeSSIF-V2 mixed-micelle diffusivity, which was the case for all six pharmaceutical surfactants. Results are also presented in terms of a film dissolution model for surfactant-mediated dissolution, where dissolution enhancement was less than that in the intrinsic dissolution model, and the film model required lower surfactant concentration than in intrinsic dissolution model to mimic FeSSIF-V2-enhanced dissolution. Findings have promised to identify single pharmaceutical surfactant concentrations that mimic key performance attributes of biorelevant media.
Collapse
Affiliation(s)
- Ayse Nur Oktay
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA; Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
15
|
Romański M, Giebułtowicz J, Gniazdowska E, Piotrowski R, Żuk A, Kułakowski P, Paszkowska J, Myslitska D, Sczodrok J, Garbacz G, Danielak D. An extension of biorelevant fed-state dissolution tests to clinical pharmacokinetics - A study on gastrointestinal factors influencing rivaroxaban exposure and efficacy in atrial fibrillation patients. Int J Pharm 2024; 649:123626. [PMID: 38000647 DOI: 10.1016/j.ijpharm.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
A direct oral anticoagulant rivaroxaban fails to prevent stroke and systemic embolism in one-to-several percent of patients with nonvalvular atrial fibrillation (NVAF), but the reasons are unknown. The study used semi-mechanistic in vitro-in vivo prediction (IVIVP) modeling to explore the reasons for ineffective thrombosis prevention in NVAF patients. Steady-state drug concentrations in plasma were measured at 0 h (Ctrough), 3 h (C3h), and 12 h post-dosing in thirty-four patients treated with 20 mg rivaroxaban daily. The clinical data were compared against "virtual twins" generated with a novel IVIVP model that combined drug dissolution modeling, mechanistic description of gastric drug transit, and population pharmacokinetics defining the variability of drug disposition. The nonresponders had significantly lower C3h and Ctrough than the responders (p < 0.001) and the covariates included in the population pharmacokinetic submodel did not fully explain this difference. Simulations involving varied gastrointestinal parameters in the "virtual twins" revealed that lower small intestinal effective permeability (Peff), rather than a slower stomach emptying rate, could explain low rivaroxaban exposure in the nonresponders. IVIVP modeling was effectively used for exploring pharmacotherapy failure. Low Peff, found as a major determinant of ineffective rivaroxaban treatment, encourages further research to find (pato)physiological factors influencing suboptimal absorption.
Collapse
Affiliation(s)
- Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| | - Joanna Giebułtowicz
- Department of Drugs Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland.
| | - Elżbieta Gniazdowska
- Department of Drugs Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; Łukasiewicz Research Network, Industrial Chemistry Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Roman Piotrowski
- Postgraduate Medical School, Department of Cardiology, Grochowski Hospital, 51/59 Grenadierów St., 04-073 Warsaw, Poland
| | - Anna Żuk
- Postgraduate Medical School, Department of Cardiology, Grochowski Hospital, 51/59 Grenadierów St., 04-073 Warsaw, Poland
| | - Piotr Kułakowski
- Postgraduate Medical School, Department of Cardiology, Grochowski Hospital, 51/59 Grenadierów St., 04-073 Warsaw, Poland
| | | | - Daria Myslitska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Jaroslaw Sczodrok
- Physiolution GmbH, 49a Walther-Rathenau-Straße, 17489 Greifswald, Germany
| | - Grzegorz Garbacz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; Physiolution GmbH, 49a Walther-Rathenau-Straße, 17489 Greifswald, Germany
| | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| |
Collapse
|
16
|
Ge K, Paus R, Penner V, Sadowski G, Ji Y. A novel theoretical strategy for predicting dissolution kinetics and mechanisms of pharmaceuticals in complex biorelevant media. Int J Pharm 2023; 648:123594. [PMID: 37981249 DOI: 10.1016/j.ijpharm.2023.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The influence mechanism of biorelevant media on the dissolution of active pharmaceutical ingredients (APIs) is the key to their formulation design. The dissolution kinetics of naproxen (NAP) and indomethacin (IND) in biorelevant media was systematically investigated. The dissolution mechanism was analyzed by chemical potential gradient model to explore the influence of surfactant type, pH and ionic strength. Hexadecyl trimethyl ammonium bromide (CTAB) is superior to sodium dodecyl sulfate (SDS) in promoting the dissolution of NAP and IND by increasing the solubility and accelerating the surface reaction processes. The electrostatic repulsion between SDS and NAP and IND with the same negative charge facilitates the diffusion of API, while the mutual attraction between CTAB and NAP and IND is not conducive to diffusion. High pH was favorable for the dissolution of acidic NAP and IND, as the simultaneous increase in solubility, surface reaction constant, and diffusion constant. High ionic strength was beneficial for the surface reaction of NAP and IND, but hindered their diffusion. It was shown that the modeling results were in conformity with the in vitro experimental data. These results are expected to provide theoretical supports for the design of biorelevant media and pharmaceutical formulations in the pharmaceutical development.
Collapse
Affiliation(s)
- Kai Ge
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Raphael Paus
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Vera Penner
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Gabriele Sadowski
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China.
| |
Collapse
|
17
|
Silva MI, Khadra I, Pyper K, Halbert GW. Structured solubility behaviour in fed simulated intestinal fluids. Eur J Pharm Biopharm 2023; 193:58-73. [PMID: 37890541 DOI: 10.1016/j.ejpb.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Intestinal drug solubility is a key parameter controlling absorption after the administration of a solid oral dosage form. The ability to measure fed state solubility in vitro is limited and multiple simulated intestinal fluid recipes have been developed but with no consensus which is optimal. This study has utilised nine bioequivalent simulated fed intestinal media recipes that cover over 90% of the compositional variability of sampled fed human intestinal fluid. The solubility of 24 drugs (Acidic; furosemide, ibuprofen, indomethacin, mefenamic acid, naproxen, phenytoin, piroxicam, valsartan, zafirlukast: Basic; aprepitant, atazanavir, bromocriptine, carvedilol, dipyridamole, posaconazole, tadalafil: Neutral; acyclovir, carbamazepine, felodipine, fenofibrate, griseofulvin, itraconazole, paracetamol, probucol) has been assessed to determine if structured solubility behaviour is present. The measured solubility behaviour can be split into four categories and is consistent with drug physicochemical properties and previous solubility studies. For acidic drugs (category 1) solubility is controlled by media pH and the lowest and highest pH media identify the lowest and highest solubility in 90% of cases. For weakly acidic, basic and neutral drugs (category 2) solubility is controlled by media pH and total amphiphile concentration (TAC), a consistent solubility pattern is evident with variation related to individual drug media component interactions. The lowest and highest pH × TAC media identify the lowest and highest solubility in 70% and 90% of cases respectively. Four drugs, which are non-ionised in the media systems (category 3), have been identified with a very narrow solubility range, indicating minimal impact of the simulated media on solubility. Three drugs exhibit solubility behaviour that is not consistent with the remainder (category 4). The results indicate that the use of two bioequivalent fed intestinal media from the original nine will identify in vitro the maximum and minimum solubility values for the majority of drugs and due to the media derivation this is probably applicable in vivo. When combined with a previous fasted study, this introduces interesting possibilities to measure a solubility range in vitro that can provide Quality by Design based decisions to rationalise drug and formulation development. Overall this indicates that the multi-dimensional media system is worthy of further investigation as in vitro tool to assess fed intestinal solubility.
Collapse
Affiliation(s)
- Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
18
|
Navas-Bachiller M, Persoons T, D'Arcy DM. In vitro and in silico methods to investigate the effect of moderately increasing medium viscosity and density on ibuprofen dissolution rate. Eur J Pharm Biopharm 2023; 193:74-88. [PMID: 37884158 DOI: 10.1016/j.ejpb.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Medium viscosity can affect drug dissolution rate, however, it is not usually considered in routine dissolution testing or less complex biorelevant media. The effects of moderately increasing medium viscosity on the in vitro and in silico dissolution of ibuprofen were investigated with two viscosity enhancing agents (VEA) (hydroxypropyl methylcellulose (HPMC) and sucrose), three viscosity levels (range 0.7-5.5 mPa.s), two solubilities and two fluid velocities in the paddle, flow-through and intrinsic dissolution apparatuses. A factorial design analysis highlighted which factors significantly affected key dissolution metrics. Experimental results in the flow-through apparatus (FTA) were compared with in silico dissolution profiles generated by an in-house simulation code (SIMDISSOTM). Increasing viscosity reduced the intrinsic dissolution rate of ibuprofen for both VEAs. The dissolution rate reduction was also observed in the FTA with sucrose, but less so with HPMC, suggesting particle wetting, motion and surface area effects. Particle motion simulations suggested reduced particle lifting times as viscosity increased, indicating an effect of viscosity on particle dispersal. The viscosity- and fluid density-mediated reduction in the dissolution rate observed with sucrose was accurately simulated by SIMDISSOTM, in particular at higher velocities. Velocity had a significant impact on dissolution rates in the paddle apparatus, with a significant viscosity-related reduction in dissolution observed in the low solubility-low velocity scenario. Even small increases in medium viscosity can reduce the dissolution rate of a BCS class II drug, and in silico particle motion and dissolution data can assist interpretation of particulate dissolution behaviour.
Collapse
Affiliation(s)
- Marina Navas-Bachiller
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
19
|
Koziolek M, Augustijns P, Berger C, Cristofoletti R, Dahlgren D, Keemink J, Matsson P, McCartney F, Metzger M, Mezler M, Niessen J, Polli JE, Vertzoni M, Weitschies W, Dressman J. Challenges in Permeability Assessment for Oral Drug Product Development. Pharmaceutics 2023; 15:2397. [PMID: 37896157 PMCID: PMC10609725 DOI: 10.3390/pharmaceutics15102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key parameter in oral drug product development. This review describes the various in vitro, in silico and in vivo methodologies that are applied to determine drug permeability in the human gastrointestinal tract and identifies how they are applied in the different stages of drug development. The various methods used to predict, estimate or measure permeability values, ranging from in silico and in vitro methods all the way to studies in animals and humans, are discussed with regard to their advantages, limitations and applications. A special focus is put on novel techniques such as computational approaches, gut-on-chip models and human tissue-based models, where significant progress has been made in the last few years. In addition, the impact of permeability estimations on PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in clinical studies and the requirements for colonic drug absorption are addressed.
Collapse
Affiliation(s)
- Mirko Koziolek
- NCE Drug Product Development, Development Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Constantin Berger
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden (J.N.)
| | - Janneke Keemink
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland;
| | - Pär Matsson
- Department of Pharmacology and SciLifeLab Gothenburg, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Fiona McCartney
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Marco Metzger
- Translational Center for Regenerative Therapies (TLZ-RT) Würzburg, Branch of the Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany;
| | - Janis Niessen
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden (J.N.)
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21021, USA;
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Zografou, Greece;
| | - Werner Weitschies
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
20
|
Kostantini C, Spilioti E, Bevernage J, Ceulemans J, Hansmann S, Hellemans K, Jede C, Kourentas A, Reggane M, Shah L, Wagner C, Vertzoni M, Reppas C. Screening for Differences in Early Exposure in the Fasted State with in Vitro Methodologies can be Challenging: Experience with the BioGIT System. J Pharm Sci 2023; 112:2240-2248. [PMID: 36918113 DOI: 10.1016/j.xphs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
The Biorelevant Gastrointestinal Transfer (BioGIT) system is a useful screening tool for assessing the impact of dose and/or formulation on early exposure after administration of immediate release or enabling drug products with a glass of water in the fasted state. The objective of this study was to investigate potential limitations. BioGIT experiments were performed with five low solubility active pharmaceutical ingredients with weakly alkaline characteristics: mebendazole (tablet and chewable tablet), Compound E (aqueous solutions, three doses), pazopanib-HCl (Votrient™ tablet, crushed Votrient™ tablet and aqueous suspension), Compound B-diHCl (hard gelatin capsule, three doses) and Compound C (hard gelatin capsule containing nanosized drug and hard gelatin capsule containing micronized drug). For all formulation or dose comparisons the ratio of mean BioGIT AUC0-50 min values was not predictive of the ratio of mean plasma AUC0-60 min values which became available after completion of BioGIT experiments. BioGIT experimental conditions have not been designed to simulate the gastrointestinal drug transfer process after administration of chewable tablets or aqueous solutions, therefore, BioGIT may not be useful for the assessment of intraluminal performance early after administration of such drug products. Also, based on this study, BioGIT may not be useful in investigating the impact of dose and/or formulation on early exposure when the dose is not administered with a glass of water to fasted healthy individuals or when BioGIT data are highly variable. Finally, the rapid dissolution of nanocrystals after administration of low solubility weak bases may require adjustment of the pH in the gastric compartment of BioGIT to slightly higher pH values. Limitations identified in this study for the BioGIT system may be also relevant to other in vitro systems proposed for similar evaluations.
Collapse
Affiliation(s)
- Christina Kostantini
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Evanthia Spilioti
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | | | | | - Simone Hansmann
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Christian Jede
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Alexandros Kourentas
- Dissolution & Biopharmaceutics, Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Maude Reggane
- Pharmaceutical Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Lipa Shah
- Pharmaceutical Development, Technical Research and Development, Novartis Pharmaceuticals Corporation, Fort Worth TX 76134, United States of America
| | - Christian Wagner
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
21
|
Niederquell A, Stoyanov E, Kuentz M. Physiological Buffer Effects in Drug Supersaturation - A Mechanistic Study of Hydroxypropyl Cellulose as Precipitation Inhibitor. J Pharm Sci 2023; 112:1897-1907. [PMID: 36813134 DOI: 10.1016/j.xphs.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Phosphate buffer is predominantly used instead of the more physiological bicarbonate buffer, as the latter requires a technical solution of adequate gas mixing. Recent pioneering work on how bicarbonate buffer affected drug supersaturation revealed interesting effects that call for more mechanistic understanding. Therefore, this study used hydroxypropyl cellulose as a model precipitation inhibitor and real-time desupersaturation testing was conducted with the drugs bifonazole, ezetimibe, tolfenamic acid and triclabendazole. Specific buffer effects for the different compounds were noted and overall, statistical significance was found for the precipitation induction time (p = 0.0088). Interestingly, molecular dynamics simulation revealed a conformational effect of the polymer in the presence of the different buffer types. Subsequent molecular docking trials suggested a stronger interaction energy of drug and polymer in the presence of phosphate compared to bicarbonate buffer (p =0.0010). In conclusion, a better mechanistic understanding of how different buffers affect drug-polymer interactions regarding drug supersaturation was achieved. Further mechanisms may account for the overall buffer effects and additional research on drug supersaturation is certainly needed, but it can already be concluded that bicarbonate buffering should be used more often for in vitro testing in drug development.
Collapse
Affiliation(s)
- Andreas Niederquell
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Edmont Stoyanov
- Nisso Chemical Europe, Berliner Allee 42, 40212, Düsseldorf, Germany
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland.
| |
Collapse
|
22
|
de Waal T, Brouwers J, Rayyan M, Stillhart C, Vinarova L, Vinarov Z, Augustijns P. Characterization of neonatal and infant enterostomy fluids - Part II: Drug solubility. Int J Pharm 2023:123141. [PMID: 37321462 DOI: 10.1016/j.ijpharm.2023.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Previous research revealed marked differences in the composition of intestinal fluids between infants and adults. To explore the impact on the solubilization of orally administered drugs, the present study assessed the solubility of five poorly water-soluble, lipophilic drugs in intestinal fluid pools from 19 infant enterostomy patients (infant HIF). For some but not all drugs, the average solubilizing capacity of infant HIF was similar to that of HIF obtained from adults (adult HIF) in fed conditions. Commonly used fed state simulated intestinal fluids (FeSSIF(-V2)) predicted fairly well drug solubility in the aqueous fraction of infant HIF, but did not account for the substantial solubilization by the lipid phase of infant HIF. Despite similarities in the average solubilities of some drugs in infant HIF and adult HIF or SIF, the underlying solubilization mechanisms likely differ, considering important compositional differences (e.g., low bile salt levels). Finally, the huge variability in composition of infant HIF pools resulted in a highly variable solubilizing capacity, potentially causing variations in drug bioavailability. The current study warrants future research focusing on (i) understanding the mechanisms underlying drug solubilization in infant HIF and (ii) evaluating the sensitivity of oral drug products to interpatient variations in drug solubilization.
Collapse
Affiliation(s)
- Tom de Waal
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maissa Rayyan
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | | | - Liliya Vinarova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Nyamba I, Jennotte O, Sombie CB, Lechanteur A, Sacre PY, Djande A, Semde R, Evrard B. Preformulation study for the selection of a suitable polymer for the development of ellagic acid-based solid dispersion using hot-melt extrusion. Int J Pharm 2023:123088. [PMID: 37257795 DOI: 10.1016/j.ijpharm.2023.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium); Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso).
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Charles B Sombie
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Pierre-Yves Sacre
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - Abdoulaye Djande
- Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Rasmané Semde
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| |
Collapse
|
24
|
Rivera KR, Pessi J, Andersson V, Gustafsson H, Gluud LL, Buckley ST. Characterizing interspecies differences in gastric fluid properties to improve understanding of in vivo oral drug formulation performance. Eur J Pharm Sci 2023; 183:106386. [PMID: 36736067 DOI: 10.1016/j.ejps.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
An in-depth understanding of the properties of gastric fluid(s) prior to an in vivo pharmacokinetic investigation can vastly improve predictions of in vivo performance. Previously, properties of animal and human gastric fluids have been characterized with varying methods. Unfortunately, characterization has often not been thorough, and some properties, such as density and viscosity, have not been reported. Here, human, porcine and canine gastric fluids were harvested and characterized for pH, viscosity, surface tension, density, and osmolarity. We found that the variability of pH and surface tension between dogs was significantly higher than the variability between pigs, and, furthermore, gastric fluids collected from the same canine species (beagles) housed in two different countries (Denmark and China) had surprisingly different pH values. Next, an in vitro dissolution study in diluted gastric fluids from each species was performed using minitablets containing ibuprofen. Human gastric fluids and porcine gastric fluids showed similar dissolution profiles and corroborated well with biorelevant human Fasted State Simulated Gastric Fluid (FaSSGF). In contrast, differences in canine gastric fluids caused highly variable dissolution results. We systematically compared our findings to those in the literature and based on this evaluation, propose obtaining aspirates from the animals used for in vivo studies to ensure knowledge on the fluid properties affecting the performance of the formulated drug in question.
Collapse
Affiliation(s)
- Kristina R Rivera
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark
| | - Jenni Pessi
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark
| | - Vincent Andersson
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark
| | - Henning Gustafsson
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark
| | - Lise Lotte Gluud
- Department of Gastroenterology and Gastrointestinal Surgery, Hvidovre University Hospital, Hvidovre, Denmark
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark.
| |
Collapse
|
25
|
Kostantini C, Spilioti E, Bevernage J, Ceulemans J, Hansmann S, Hellemans K, Jede C, Kourentas A, Reggane M, Shah L, Wagner C, Reppas C, Vertzoni M. Usefulness of the BioGIT system in screening for differences in early exposure in the fasted state on an a priori basis. Int J Pharm 2023; 634:122670. [PMID: 36736968 DOI: 10.1016/j.ijpharm.2023.122670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
The objective of the present study was to confirm the usefulness of BioGIT data in the evaluation of the impact of dose and/or formulation on early exposure after oral administration of immediate release or enabling products of low solubility active pharmaceutical ingredients (APIs) with a glass of water in the fasted state. BioGIT experiments were performed with four APIs: Compound Α (tablet, three dose levels), Compound E (capsule PiC1, capsule PiC2 and tablet), fenofibrate (Lipidil® capsule and Lipidil 145 ONE® tablet) and Compound F (HP-β-CD aqueous solution and tablet). Based on mean plasma AUC0-60min values which became available after completion of the BioGIT experiments, mean BioGIT AUC0-50min values were useful for the evaluation of the impact of dose and/or formulation on early exposure. The log-transformed ratios of mean BioGIT AUC0-50min values for two doses and/or two formulations estimated in this study and in a recent study for two diclofenac potassium products (Cataflam® tablet and Voltfast® sachet, same dose) vs. the corresponding log-transformed ratios of mean plasma AUC0-60min values (n = 7 pairs of ratios), were included in a previously established correlation between log-transformed ratios of mean BioGIT AUC0-50min values and log-transformed ratios of plasma AUC0-60min values (n = 9 pairs of ratios). The correlation between log-transformed plasma AUC0-60min ratios vs. log-transformed BioGIT AUC0-50min ratios was confirmed (n = 16 pairs of ratios, R = 0.90). Compared with the previously established correlation the statistical characteristics were improved. Based on this study, the BioGIT system could be useful as a screening tool for assessing the impact of dose and/or formulation differences on early exposure, after administration of immediate release or enabling drug products of low solubility APIs with a glass of water in the fasted state, on an a priori basis.
Collapse
Affiliation(s)
- Christina Kostantini
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Evanthia Spilioti
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | | | | | - Simone Hansmann
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Christian Jede
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alexandros Kourentas
- Dissolution & Biopharmaceutics, Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056 Basel, Switzerland
| | - Maude Reggane
- Pharmaceutical Development, Technical Research and Development, Novartis AG, CH-4056 Basel, Switzerland
| | - Lipa Shah
- Pharmaceutical Development, Technical Research and Development, Novartis Pharmaceuticals Corporation, Fort Worth, TX 76134, USA
| | - Christian Wagner
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
26
|
Abdel Rahim S, Al-Zoubi N, Khader H, Alwaraydat R, Al-Akayleh F. Ethanol-induced dose dumping from sodium alginate matrix tablets: Investigation of the effects of medium viscosity and pH. Int J Pharm 2023; 632:122568. [PMID: 36587774 DOI: 10.1016/j.ijpharm.2022.122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
In this work, the swelling and disintegration of drug-free sodium alginate (SA) compacts and the release of metformin HCl from SA matrix tablets were investigated in acidic media of different ethanol concentrations (0, 10, 20, and 40 % v/v), pH (1.2 and 4.5) and HPMC K4M concentrations (0-1 % w/v). The investigated dissolution media represented the consumption of different alcoholic beverages, the pH of fasted and fed states, and a range of viscosity resembling diluted homogenized FDA meal. The dissolution efficiency and the time to 50 % release (t50%) were selected as release parameters. It was found that both ethanol concentration and medium pH affected drug release from SA matrix tablets and the swelling of SA compacts. Dose dumping occurred at high ethanol concentration (40 %) at both media pH with almost complete drug release within 15-30 min associated with rapid matrix disintegration. HPMC at 0.5-1 % concentrations increased the medium's viscosity, preventing dose dumping at high ethanol concentrations. Erosion and disintegration of SA compacts were decelerated by increasing HPMC concentration in hydroethanolic media in consonance with decreased release rate from matrix tablets. ANOVA tests showed significant effects of pH and concentrations of ethanol and HPMC in the dissolution medium on the release parameters.
Collapse
Affiliation(s)
- Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University. Amman, Jordan
| | - Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, 13115 Zarqa, Jordan; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, 26150 Jerash, Jordan.
| | - Heba Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, 13115 Zarqa, Jordan
| | - Rahaf Alwaraydat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, 13115 Zarqa, Jordan
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Petra University, Amman, Jordan
| |
Collapse
|
27
|
Statelova M, Vertzoni M, Kourentas A. Simulation of Intraluminal Performance of Lipophilic Weak Bases in Fasted Healthy Adults Using DDDPlusTM. AAPS J 2022; 24:89. [DOI: 10.1208/s12248-022-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
|
28
|
Becker T, Krome AK, Vahdati S, Schiefer A, Pfarr K, Ehrens A, Aden T, Grosse M, Jansen R, Alt S, Hesterkamp T, Stadler M, Hübner MP, Kehraus S, König GM, Hoerauf A, Wagner KG. In Vitro-In Vivo Relationship in Mini-Scale-Enabling Formulations of Corallopyronin A. Pharmaceutics 2022; 14:1657. [PMID: 36015283 PMCID: PMC9414514 DOI: 10.3390/pharmaceutics14081657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA). To this end, CorA and solubility-enhanced amorphous solid dispersion formulations, comprising povidone or copovidone, were evaluated regarding biorelevant solubilities and dissolution in mouse-specific media. As an acidic compound, CorA and CorA-ASD formulations showed decreased solubilities in mice when compared with human-specific media. In biorelevant biphasic dissolution experiments CorA-povidone showed a three-fold higher fraction partitioned into the organic phase of the biphasic dissolution, when compared with CorA-copovidone. Bioavailabilities determined by pharmacokinetic studies in BALB/c mice correlated with the biphasic dissolution prediction and resulted in a Level C in vitro-in vivo correlation. In vitro cell experiments excluded intestinal efflux by P-glycoprotein or breast cancer resistance protein. By incorporating in vitro results into a physiologically based pharmacokinetic model, the plasma concentrations of CorA-ASD formulations were predicted and identified dissolution as the limiting factor for bioavailability.
Collapse
Affiliation(s)
- Tim Becker
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Anna K. Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Sahel Vahdati
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Andrea Schiefer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Alexandra Ehrens
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Tilman Aden
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Miriam Grosse
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Silke Alt
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marc P. Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Stefan Kehraus
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Gabriele M. König
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
29
|
Barbre Pedersen P, Berthelsen R, Rades T, Astrup Jørgensen S, Vilmann P, Bar-Shalom D, Baldursdottir S, Müllertz A. Physico-chemical characterization of aspirated human and simulated human gastric fluids to study their influence on the intrinsic dissolution rate of cinnarizine. Int J Pharm 2022; 622:121856. [PMID: 35618175 DOI: 10.1016/j.ijpharm.2022.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
To elucidate the critical parameters affecting drug dissolution in the human stomach, the intrinsic dissolution rate (IDR) of cinnarizine was determined in aspirated and simulated human gastric fluids (HGF). Fasted aspirated HGF (aspHGF) was collected from 23 healthy volunteers during a gastroscopic examination. Hydrochloric acid (HCl) pH 1.2, fasted state simulated gastric fluid (FaSSGF), and simulated human gastric fluid (simHGF) developed to have rheological, and physico-chemical properties similar to aspHGF, were used as simulated HGFs. The IDR of cinnarizine was significantly higher in HCl pH 1.2 (952±27 µg/(cm2∙min)) than in FaSSGF pH 1.6 (444±7 µg/(cm2∙min)), and simHGF pH 2.5 (49±5 µg/(cm2∙min)) due to the pH dependent drug solubility and viscosity differences of the three simulated HGFs. The shear thinning behavior of aspHGF had a significant impact on the IDR of cinnarizine, indicating that the use of FaSSGF, with viscosity similar to water, to evaluate gastric drug dissolution, might overestimate the IDR by a factor of 100-10.000, compared to the non-Newtonian, more viscous, fluids in the human stomach. The developed simHGF simulated the viscosity of the gastric fluids, as well as the IDR of the model drug, making it very promising medium to study gastric drug dissolution in vitro.
Collapse
Affiliation(s)
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Vilmann
- GastroUnit, Copenhagen University hospital Herlev, DK-2730 Herlev, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Jamil R, Polli JE. Sources of dissolution variability into biorelevant media. Int J Pharm 2022; 620:121745. [DOI: 10.1016/j.ijpharm.2022.121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 01/10/2023]
|
31
|
Jamil R, Polli JE. Prediction of In Vitro Drug Dissolution into Fasted-state Biorelevant Media: Contributions of Solubility Enhancement and Relatively Low Colloid Diffusivity. Eur J Pharm Sci 2022; 174:106210. [DOI: 10.1016/j.ejps.2022.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022]
|
32
|
Application of In Vivo Imaging Techniques and Diagnostic Tools in Oral Drug Delivery Research. Pharmaceutics 2022; 14:pharmaceutics14040801. [PMID: 35456635 PMCID: PMC9025904 DOI: 10.3390/pharmaceutics14040801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on “Understanding Gastrointestinal Absorption-related Processes (UNGAP)” was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.
Collapse
|
33
|
Aburub A, Chen Y, Chung J, Gao P, Good D, Hansmann S, Hawley M, Heimbach T, Hingle M, Kesisoglou F, Li R, Rose J, Tisaert C. An IQ Consortium Perspective on Connecting Dissolution Methods to In Vivo Performance: Analysis of an Industrial Database and Case Studies to Propose a Workflow. AAPS J 2022; 24:49. [PMID: 35348922 DOI: 10.1208/s12248-022-00699-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Assessment of bioperformance to inform formulation selection and development decisions is an important aspect of drug development. There is high demand in the pharmaceutical industry to develop an efficient and streamlined approach for better understanding and predicting drug product performance to support acceleration of clinical timelines. This manuscript presents an effort from the IQ Formulation Bioperformance Prediction Working Group composed of members from 12 pharmaceutical companies under the IQ Consortium to develop a database around the topic of formulation bioperformance prediction and report findings from the database analysis. Six case studies described in the manuscript demonstrate how bioperformance models were used to predict in vivo performance and to provide guidance addressing questions encountered during oral solid dosage form development. The case studies also described findings of a correlation between in vitro dissolution and in vivo performance and how dissolution data can be incorporated into physiologically based biopharmaceutical modeling. Finally, a workflow for how in vitro dissolution data can be utilized to predict clinical bioperformance of oral solid dosage forms is proposed.
Collapse
Affiliation(s)
| | - Yuan Chen
- Genentech, San Francisco, California, USA
| | - John Chung
- Amgen Inc., Thousand Oaks, California, USA
| | - Ping Gao
- AbbVie Inc., North Chicago, Illinois, USA
| | - David Good
- Bristol-Myers Squibb Company, New Brunswick, New Jersey, USA
| | | | | | - Tycho Heimbach
- Pharmaceutical Sciences, Merck & Co., Inc, Rahway, New Jersey, USA.,Novartis, East Hanover, New Jersey, USA
| | - Martin Hingle
- Medicinal Science and Technology, GlaxoSmithKline R&D, Park Road, Hertfordshire, UK.,Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | | | - Rong Li
- Pfizer Inc., Groton, Connecticut, USA
| | - John Rose
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
34
|
Ye D, López Mármol Á, Lenz V, Muschong P, Wilhelm-Alkubaisi A, Weinheimer M, Koziolek M, Sauer KA, Laplanche L, Mezler M. Mucin-Protected Caco-2 Assay to Study Drug Permeation in the Presence of Complex Biorelevant Media. Pharmaceutics 2022; 14:pharmaceutics14040699. [PMID: 35456533 PMCID: PMC9032137 DOI: 10.3390/pharmaceutics14040699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
The poor solubility and permeability of compounds beyond Lipinski’s Rule of Five (bRo5) are major challenges for cell-based permeability assays. Due to their incompatibility with gastrointestinal components in biorelevant media, the exploration of important questions addressing food effects is limited. Thus, we established a robust mucin-protected Caco-2 assay to allow the assessment of drug permeation in complex biorelevant media. To do that, the assay conditions were first optimized with dependence of the concentration of porcine mucin added to the cells. Mucin-specific effects on drug permeability were evaluated by analyzing cell permeability values for 15 reference drugs (BCS class I–IV). Secondly, a sigmoidal relationship between mucin-dependent permeability and fraction absorbed in human (fa) was established. A case study with venetoclax (BCS class IV) was performed to investigate the impact of medium complexity and the prandial state on drug permeation. Luminal fluids obtained from the tiny-TIM system showed a higher solubilization capacity for venetoclax, and a better read-out for the drug permeability, as compared to FaSSIF or FeSSIF media. In conclusion, the mucin-protected Caco-2 assay combined with biorelevant media improves the mechanistic understanding of drug permeation and addresses complex biopharmaceutical questions, such as food effects on oral drug absorption.
Collapse
Affiliation(s)
- Dong Ye
- Drug Metabolism and Pharmacokinetics—Bioanalytical Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (D.Y.); (P.M.); (A.W.-A.); (M.W.); (L.L.)
| | - Álvaro López Mármol
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (Á.L.M.); (V.L.); (M.K.); (K.A.S.)
| | - Verena Lenz
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (Á.L.M.); (V.L.); (M.K.); (K.A.S.)
| | - Patricia Muschong
- Drug Metabolism and Pharmacokinetics—Bioanalytical Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (D.Y.); (P.M.); (A.W.-A.); (M.W.); (L.L.)
| | - Anita Wilhelm-Alkubaisi
- Drug Metabolism and Pharmacokinetics—Bioanalytical Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (D.Y.); (P.M.); (A.W.-A.); (M.W.); (L.L.)
| | - Manuel Weinheimer
- Drug Metabolism and Pharmacokinetics—Bioanalytical Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (D.Y.); (P.M.); (A.W.-A.); (M.W.); (L.L.)
| | - Mirko Koziolek
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (Á.L.M.); (V.L.); (M.K.); (K.A.S.)
| | - Kerstin A. Sauer
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (Á.L.M.); (V.L.); (M.K.); (K.A.S.)
| | - Loic Laplanche
- Drug Metabolism and Pharmacokinetics—Bioanalytical Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (D.Y.); (P.M.); (A.W.-A.); (M.W.); (L.L.)
| | - Mario Mezler
- Drug Metabolism and Pharmacokinetics—Bioanalytical Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany; (D.Y.); (P.M.); (A.W.-A.); (M.W.); (L.L.)
- Correspondence:
| |
Collapse
|
35
|
Tsakiridou G, O'Dwyer PJ, Margaritis A, Box KJ, Vertzoni M, Kalantzi L, Reppas C. On the usefulness of four in vitro methodologies in screening for product related differences in tacrolimus exposure after oral administration of amorphous solid dispersions with modified release characteristics in the fasted state. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
García MA, Varum F, Al-Gousous J, Hofmann M, Page S, Langguth P. In Vitro Methodologies for Evaluating Colon-Targeted Pharmaceutical Products and Industry Perspectives for Their Applications. Pharmaceutics 2022; 14:pharmaceutics14020291. [PMID: 35214024 PMCID: PMC8876830 DOI: 10.3390/pharmaceutics14020291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Several locally acting colon-targeted products to treat colonic diseases have been recently developed and marketed, taking advantage of gastrointestinal physiology to target delivery. Main mechanisms involve pH-dependent, time-controlled and/or enzymatic-triggered release. With site of action located before systemic circulation and troublesome colonic sampling, there is room for the introduction of meaningful in vitro methods for development, quality control (QC) and regulatory applications of these formulations. A one-size-fits-all method seems unrealistic, as the selection of experimental conditions should resemble the physiological features exploited to trigger the release. This article reviews the state of the art for bio-predictive dissolution testing of colon-targeted products. Compendial methods overlook physiological aspects, such as buffer molarity and fluid composition. These are critical for pH-dependent products and time-controlled systems containing ionizable drugs. Moreover, meaningful methods for enzymatic-triggered products including either bacteria or enzymes are completely ignored by pharmacopeias. Bio-predictive testing may accelerate the development of successful products, although this may require complex methodologies. However, for high-throughput routine testing (e.g., QC), simplified methods can be used where balance is struck between simplicity, robustness and transferability on one side and bio-predictivity on the other. Ultimately, bio-predictive methods can occupy a special niche in terms of supplementing plasma concentration data for regulatory approval.
Collapse
Affiliation(s)
- Mauricio A. García
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (M.A.G.); (J.A.-G.)
| | - Felipe Varum
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (F.V.); (M.H.); (S.P.)
| | - Jozef Al-Gousous
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (M.A.G.); (J.A.-G.)
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Michael Hofmann
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (F.V.); (M.H.); (S.P.)
| | - Susanne Page
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (F.V.); (M.H.); (S.P.)
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (M.A.G.); (J.A.-G.)
- Correspondence:
| |
Collapse
|
37
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
38
|
Wyttenbach N, Niederquell A, Ectors P, Kuentz M. Study and Computational Modeling of Fatty Acid Effects on Drug Solubility in Lipid-Based Systems. J Pharm Sci 2021; 111:1728-1738. [PMID: 34863971 DOI: 10.1016/j.xphs.2021.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Lipid-based systems have many advantages in formulation of poorly water-soluble drugs but issues of a limited solvent capacity are often encountered in development. One of the possible solubilization approaches of especially basic drugs could be the addition of fatty acids to oils but currently, a systematic study is lacking. Therefore, the present work investigated apparently neutral and basic drugs in medium chain triglycerides (MCT) alone and with added either caproic acid (C6), caprylic acid (C8), capric acid (C10) or oleic acid (C18:1) at different levels (5 - 20%, w/w). A miniaturized solubility assay was used together with X-ray diffraction to analyze the residual solid and finally, solubility data were modeled using the conductor-like screening model for real solvents (COSMO-RS). Some drug bases had an MCT solubility of only a few mg/ml or less but addition of fatty acids provided in some formulations exceptional drug loading of up to about 20% (w/w). The solubility changes were in general more pronounced the shorter the chain length was and the longest oleic acid even displayed a negative effect in mixtures of celecoxib and fenofibrate. The COSMO-RS prediction accuracy was highly specific for the given compounds with root mean square errors (RMSE) ranging from an excellent 0.07 to a highest value of 1.12. The latter was obtained with the strongest model base pimozide for which a new solid form was found in some samples. In conclusion, targeting specific molecular interactions with the solute combined with mechanistic modeling provides new tools to advance lipid-based drug delivery.
Collapse
Affiliation(s)
- Nicole Wyttenbach
- F. Hoffmann-La Roche Ltd., Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Grenzacherstr. 124, CH- 4070 Basel, Switzerland
| | - Andreas Niederquell
- University of Applied Sciences and Arts Northwest. Switzerland, Institute of Pharma Technology Hofackerstr. 30, CH- 4132 Muttenz, Switzerland
| | - Philipp Ectors
- F. Hoffmann-La Roche Ltd., Pharma Technical Development, Grenzacherstr. 124, CH-4070 Basel, Switzerland
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwest. Switzerland, Institute of Pharma Technology Hofackerstr. 30, CH- 4132 Muttenz, Switzerland.
| |
Collapse
|
39
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
40
|
Silva TMD, Honorio TDS, Chaves MHDC, Duque MD, Cabral LM, Patricio BFDC, Rocha HVA. In silico bioavailability for BCS class II efavirenz tablets using biorelevant dissolution media for IVIVR and simulation of formulation changes. Drug Dev Ind Pharm 2021; 47:1342-1352. [PMID: 34622730 DOI: 10.1080/03639045.2021.1991368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This work aims to evaluate the ability of biorelevant dissolution media to simulate the bioavailability of efavirenz tablets, establish an in vitro-in vivo relationship (IVIVR) based on in vivo data using GastroPlus® and simulate formulation changes using DDDPlus™. METHODS Solubility and drug release profiles were conducted in SLS 0.5% and biorelevant media, such as FaSSIF, FeSSIF, FaSSIF-V2, and FeSSIF-V2. The efavirenz physicochemical properties were used to simulate the plasma concentration profile and compare the simulated pharmacokinetic parameters in fasted and fed states. An IVIVR was developed using Loo-Riegelman as the deconvolution method to estimate drug bioavailability. DDDPlus™ was used to perform virtual trials of formulations to evaluate whether formulations changes and the efavirenz particle size could influence the bioavailability. RESULTS The drug dissolution displayed higher levels in the biorelevant media that simulated gut-fed state (FeSSIF and FeSSIF-V2). The absorption model successfully predicted the efavirenz pharmacokinetics, and FeSSIF-V2 was chosen as the predictive dissolution media, while an IVIVR was established using the Loo-Riegelman deconvolution method. CONCLUSIONS The present work provides valuable information about efavirenz solubility and kinetics in the gastrointestinal tract, allowing an IVIVR to support future formulation changes. This understanding is essential for rational science-driven formulation development. At least, this study also showed the validity and applicability of in vitro and in silico tools in the regulatory scenario helping on drug development.
Collapse
Affiliation(s)
- Thalita Martins da Silva
- Farmanguinhos, Laboratório de Micro e Nanotecnologia, Rio de Janeiro, Brasil.,Pesquisa e Desenvolvimento na Indústria Farmacêutica, Farmanguinhos, Programa de Pós-graduação Profissional em Gestão, Rio de Janeiro, Brazil
| | - Thiago da Silva Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcelo Dutra Duque
- Laboratório de Farmacotécnica e Cosmetologia, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Lucio Mendes Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Helvécio Vinícius Antunes Rocha
- Farmanguinhos, Laboratório de Micro e Nanotecnologia, Rio de Janeiro, Brasil.,Pesquisa e Desenvolvimento na Indústria Farmacêutica, Farmanguinhos, Programa de Pós-graduação Profissional em Gestão, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Vertzoni M, Alsenz J, Augustijns P, Bauer-Brandl A, Bergström C, Brouwers J, Müllerz A, Perlovich G, Saal C, Sugano K, Reppas C. UNGAP best practice for improving solubility data quality of orally administered drugs. Eur J Pharm Sci 2021; 168:106043. [PMID: 34662708 DOI: 10.1016/j.ejps.2021.106043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/03/2022]
Abstract
An important goal of the European Cooperation in Science and Technology (COST) Action UNGAP (UNderstanding Gastrointestinal Absorption-related Processes, www.ungap.eu) is to improve standardization of methods relating to the study of oral drug absorption. Solubility is a general term that refers to the maximum achievable concentration of a compound dissolved in a liquid medium. For orally administered drugs, relevant information on drug properties is crucial during drug (product) development and at the regulatory level. Collection of reliable and reproducible solubility data requires careful application and understanding of the limitations of the selected experimental method. In addition, the purity of a compound and its solid state form, as well as experimental parameters such as temperature of experimentation, media related factors, and sample handling procedures can affect data quality. In this paper, an international consensus developed by the COST UNGAP network on recommendations for collecting high quality solubility data for the development of orally administered drugs is proposed.
Collapse
Affiliation(s)
- M Vertzoni
- National and Kapodistrian University of Athens, Department of Pharmacy, Zografou, Greece
| | - J Alsenz
- Roche Pharmaceutical Research & Early Development, Basel, Switzerland
| | - P Augustijns
- KU Leuven, Drug Delivery and Disposition, Leuven, Belgium
| | - A Bauer-Brandl
- University of Southern Denmark, Department of Physics Chemistry and Pharmacy, Odense, Denmark
| | - Cas Bergström
- Uppsala University, Department of Pharmacy, Uppsala, Sweden
| | - J Brouwers
- KU Leuven, Drug Delivery and Disposition, Leuven, Belgium
| | - A Müllerz
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark
| | - G Perlovich
- The Russian Academy of Sciences, Institute of Solution Chemistry, Department of Physical Chemistry of Drugs, Ivanovo, Russia
| | - C Saal
- Merck KGaA, Analytics Healthcare, Darmstadt, Germany
| | - K Sugano
- Ritsumeikan University, College of Pharmaceutical Sciences, Kusatsu, Japan
| | - C Reppas
- National and Kapodistrian University of Athens, Department of Pharmacy, Zografou, Greece.
| |
Collapse
|
42
|
O'Dwyer PJ, Box KJ, Imanidis G, Vertzoni M, Reppas C. On the usefulness of four in vitro methods in assessing the intraluminal performance of poorly soluble, ionisable compounds in the fasted state. Eur J Pharm Sci 2021; 168:106034. [PMID: 34628003 PMCID: PMC8665220 DOI: 10.1016/j.ejps.2021.106034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
A small-scale two-stage biphasic system, a small-scale two-stage dissolution-permeation system, the Erweka mini-paddle apparatus, and the BioGIT system were evaluated for their usefulness in assessing the intraluminal performance of two low solubility drugs in the fasted state, one with weakly acidic properties (tested in a salt form, diclofenac potassium) and one with weakly alkaline properties [ritonavir, tested as an amorphous solid dispersion (ASD) formulation]. In all in vitro methods, an immediate-release tablet and a powder formulation of diclofenac potassium were both rapidly dissolved in Level II biorelevant media simulating the conditions in the upper small intestine. Physiologically based biopharmaceutics (PBB) modelling for the tablet formulation resulted in a successful simulation of the average plasma profile in adults, whereas for the powder formulation modelling indicated that gastric emptying and transport through the intestinal epithelium limit the absorption rates. Detailed information on the behaviour of the ritonavir ASD formulation under both simulated gastric and upper small intestinal conditions were crucial for understanding the luminal performance. PBB modelling showed that the dissolution and precipitation parameters, estimated from the Erweka mini-paddle apparatus data and the small-scale two-stage biphasic system data, respectively, were necessary to adequately simulate the average plasma profile after administration of the ritonavir ASD formulation. Simulation of the gastrointestinal transfer process from the stomach to the small intestine was necessary to evaluate the effects of hypochlorhydric conditions on the luminal performance of the ritonavir ASD formulation. Based on this study, the selection of the appropriate in vitro method for evaluating the intraluminal performance of ionisable lipophilic drugs depends on the characteristics of the drug substance. The results suggest that for (salts of) acidic drugs (e.g., diclofenac potassium) it is only an issue of availability and ease of operation of the apparatus. For weakly alkaline substances (e.g., ritonavir), the results indicate that the dynamic dissolution process needs to be simulated, with the type of requested information (e.g., dissolution parameters, precipitation parameters, luminal concentrations) being key for selecting the most appropriate method. Regardless of the ionisation characteristics, early in the drug development process the use of small-scale systems may be inevitable, due to the limited quantities of drug substance available.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, United Kingdom; Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece; School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, United Kingdom
| | - Georgios Imanidis
- University of Applied Sciences Northwest. Switzerland. School of Life Sciences, Institute of Pharma Technology, Hofackerstrasse 30, 4132 Muttenz, Switzerland; University of Basel, Department of Pharmaceutical Sciences, Basel, Switzerland
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
43
|
Segregur D, Mann J, Moir A, Karlsson EM, Dressman J. Biorelevant in vitro Tools and in silico Modeling to Assess pH-Dependent Drug-drug Interactions for Salts of Weak Acids: Case Example Potassium Raltegravir. J Pharm Sci 2021; 111:517-528. [PMID: 34597624 DOI: 10.1016/j.xphs.2021.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Early assessment of pH-dependent drug-drug-interactions (DDIs) for salts of poorly soluble weakly acidic compounds offers various advantages for patient safety, the pharmaceutical industry, and regulatory bodies. Biorelevant media and tests reflecting physiological changes during acid-reducing agent (ARA) co-administration can be used to explore and predict the extent of the pH effect during therapy with ARAs. METHODS Solubility, one-stage and two-stage dissolution of tablets containing potassium raltegravir, the marketed salt form of this poorly soluble, weakly acidic drug, was investigated using biorelevant media specially designed to reflect administration without and during ARA co-therapy. The dissolution data were then converted into parameters suitable for input into an in silico model (Simcyp™) and the simulated plasma profiles were compared with available pharmacokinetic (PK) data from the literature. RESULTS Dissolution of the potassium raltegravir formulation in media reflecting ARA co-administration, and thus elevated gastric pH, was faster and more complete than in experiments reflecting the low gastric pH observed in the absence of ARA co-administration. Simulations using data from dissolution experiments with ARA media appropriately bracketed the in vivo data for ARA co-administration in healthy volunteers. CONCLUSION Dissolution data from in vitro experiments in biorelevant media reflecting physiological changes due to ARA co-administration provide valuable information about potassium raltegravir's behavior during concomitant ARA therapy. The approach may also be suitable for salts forms of other poorly soluble, weakly acidic drugs.
Collapse
Affiliation(s)
- Domagoj Segregur
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438 Frankfurt am Main, Germany (now employed at Product Design and Performance, UCB Pharma, Braine-l'Alleud, Belgium)
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Andrea Moir
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Eva M Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438 Frankfurt am Main, Germany (now employed at Product Design and Performance, UCB Pharma, Braine-l'Alleud, Belgium); Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Amaral Silva D, Gomes Davanço M, Davies NM, Krämer J, de Oliveira Carvalho P, Löbenberg R. Physiologically relevant dissolution conditions towards improved in vitro - in vivo relationship - A case study with enteric coated pantoprazole tablets. Int J Pharm 2021; 605:120857. [PMID: 34229072 DOI: 10.1016/j.ijpharm.2021.120857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/10/2023]
Abstract
There are many hurdles in the development of generic formulations. In vitro biopredictive dissolution conditions together with alternative in vitro - in vivo relationship (IVIVR) approaches can be a powerful tool to support the development of such formulations. In this study, we hypothesized that the release profile of enteric coated (EC) formulations of pantoprazole in physiologically relevant bicarbonate buffer (BCB) would detect possible performance differences between test and reference formulations resulting in more accurate IVIVR results and predictability when compared to a pharmacopeial dissolution test. We correlated the in vitro performance of test and reference formulations (both in BCB and pharmacopeial phosphate buffer) with the in vivo data from a failed bioequivalence study. Test and reference formulations of EC pantoprazole tablets passed the USP dissolution criteria. However, they failed statistical similarity in vitro both in compendial and BCB. Bicarbonate buffer was additionally more discriminative while being more physiologically relevant. Having BCB as an additional test to evaluate EC products in vitro might improve the comparison of formulations. This can de-risk the development of generic EC formulations.
Collapse
Affiliation(s)
- Daniela Amaral Silva
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marcelo Gomes Davanço
- Universidade São Francisco, Programa de Pós-graduação Stricto Sensu em Ciências da Saúde, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Neal M Davies
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Patricia de Oliveira Carvalho
- Universidade São Francisco, Programa de Pós-graduação Stricto Sensu em Ciências da Saúde, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
45
|
Interaction between Omeprazole and Gliclazide in Relation to CYP2C19 Phenotype. J Pers Med 2021; 11:jpm11050367. [PMID: 34063566 PMCID: PMC8147656 DOI: 10.3390/jpm11050367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The antidiabetic drug gliclazide is partly metabolized by CYP2C19, the main enzyme involved in omeprazole metabolism. The aim of the study was to explore the interaction between omeprazole and gliclazide in relation to CYP2C19 phenotype using physiologically based pharmacokinetic (PBPK) modeling approach. Developed PBPK models were verified using in vivo pharmacokinetic profiles obtained from a clinical trial on omeprazole-gliclazide interaction in healthy volunteers, CYP2C19 normal/rapid/ultrarapid metabolizers (NM/RM/UM). In addition, the association of omeprazole cotreatment with gliclazide-induced hypoglycemia was explored in 267 patients with type 2 diabetes (T2D) from the GoDARTS cohort, Scotland. The PBPK simulations predicted 1.4–1.6-fold higher gliclazide area under the curve (AUC) after 5-day treatment with 20 mg omeprazole in all CYP2C19 phenotype groups except in poor metabolizers. The predicted gliclazide AUC increased 2.1 and 2.5-fold in intermediate metabolizers, and 2.6- and 3.8-fold in NM/RM/UM group, after simulated 20-day dosing with 40 mg omeprazole once and twice daily, respectively. The predicted results were corroborated by findings in patients with T2D which demonstrated 3.3-fold higher odds of severe gliclazide-induced hypoglycemia in NM/RM/UM patients concomitantly treated with omeprazole. Our results indicate that omeprazole may increase exposure to gliclazide and thus increase the risk of gliclazide-associated hypoglycemia in the majority of patients.
Collapse
|
46
|
Segregur D, Barker R, Mann J, Moir A, Karlsson EM, Turner DB, Arora S, Dressman J. Evaluating the impact of acid-reducing agents on drug absorption using biorelevant in vitro tools and PBPK modeling - case example dipyridamole. Eur J Pharm Sci 2021; 160:105750. [PMID: 33581261 DOI: 10.1016/j.ejps.2021.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vitro and in silico methods have become an essential tool in assessing metabolic drug-drug interactions (DDI) and avoiding reduced efficacy and increased side-effects. Another important type of DDI is the impact of acid-reducing agent (ARA) co-therapy on drug pharmacokinetics due to changes in gastric pH, especially for poorly soluble weakly basic drugs. METHODS One-stage, two-stage and transfer dissolution experiments with dipyridamole tablets using novel biorelevant media representing the ARA effect were conducted and the results were coupled with a PBPK model. Clinical pharmacokinetic data were compared with the simulations from the PBPK model and with output from TIM-1 experiments, an evolved in vitro system which aims to simulate the physiology in the upper GI tract. RESULTS Two-stage and transfer experiments confirmed that these in vitro set-ups tend to overestimate the extent of dipyridamole precipitation occurring in the intestines in vivo. Consequently, data from one-stage dissolution testing under elevated gastric pH conditions were used as an input for PBPK modeling of the ARA/dipyridamole interaction. Using media representing the ARA effect in conjunction with the PBPK model, the ARA effect observed in vivo was successfully bracketed. As an alternative, the TIM-1 system with gastric pH values adjusted to simulate ARA pre-treatment can be used to forecast the ARA effect on dipyridamole pharmacokinetics. CONCLUSION Drug-drug interactions of dipyridamole with ARA were simulated well with a combination of dissolution experiments using biorelevant media representing the gastric environment after an ARA treatment together with the PBPK model. Adjustment of the TIM-1 model to reflect ARA-related changes in gastric pH was also successful in forecasting the interaction. Further testing of both approaches for predicting ARA-related DDIs using a wider range of drugs should be conducted to verify their utility for this purpose.
Collapse
Affiliation(s)
- Domagoj Segregur
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438, Frankfurt am Main, Germany
| | - Richard Barker
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Andrea Moir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Eva M Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David B Turner
- Certara UK Limited, Simcyp Division, Sheffield, United Kingdom
| | - Sumit Arora
- Certara UK Limited, Simcyp Division, Sheffield, United Kingdom
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438, Frankfurt am Main, Germany; Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Thakral NK, Meister E, Jankovsky C, Li L, Schwabe R, Luo L, Chen S. Prediction of in vivo supersaturation and precipitation of poorly water-soluble drugs: Achievements and aspirations. Int J Pharm 2021; 600:120505. [PMID: 33753162 DOI: 10.1016/j.ijpharm.2021.120505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
This review focuses on options available to a pharmaceutical scientist to predict in vivo supersaturation and precipitation of poorly water-soluble drugs. As no single device or system can simulate the complex gastrointestinal environment, a combination of appropriate in vitro tools may be utilized to get optimal predictive information. To address the empirical issues encountered during small-scale and full-scale in vitro predictive testing, theoretical background and relevant case studies are discussed. The practical considerations for selection of appropriate tools at various stages of drug development are recommended. Upcoming technologies that have potential to further reduce in vivo studies and expedite the drug development process are also discussed.
Collapse
Affiliation(s)
- Naveen K Thakral
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
| | - Eva Meister
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Corinne Jankovsky
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Li Li
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX 77204, United States
| | - Robert Schwabe
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Laibin Luo
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Shirlynn Chen
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| |
Collapse
|
48
|
Segregur D, Mann J, Moir A, Karlsson EM, Dressman J. Prediction of plasma profiles of a weakly basic drug after administration of omeprazole using PBPK modeling. Eur J Pharm Sci 2021; 158:105656. [PMID: 33253885 DOI: 10.1016/j.ejps.2020.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Oral medicines must release the drug appropriately in the GI tract in order to assure adequate and reproducible absorption. Disease states and co-administration of drugs may alter GI physiology and therefore the release profile of the drug. Acid-reducing agents (ARAs), especially proton pump inhibitors (PPIs), are frequently co-administered during various therapies. As orally administered drugs are frequently poorly soluble weak bases, PPI co-administration raises the risk of pH-induced drug-drug interactions (DDIs) and the potential for changes in the therapeutic outcome. METHODS This research compared the dissolution data of a poorly soluble weakly basic drug ("PSWB 001") from capsules in standard fasted state biorelevant media (FaSSGF, FaSSIF V1 and FaSSIF V2), water and recently devised media representing gastric conditions under various levels of PPI co-administration. An in silico simulation model, based on Simcyp software, was developed to compare simulated plasma profiles with clinical data. RESULTS PSWB 001 capsules showed rapid and complete dissolution in acidic conditions representing gastric fluids, whereas limited dissolution was observed in deionized water, media representing PPI co-administration and in two biorelevant media representing fluids in the upper small intestine. Buffer capacity and the presence of native surfactants were shown to be important factors in the in vitro dissolution of PSWB 001. The data from in vitro experiments were used in conjunction with the in silico simulation model, which correctly predicted the plasma profiles of PSWB 001 when administered without PPIs, as well as bracketing the PPI effect observed in vivo. CONCLUSIONS Recently developed biorelevant media representing gastric conditions under PPI therapy, combined with PBPK modeling, were able to bracket the observed plasma profiles of PSWB 001. These media may also be useful for predicting PPI effects for other poorly soluble, weakly basic drugs.
Collapse
Affiliation(s)
- Domagoj Segregur
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438 Frankfurt am Main, Germany
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Andrea Moir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Eva M Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
49
|
O'Dwyer PJ, Box KJ, Dressman J, Griffin BT, Henze LJ, Litou C, Pentafragka C, Statelova M, Vertzoni M, Reppas C. Oral biopharmaceutics tools: recent progress from partnership through the Pharmaceutical Education and Research with Regulatory Links collaboration. J Pharm Pharmacol 2021; 73:437-446. [PMID: 33793836 DOI: 10.1093/jpp/rgaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To summarise key contributions of the Pharmaceutical Education and Research with Regulatory Links (PEARRL) project (2016-2020) to the optimisation of existing and the development of new biopharmaceutics tools for evaluating the in vivo performance of oral drug products during the development of new drugs and at the regulatory level. KEY FINDINGS Optimised biopharmaceutics tools: Based on new clinical data, the composition of biorelevant media for simulating the fed state conditions in the stomach was simplified. Strategies on how to incorporate biorelevant in vitro data of bio-enabling drug products into physiologically based pharmacokinetic (PBPK) modelling were proposed. Novel in vitro biopharmaceutics tools: Small-scale two-stage biphasic dissolution and dissolution-permeation setups were developed to facilitate understanding of the supersaturation effects and precipitation risks of orally administered drugs. A porcine fasted state simulated intestinal fluid was developed to improve predictions and interpretation of preclinical results using in vitro dissolution studies. Based on new clinical data, recommendations on the design of in vitro methodologies for evaluating the GI drug transfer process in the fed state were suggested. The optimized design of in vivo studies for investigating food effects: A food effect study protocol in the pig model was established which successfully predicted the food-dependent bioavailability of two model compounds. The effect of simulated infant fed state conditions in healthy adults on the oral absorption of model drugs was evaluated versus the fasted state and the fed state conditions, as defined by regulatory agencies for adults. Using PBPK modelling, the extrapolated fasted and infant fed conditions data appeared to be more useful to describe early drug exposure in infants, while extrapolation of data collected under fed state conditions, as defined by regulators for adults, failed to capture in vivo infant drug absorption. SUMMARY Substantial progress has been made in developing an advanced suite of biopharmaceutics tools for streamlining drug formulation screening and supporting regulatory applications. These advances in biopharmaceutics were achieved through networking opportunities and research collaborations provided under the H2020 funded PEARRL project.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland.,Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK
| | - Jennifer Dressman
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | | | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Chara Litou
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | - Christina Pentafragka
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Marina Statelova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
50
|
Effinger A, O'Driscoll CM, McAllister M, Fotaki N. Predicting budesonide performance in healthy subjects and patients with Crohn's disease using biorelevant in vitro dissolution testing and PBPK modeling. Eur J Pharm Sci 2021; 157:105617. [PMID: 33164838 DOI: 10.1016/j.ejps.2020.105617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Drug product performance might be affected in Crohn's disease (CD) patients compared to healthy subjects due to pathophysiological changes. Since a low number of clinical studies is performed in this patient population, physiologically-based pharmacokinetic (PBPK) models with integrated results from biorelevant in vitro dissolution studies could be used to assess differences in the bioavailability of drugs. Using this approach, budesonide was used as model drug and its performance in healthy subjects and CD patients was predicted and compared against observed pharmacokinetic data. The in vitro release tests, under healthy versus CD conditions, revealed a similar extent of drug release from a controlled-release budesonide formulation in the fasted state, whereas in the fed state a lower extent was observed with CD. Differences in the physiology of CD patients were identified in literature and their impact on budesonide performance was investigated with a PBPK model, revealing the highest impact on the simulated bioavailability for the reduced hepatic CYP3A4 enzyme abundance and lower human serum albumin concentration. For CD patients, a higher budesonide exposure compared to healthy subjects was predicted with a PBPK population adapted to CD physiology and in agreement with observed pharmacokinetic data. Budesonide performance in the fasted and fed state was successfully predicted in healthy subjects and CD patients using PBPK modeling and in vitro release testing. Following this approach, predictions of the direction and magnitude of changes in bioavailability due to CD could be made for other drugs and guide prescribers to adjust dosage regimens for CD patients accordingly.
Collapse
Affiliation(s)
- Angela Effinger
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|