1
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
2
|
Holanda FH, Ribeiro AN, Sánchez-Ortiz BL, de Souza GC, Borges SF, Ferreira AM, Florentino AC, Yoshioka SA, Moraes LS, Carvalho JCT, Ferreira IM. Anti-inflammatory potential of baicalein combined with silk fibroin protein in a zebrafish model (Danio rerio). Biotechnol Lett 2023; 45:235-253. [PMID: 36550336 PMCID: PMC9778464 DOI: 10.1007/s10529-022-03334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Baicalein (BA) is a flavonoid with wide-ranging pharmacological activity. However, its biological evaluation is hampered by its low solubility in aqueous medium, making forms of incorporation that improve its solubility necessary. In the present study, BA was combined with a solution of silk fibroin protein (SF), a biomaterial used too as a drug carrier, to evaluate the anti-inflammatory potential of this combination, in vivo, in an experimental model, zebrafish (Danio rerio). Baicalein-silk fibroin (BASF) improved the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging rate (95%) in comparison with BA in solution. The acute toxicity study and histopathological analysis in zebrafish showed that BASF has low cytotoxic potential, except for the maxim dose of 2000 mg/kg. The use of BA in combination with SF enhanced the anti-inflammatory effect of flavonoids by inducing inflammatory peritoneal edema through carrageenan and achieved 77.6% inhibition of abdominal edema at a dose of 75 mg/kg. The results showed that the BASF, significantly increases the bioavailability and therapeutic effect of flavonoids and several results observed in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- Fabrício H Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Arlefe N Ribeiro
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Brenda L Sánchez-Ortiz
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Gisele C de Souza
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Swanny F Borges
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Adriana M Ferreira
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Alexandro C Florentino
- Laboratório de Ictio e Genotoxidade, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Sérgio A Yoshioka
- Biochemistry and Biomaterials Laboratory, Institute of Chemistry of São Carlos, University of São Paulo, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Lienne S Moraes
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - José Carlos T Carvalho
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil.
| |
Collapse
|
3
|
Bono N, Saroglia G, Marcuzzo S, Giagnorio E, Lauria G, Rosini E, De Nardo L, Athanassiou A, Candiani G, Perotto G. Silk fibroin microgels as a platform for cell microencapsulation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:3. [PMID: 36586059 PMCID: PMC9805413 DOI: 10.1007/s10856-022-06706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.
Collapse
Affiliation(s)
- Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy.
| | - Giulio Saroglia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133, Milan, Italy
| | - Elena Rosini
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | | | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
4
|
Bakhshandeh B, Nateghi SS, Gazani MM, Dehghani Z, Mohammadzadeh F. A review on advances in the applications of spider silk in biomedical issues. Int J Biol Macromol 2021; 192:258-271. [PMID: 34627845 DOI: 10.1016/j.ijbiomac.2021.09.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
Spider silk, as one of the hardest natural and biocompatible substances with extraordinary strength and flexibility, have become an ideal option in various areas of science and have made their path onto the biomedical industry. Despite its growing popularity, the difficulties in the extraction of silks from spiders and farming them have made it unaffordable and almost impossible for industrial scale. Biotechnology helped production of spider silks recombinantly in different hosts and obtaining diverse morphologies out of them based on different processing and assembly procedures. Herein, the characteristics of these morphologies and their advantages and disadvantages are summarized. A detailed view about applications of recombinant silks in skin regeneration and cartilage, tendon, bone, teeth, cardiovascular, and neural tissues engineering are brought out, where there is a need for strong scaffolds to support cell growth. Likewise, spider silk proteins have applications as conduit constructs, medical sutures, and 3D printer bioinks. Other characteristics of spider silks, such as low immunogenicity, hydrophobicity, homogeneity, and adjustability, have attracted much attention in drug and gene delivery. Finally, the challenges and obstacles ahead for industrializing the production of spider silk proteins in sufficient quantities in biomedicine, along with solutions to overcome these barriers, are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Seyedeh Saba Nateghi
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Maddah Gazani
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
5
|
Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehreen Elahi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Rabia Mushtaq
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Department of Zoology, Government College University, Lahore, Pakistan
- Sericulture Wing, Forest Department, Lahore, Pakistan
| |
Collapse
|
6
|
Gou S, Huang Y, Sung J, Xiao B, Merlin D. Silk fibroin-based nanotherapeutics: application in the treatment of colonic diseases. Nanomedicine (Lond) 2019; 14:2373-2378. [PMID: 31290366 PMCID: PMC7026768 DOI: 10.2217/nnm-2019-0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence of colonic diseases (e.g., inflammatory bowel diseases and colon cancer) is rapidly rising. Nanotherapeutic has been considered as a promising strategy in the treatment of colonic diseases. Silk fibroin (SF) has been widely used as a drug-carrier matrix. Interestingly, SF-based nanoparticles (SFNPs) have intrinsic anti-inflammatory activity, wound healing capacity and lysosomal environment-responsive drug-release property. With further investigations, the sequences of SF molecules could be precisely modified through chemical reactions or transgenic techniques to greatly improve the properties of SFNPs. Here, we review recent advances in the application of SFNPs toward the treatment of colonic diseases. We also discuss future developments that might improve the anti-inflammatory and anti-colon cancer activities of SF-based nanotherapeutics.
Collapse
Affiliation(s)
- Shuangquan Gou
- State Key Laboratory of Silkworm Genome Biology, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry & Function Manufacturing, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yamei Huang
- State Key Laboratory of Silkworm Genome Biology, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry & Function Manufacturing, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Key Laboratory of Sericultural Biology & Genetic Breeding, Ministry of Agriculture & Rural Affairs, College of Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
| | - Junsik Sung
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Key Laboratory of Sericultural Biology & Genetic Breeding, Ministry of Agriculture & Rural Affairs, College of Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
7
|
Abstract
Silk is an important biopolymer for (bio)medical applications because of its unique and highly versatile structure and its robust clinical track record in human medicine. Silk can be processed into many material formats, including physically and chemically cross-linked hydrogels that have almost limitless applications ranging from tissue engineering to biomedical imaging and sensing. This concise review provides a detailed background of silk hydrogels, including silk structure-function relationships, biocompatibility and biodegradation, and it explores recent developments in silk hydrogel utilization, with specific reference to drug and cell delivery. We address common pitfalls and misconceptions while identifying emerging opportunities, including 3D printing.
Collapse
|
8
|
McGill M, Holland GP, Kaplan DL. Experimental Methods for Characterizing the Secondary Structure and Thermal Properties of Silk Proteins. Macromol Rapid Commun 2019; 40:e1800390. [PMID: 30073740 PMCID: PMC6425979 DOI: 10.1002/marc.201800390] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/16/2018] [Indexed: 12/17/2022]
Abstract
Silk proteins are biopolymers produced by spinning organisms that have been studied extensively for applications in materials engineering, regenerative medicine, and devices due to their high tensile strength and extensibility. This remarkable combination of mechanical properties arises from their unique semi-crystalline secondary structure and block copolymer features. The secondary structure of silks is highly sensitive to processing, and can be manipulated to achieve a wide array of material profiles. Studying the secondary structure of silks is therefore critical to understanding the relationship between structure and function, the strength and stability of silk-based materials, and the natural fiber synthesis process employed by spinning organisms. However, silks present unique challenges to structural characterization due to high-molecular-weight protein chains, repetitive sequences, and heterogeneity in intra- and interchain domain sizes. Here, experimental techniques used to study the secondary structure of silks, the information attainable from these techniques, and the limitations associated with them are reviewed. Ultimately, the appropriate utilization of a suite of techniques discussed here will enable detailed characterization of silk-based materials, from studying fundamental processing-structure-function relationships to developing commercially useful quality control assessments.
Collapse
Affiliation(s)
- Meghan McGill
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
9
|
Wongpinyochit T, Johnston BF, Seib FP. Degradation Behavior of Silk Nanoparticles-Enzyme Responsiveness. ACS Biomater Sci Eng 2018; 4:942-951. [PMID: 33418776 DOI: 10.1021/acsbiomaterials.7b01021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
Collapse
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
10
|
McGill M, Coburn JM, Partlow BP, Mu X, Kaplan DL. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater 2017; 63:76-84. [PMID: 28919509 DOI: 10.1016/j.actbio.2017.09.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 11/28/2022]
Abstract
Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. STATEMENT OF SIGNIFICANCE Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods presented have applications for other materials with dityrosine crosslinks, which are found in nature as post-translational modificaitons, as well as in engineered matrices such as tyramine-substituted hyaluronic acid and recombinant resilin.
Collapse
Affiliation(s)
- Meghan McGill
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
11
|
Kwak HW, Ju JE, Shin M, Holland C, Lee KH. Sericin Promotes Fibroin Silk I Stabilization Across a Phase-Separation. Biomacromolecules 2017; 18:2343-2349. [DOI: 10.1021/acs.biomac.7b00549] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyo Won Kwak
- Department
of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Korea
| | - Ji Eun Ju
- Department
of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Korea
| | - Munju Shin
- Department
of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Korea
| | - Chris Holland
- Department
of Materials Science and Engineering, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Ki Hoon Lee
- Department
of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921, Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Center for Food & Bioconvergence, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
12
|
Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4263762. [PMID: 28367442 PMCID: PMC5359440 DOI: 10.1155/2017/4263762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 01/16/2023]
Abstract
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.
Collapse
|
13
|
Biomimetic synthesis of sericin and silica hybrid colloidosomes for stimuli-responsive anti-cancer drug delivery systems. Colloids Surf B Biointerfaces 2017; 151:102-111. [DOI: 10.1016/j.colsurfb.2016.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022]
|
14
|
|
15
|
Yu D, Sun C, Zheng Z, Wang X, Chen D, Wu H, Wang X, Shi F. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel. Int J Pharm 2016; 503:229-37. [PMID: 26972377 DOI: 10.1016/j.ijpharm.2016.02.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022]
Abstract
Minimally invasive delivery and sustained release of therapeutics to the inner ear are of importance to the medical treatment of inner ear disease. In this study, the injectable silk fibroin-polyethylene glycol (Silk-PEG) hydrogel was investigated as a drug delivery carrier to deliver poorly soluble micronized dexamethasone (mDEX) to the inner ear of guinea pigs. Encapsulation of mDEX with a loading up to 5% (w/v) did not significantly change the silk gelation time, and mDEX were evenly distributed in the PEG-Silk hydrogel as visualized by SEM. The loading of mDEX in Silk-PEG hydrogel largely influenced in vitro drug release kinetics. The optimized Silk-PEG-mDEX hydrogel (2.5% w/v loading, in situ-forming, 10 μl) was administered directly onto the round window membrane of guinea pigs. The DEX concentration in perilymph maintained above 100 ng/ml for at least 10 days for the Silk-PEG formulation while less than 12h for the control sample of free mDEX. Minimal systemic exposure was achieved with low DEX concentrations (<0.2 μg/ml) in cerebrospinal fluid (CSF) and plasma in the first 2h after the local application of the Silk-PEG-mDEX hydrogel. A transient hearing threshold shift was found but then resolved after 14 days as revealed by auditory brainstem response (ABR), showing minimal inflammatory responses on the round window membrane and scala taympani. The Silk-PEG hydrogel completely degraded in 21 days. Thus, the injectable PEG-Silk hydrogel is an effective and safe vehicle for inner ear delivery and sustained release of glucocorticoid.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Changling Sun
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China; Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Wuxi 214062, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Dongye Chen
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China.
| | - Fuxin Shi
- Department of Otology and Laryngology, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Wongpinyochit T, Uhlmann P, Urquhart AJ, Seib FP. PEGylated Silk Nanoparticles for Anticancer Drug Delivery. Biomacromolecules 2015; 16:3712-22. [DOI: 10.1021/acs.biomac.5b01003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Petra Uhlmann
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Andrew J. Urquhart
- Center
for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|