1
|
Din FU, Kim DS, Kim JS, Cheon S, Park S, Woo S, Woo MR, Ali Z, Kim JO, Jin SG, Choi HG. Comparative analysis of novel modified drug delivery systems for improving the oral bioavailability of water-insoluble tadalafil using copovidone, TPGS and hydroxypropyl-β-cyclodextrin. Biomed Pharmacother 2025; 186:118039. [PMID: 40194333 DOI: 10.1016/j.biopha.2025.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
This study aims to develop novel modified drug delivery systems (MDDS) including solid dispersions, solid self-nanoemulsifying drug delivery system (S-SNEDDS) and inclusion compound (IC) of poorly water-soluble tadalafil using various biological macromolecules and compare their ability to improve solubility, dissolution and bioavailability. Ingredients of MDDS were extensively screened using SEM, DSC, and XRD. The MDDS were testified for improved solubilization, dissolution, and bioavailability and were compared with tadalafil powder and commercial product (Cialis tablets 20 mg). All MDDS demonstrated excellent physicochemical properties, improved solubility and dissolution of tadalafil. The sequence of highest solubilization and dissolution was found to be SE-solid dispersion, S-SNEDDS, SA-solid dispersion, and IC. SE-solid dispersion and IC showed spherical morphology and comparatively small particle size. In SA-solid dispersion, the hydrophilic carriers were found attached with the drug surface. Similarly, S-SNEDDS demonstrated the absorbance of L-SNEDDS inside the pores and surface of calcium silicate. All MDDS showed improved oral bioavailability (P < 0.05) in the order of SE-solid dispersion ≥ S-SNEDDS > SA-solid dispersion > commercial product > IC, when compared with tadalafil powder in rats. Thus, the SE-solid dispersion with highest solubility (660-folds) and oral bioavailability (10-folds) of tadalafil may be recommended as the most suitable candidate for the development of oral pharmaceutical products.
Collapse
Affiliation(s)
- Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea; Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Zakir Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
2
|
Babinski T, Padilha Lorenzett AK, Ziebarth J, Lima VAD, Mainardes RM. Optimization of Zein-Casein-Hyaluronic Acid Nanoparticles Obtained by Nanoprecipitation Using Design of Experiments (DoE). ACS OMEGA 2025; 10:13440-13452. [PMID: 40224433 PMCID: PMC11983202 DOI: 10.1021/acsomega.4c11636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Zein-based nanoparticles offer significant potential as carriers for drug delivery due to their biocompatibility. However, optimizing their formulation is essential to achieving efficient encapsulation and stability. This study aimed to optimize the formulation of zein-casein-hyaluronic acid-based nanoparticles for the encapsulation of a hydrophilic drug, focusing on achieving favorable physicochemical properties for oral drug delivery applications. A factorial experimental design was employed to evaluate the influence of key formulation parameters, including zein concentration, hyaluronic acid concentration, sodium caseinate concentration, and the organic-to-aqueous phase (O/W) ratio. Particle size (PS), polydispersity index (PDI), zeta potential, and encapsulation efficiency (EE) were analyzed as response variables. Multivariate analyses, such as hierarchical cluster analysis and principal component analysis, were performed to explore the relationships between formulation parameters and nanoparticle properties. Model validity was confirmed by using ANOVA and residual analysis. Optimized nanoparticles exhibited a PS of 217 ± 5 nm, PDI of 0.077 ± 0.022, zeta potential of -24.7 ± 1.9 mV, and EE of 31% ± 4. The nanoparticles displayed a monomodal size distribution and a spherical morphology. Multivariate analyses revealed that the O/W ratio and zein concentration were the most influential factors, while sodium caseinate played a crucial stabilizing role. The desirability function yielded a high score (D = 0.9338), confirming the robustness of the optimization process. Stability studies demonstrated that refrigeration at 8 °C preserved the nanoparticles' physicochemical properties over 180 days. This study underscores the power of experimental design as a tool to refine nanoparticle formulations, paving the way for more efficient drug delivery systems and unlocking new possibilities for the oral administration of hydrophilic compounds.
Collapse
Affiliation(s)
- Tatiane
Patrícia Babinski
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Ariane Krause Padilha Lorenzett
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Jeferson Ziebarth
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | | | - Rubiana Mara Mainardes
- Laboratory
of Nanostructured Formulations, Universidade
Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
- Department
of Pharmacy, Universidade Estadual do Centro-Oeste, Élio Antonio Dalla Vecchia
St, 838, 85040-167 Guarapuava, PR, Brazil
| |
Collapse
|
3
|
Marzaman AF, Mahfufah U, Fauziah N, Ulum Ar Rahman F, Hidayati N, Hasyim R, Setiawati D, Choiri S, Nuzulia NA, Madani AF, Mir M, Permana AD, Mansjur KQ. Doxycycline-Loaded pH-Sensitive Microparticles as a Potential Site-Specific Drug Delivery System against Periodontitis. ACS OMEGA 2025; 10:5668-5685. [PMID: 39989785 PMCID: PMC11840606 DOI: 10.1021/acsomega.4c08967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
A significant obstacle to the healing process of periodontitis is the development of bacterial biofilms within the periodontal pockets. The efficacy of bacterial biofilm therapy is often hindered by the inadequate penetration of antibacterial agents and the nonspecific targeting of bacteria. This study proposes a novel strategy involving the utilization of pH-sensitive microparticles (MPs) of doxycycline (DOX) to enhance biofilm penetration and enable targeted delivery of DOX to infection sites associated with periodontitis. The MPs were developed using a double-emulsion technique with poly(d,l-lactide-co-glycolide) and chitosan in a 1:1 ratio. The morphology of DOX-MP exhibits a spherical form with a particle size of 3.54 ± 0.32 μm and a PDI of 0.221 ± 0.02. The DOX-MP also had great encapsulation efficiency (69.43% ± 5.32) and drug loading efficiency (14.81% ± 1.32) with regulated drug release kinetics and accelerated release rates under low-pH conditions. The antimicrobial activity was evaluated against Escherichia coli and Staphylococcus aureus, and the results indicated the absence of any viable bacterial colonies after 18 h at twice the minimum inhibitory concentration value. Hydrogel-based MPs deliver DOX to the periodontal pocket infection site for ease of use. In situ hydrogels used Pluronic F127 and F68 as the main polymer composition and hydroxypropyl methylcellulose as the adhesion polymer. This formulation exhibited a liquid state at room temperature (25 °C) but went through gelation at 36 °C. The formulation also had good mucoadhesive characteristics (42.65 ± 3.53 dyn/cm2) and good drug permeation at acidic pH in Mueller-Hinton Broth media with the addition of E. coli and S. aureus bacteria. Ex vivo antibacterial activity significantly reduced the microbial count, biofilm quantity, and metabolic activity, confirming the desired antibacterial effect. Hence, the utilization of free drugs and DOX-MPs did not exhibit a notable dissimilarity, showing that integrating the drug into the matrix was not hindering its antibacterial efficacy.
Collapse
Affiliation(s)
| | - Ulfah Mahfufah
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nurul Fauziah
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Fadhlil Ulum Ar Rahman
- Department
of Oral Maxillofacial Radiology, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia
| | - Nasyrah Hidayati
- Department
of Orthodontic, Faculty of Dentistry, Hasanuddin
University, Makassar 90245, Indonesia
| | - Rafikah Hasyim
- Department
of Oral Biology, Faculty of Dentistry, Hasanuddin
University, Makassar 90245, Indonesia
| | - Dian Setiawati
- Department
of Periodontology, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia
| | - Syaiful Choiri
- Faculty
of
Mathematics and Natural Sciences, Sebelas
Maret University, Surakarta 57126, Indonesia
| | - Nur Aisyah Nuzulia
- Faculty
of Mathematics and Natural Sciences, Institute
Pertanian Bogor, Bogor 16680, Indonesia
| | | | - Maria Mir
- Department
of Pharmacy, Iqra University, Islamabad Campus 44000, Pakistan
| | - Andi Dian Permana
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Karima Qurnia Mansjur
- Department
of Orthodontic, Faculty of Dentistry, Hasanuddin
University, Makassar 90245, Indonesia
| |
Collapse
|
4
|
Maryiam A, Batool S, Ali Z, Zahid F, Alamri AH, Alqahtani T, Fatease AA, Lahiq AA, Khan MW, Din FU. Thermoresponsive biomaterial system of irinotecan and curcumin for the treatment of colorectal cancer: in-vitro and in-vivo investigations. Pharm Dev Technol 2025; 30:37-56. [PMID: 39726352 DOI: 10.1080/10837450.2024.2448334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
This study aims to develop a thermoresponsive biomaterial system of irinotecan (IRT) and curcumin (CUR) nano-transferosomal gel (IRT-CUR-NTG) for targeting colorectal cancer (CRC). The IRT-CUR-NTs were statistically optimized and loaded into poloxamer-based thermosensitive gel. Transmission electron microscopy (TEM), Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) of the IRT-CUR-NTs were performed, whereas pH, gelation time, gelation temperature, gel and mucoadhesive strength of the IRT-CUR-NTG were investigated. In-vitro release and anticancer analyses were explored using HT29 cells. Additionally, in-vivo pharmacokinetics study was investigated followed by histopathological examination and in-vivo anticancer analysis. The PS, PDI, ZP, %EE of IRT and %EE of CUR were found to be 136.15 nm, 0.143, -15.5 mV, 95.05% and 85.12%, respectively. IRT-CUR-NTs exhibited spherical shape with no chemical interactions among the constituents. Similarly, IRT-CUR-NTG was homogenous gel suitable for rectal administration. IRT-CUR-NTG manifested prolonged release profiles of IRT and CUR. Moreover, a significantly enhanced (4-fold) bioavailability and no toxicity of IRT-CUR-NTG was observed when compared with conventional gel. IRT-CUR-NTs were found to be more effective against HT29 cell lines. In-vivo antitumor analysis demonstrated significantly reduced tumor volume and tumor mass after treatment with IRT-CUT-NTG, indicating improved antitumor effect. It can be concluded that IRT-CUR-NTG is suitable biomaterial system for colorectal cancer.
Collapse
Affiliation(s)
- Aleena Maryiam
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zakir Ali
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Zahid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabi
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Waghmare S, Palekar R, Potey L, Khedekar P, Sabale P, Sabale V. Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System. Pharm Nanotechnol 2025; 13:22-40. [PMID: 38317470 DOI: 10.2174/0122117385271393231117063750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/07/2024]
Abstract
In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.
Collapse
Affiliation(s)
- Suchita Waghmare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Rohini Palekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Lata Potey
- Shree Sainath College of Pharmacy Dawalameti, Nagpur, Maharashtra, 440023, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Maharashtra, 440037, India
| |
Collapse
|
6
|
Hu D, Zeng Q, Wang H, Jiang W. Arginine Hydrochloride Reduce Rectal Mucosal Irritation of Sodium Aescinate: Molecular Docking, Physical Properties, Anti-Hemorrhoidal Activity, Safety and Topical Gel Formulations Investigation. Pharmaceutics 2024; 16:1498. [PMID: 39771477 PMCID: PMC11676831 DOI: 10.3390/pharmaceutics16121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Sodium aescinate (SA) is commonly used topically due to its anti-inflammatory, anti-edematous, and anti-swelling properties. However, the clinical application of SA is limited by strong irritation, and cannot be used on the damaged skin and mucous membrane. This study aimed to investigate whether arginine hydrochloride (Arg·HCl) could reduce the rectal mucosal irritation of SA through the formation of a gel. Methods: Molecular docking was first used to explore potential interactions between SA and Arg·HCl. Gels for rectal administration were then formulated by combining SA with various ratios of Arg·HCl (from 1:0 to 1:10). In vitro tests, including pH, centrifuge stability, viscosity, and spreadability analysis, were conducted. The optimal gel formulation was determined based on rectal mucosal irritation tests and anti-inflammatory experiments. Additionally, the anti-hemorrhoidal characteristics and safety of the optimal gel in terms of acute toxicity and dermal sensitivity were evaluated. Results: The optimal SA to Arg·HCl ratio of 1:6 (F5-SA gel) was identified, significantly reducing rectal mucosal irritation while enhancing anti-inflammatory activity. The F5-SA gel demonstrated high efficacy against hemorrhoids, notably promoting anal ulcer healing. When administered rectally to rabbits at a dose of 132 mg·kg-1·d-1 (198 times the recommended therapeutic dose), no other obvious side effects were observed except a significant reduction in food intake on the day of administration. In addition, the gel did not induce dermal sensitivity. Conclusions: The F5-SA gel is a promising formulation that can reduce irritation and toxic side effects, and enhance the therapeutic effect to some extent, ultimately achieving a safer and more effective rectal delivery system for SA.
Collapse
Affiliation(s)
| | | | | | - Wei Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (D.H.)
| |
Collapse
|
7
|
Akbar K, Rehman MU, Shah FA, Younas S, Al-Otaibi JS, Khan H. Paroxetine Loaded Nanostructured Lipid Carriers Based In-situ Gel for Brain Delivery via Nasal Route for Enhanced Anti-Depressant Effect: In Vitro Prospect and In Vivo Efficacy. AAPS PharmSciTech 2024; 25:248. [PMID: 39433712 DOI: 10.1208/s12249-024-02954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, in vitro and in vivo studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The in vitro release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. In vivo studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.
Collapse
Affiliation(s)
- Kiran Akbar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology College of Pharmacy Prince Sattam bin Abdul Aziz University Saudi Arab, Al-Kharj, Saudi Arabia
| | - Sidra Younas
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
8
|
Imtiaz S, Sohail S, Din FU, Ali Z, Batool S, Malik M, Nawaz A, Alamri AH, Lahiq AA, Alsharif ST, Asiri A. Formulation and statistical optimization of letrozole loaded nanotransferosomal gel for tumor targeting. Pharm Dev Technol 2024; 29:703-718. [PMID: 39023747 DOI: 10.1080/10837450.2024.2382437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Letrozole (LTZ) is used as first-line treatment for hormone-positive breast cancer (BC) in postmenopausal women. However, its poor aqueous solubility and permeability have reduced its clinical efficacy. Herein, we developed LTZ-nanotransferosomes (LTZ-NT) to address above mentioned issues. The LTZ-NT were optimized statistically using Design Expert® followed by their characterization via dynamic light scattering (DLS), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Differential scanning calorimetry (DSC). The optimized LTZ-NT was incorporated into 1% chitosan-gel to develop LTZ-NTG. Moreover, in vitro drug release and ex vivo permeation of LTZ-NTG were performed and compared with LTZ-dispersion and LTZ-NT. Additionally, skin irritability and histopathology of LTZ-NTG were investigated. Furthermore, in vitro antitumor study of LTZ-NTG was investigated in BC cell lines. The optimized LTZ-NT showed suitable zeta potential (30.4 mV), spherical size (162.5 nm), and excellent entrapment efficiency (88.04%). Moreover, LTZ-NT exhibited suitable thermal behavior and no interactions among its excipients. In addition, LTZ-NTG had an optimal pH (5.6) and a suitable viscosity. A meaningfully sustained release and improved permeation of LTZ was observed from LTZ-NTG. Additionally, LTZ-NTG showed significantly enhanced cell death of MCF-7 and MCC-7 cells. It can be concluded that LTZ-NTG has the potential to deliver chemotherapeutic agents for possible treatment of BC.
Collapse
Affiliation(s)
- Sara Imtiaz
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Zakir Ali
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maimoona Malik
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal Center of Pharmaceutical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabi
| | - Shaker T Alsharif
- Pharmaceutical Science Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah Asiri
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
9
|
Din FU, Kim JS, Lee HC, Cheon S, Woo MR, Woo S, Ku SK, Yoo HH, Kim JO, Jin SG, Choi HG. Injectable dual thermoreversible hydrogel for sustained intramuscular drug delivery. J Control Release 2024; 374:590-605. [PMID: 39208936 DOI: 10.1016/j.jconrel.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Herein, we reported novel docetaxel-decorated solid lipid nanoparticle (DCT-SLN)-loaded dual thermoreversible system (DCT-DRTS) for intramuscular administration with reduced burst effect, sustained release and improved antitumor efficacy. The optimized DCT-DRTs was subjected to in-vitro and in-vivo analyses. Antitumor evaluation of the DCT-DRTS was executed and compared with DCT-hydrogel, and DCT-suspension trailed by the histopathological and immune-histochemical analyses. The DCT-SLN gave a mean particle size of 157 nm and entrapment efficiency of 93 %. It was a solid at room temperature, and changed to liquid at physiological temperature due to its melting point of about 32 °C. Unlikely, poloxamer mixture remained liquefied at 25-27 °C, however converted to gel at physiological temperature. This behavior demonstrated opposed reversible property of the DCT-SLN and poloxamer hydrogel in DCT-DRTS system, making it ideal for intramuscular administration and quick gelation inside the body. The DCT-DRTS sustained the drugs release and unlike DCT-hydrogel, the preliminary plasma concentration of DCT-DRTS was significantly reduced, overcoming the burst release. A meaningfully enhanced antitumor efficacy and improved survival rate was observed from DCT-DRTS in tumor cell xenograft athymic nude mice. Additionally, increased apoptotic and reduced proliferation markers were observed in DCT-DRTS treated tumor masses. It was concluded that DCT-DRTS may be a suitable choice for intramuscular administration of DCT with sustained release, improved bioavailability, reduced toxicity and enhanced antitumor effects.
Collapse
Affiliation(s)
- Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea; Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Ho Cheol Lee
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sae Kwang Ku
- College of Oriental Medicine, Daegu Haany University, Gyongsan 712-715, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea.
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
10
|
Eissa EM, El Sisi AM, Bekhet MA, El-Ela FIA, Kharshoum RM, Ali AA, Alrobaian M, Ali AMA. pH-Sensitive In Situ Gel of Mirtazapine Invasomes for Rectal Drug Delivery: Protruded Bioavailability and Anti-Depressant Efficacy. Pharmaceuticals (Basel) 2024; 17:978. [PMID: 39204084 PMCID: PMC11357403 DOI: 10.3390/ph17080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
The present research emphasizes fabrication alongside the assessment of an innovative nano-vesicular membranous system known as invasomes (NVMs) laden with Mirtazapine for rectal administration. This system could circumvent the confines of orally administered counterparts regarding dose schedules and bioavailability. Mirtazapine invasomes were tailored by amalgamating phospholipid, cineole, and ethanol through a thin-film hydration approach rooted in the Box-Behnken layout. Optimization of composition parameters used to fabricate desired NVMs' physicochemical attributes was undertaken using the Design-Expert® program. The optimal MRZ-NVMs were subsequently transformed to a pH-triggered in situ rectal gel followed by animal pharmacodynamic and pharmacokinetic investigations relative to rectal plain gel and oral suspension. The optimized NVMs revealed a diameter size of 201.3 nm, a z potential of -28.8 mV, an entrapment efficiency of 81.45%, a cumulative release within 12 h of 67.29%, and a cumulative daily permeated quantity of 468.68 µg/cm2. Compared to the oral suspension, pharmacokinetic studies revealed a 2.85- and 4.45-fold increase in calculated rectal bioavailability in circulation and brain, respectively. Pharmacodynamic and immunohistopathology evaluations exposed superior MRZ-NVMs attributed to the orally administered drug. Consequently, rectal MRZ-NVMs can potentially be regarded as a prospective nanoplatform with valuable pharmacokinetics and tolerability assets.
Collapse
Affiliation(s)
- Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Marina A. Bekhet
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
11
|
Zhang J, Ali K, Wang J. Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer. Int J Nanomedicine 2024; 19:6693-6715. [PMID: 38979534 PMCID: PMC11229238 DOI: 10.2147/ijn.s466490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
Collapse
Affiliation(s)
- Junyi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
12
|
Ren J, Liu T, Bi B, Sohail S, Din FU. Development and Evaluation of Tacrolimus Loaded Nano-Transferosomes for Skin Targeting and Dermatitis Treatment. J Pharm Sci 2024; 113:471-485. [PMID: 37898166 DOI: 10.1016/j.xphs.2023.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Tacrolimus (TRL) is used for the treatment of atopic dermatitis (AD) due to its T-cell stimulation effect. However, its significantly poor water solubility, low penetration and cytotoxicity have reduced its topical applications. Herein, tacrolimus loaded nano transfersomes (TRL-NTs) were prepared, followed by their incorporation into chitosan gel to prepare tacrolimus loaded nano transfersomal gel (TRL-NTsG). TEM analysis of the TRL-NTs was performed to check their morphology. DSC, XRD and FTIR analysis of the TRL-NTs were executed after lyophilization. Similarly, rheology, spreadability and deformability of the TRL-NTsG were investigated. In vitro release, ex vivo permeation and in vitro interaction of TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures were investigated along with their in vitro cell viability analysis. Moreover, in vivo skin deposition, ear thickness, histopathology and IgE level were also determined. Besides, 6 months stability study was also performed. Results demonstrated the uniformly distributed negatively charged nanovesicles with a mean particle size distribution of 163 nm and zeta potential of -27 mV. DSC and XRD exhibited the thermal stability and amorphous form of the drug, respectively. The TRL-NTsG showed excellent deformability, spreadability and rheological behavior. In vitro release studies exhibited an 8-fold better release of TRL from the TRL-NTsG. Similarly, 6-fold better permeation and stability of the TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures was observed. Furthermore, the ear thickness (0.6 mm) of the TRL-NTsG was found significantly reduced when compared with the untreated (1.7 mm) and TRL conventional gel treated mice (1.3 mm). The H&E staining showed no toxicity of the TRL-NTsG with significantly reduced IgE levels (120 ng/mL). The formulation was found stable for at least 6 months. These results suggested the efficacy of TRL in AD-induced animal models most importantly when incorporated in NTsG.
Collapse
Affiliation(s)
- Jingyu Ren
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Tao Liu
- Shanxi Provincial Inspection and Testing Center, Taiyuan City, Shanxi Province, 030001, China
| | - Bo Bi
- Department of Dermatology, Yangquan Coalmine Group General Hospital, Yangquan City, Shanxi Province, 045000, China.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
13
|
Farooq U, Mirza MA, Alshetaili A, Mohapatra S, Jain P, Hassan N, Iqbal Z, Ali A. In silico and in vitro assessment of an optimized QbD-guided myoinositol and metformin-loaded mucus-penetrating particle-based gel for the amelioration of PCOS. NANOSCALE ADVANCES 2024; 6:648-668. [PMID: 38235090 PMCID: PMC10791119 DOI: 10.1039/d3na00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a multi-factorial endocrine disorder affecting women of reproductive age. However, its high prevalence and the unsuccessful translation of conventional modalities have made PCOS a pharmaco-therapeutic challenge. In the present study, we explored bi-formulations (comprising metformin-loaded mucus-penetrating nanoparticles, MTF-MPPs, and myoinositol-loaded mucus-penetrating particles, MI-MPPs) incorporated in a carbomer gel tailored for intravaginal administration. For the development and optimization of the MPPs-gel, a QbD (quality by design) approach was employed, including the initial and final risk assessment, central composite design of experts, and method validation. The optimized MTF-MPPs and MI-MPPs possessed an optimum nanometric particle size (195.0 nm and 178.8 nm, respectively) and a PDI of 0.150 and 0.123, respectively, together with a negligible negative zeta potential (-5.19 mV and -6.19 mV, respectively) through the vaginal mucus. It was observed that the MPPs are small and monodisperse with a neutral surface charge. It was observed that the MPPs-gel formulations released approximately 69.86 ± 4.65% of MTF and 67.14 ± 5.74% of MI within 120 h (5 days), which was observed to be sustained unlike MFT-MI-gel with approximately 94.89 ± 4.17% of MTF and 90.91 ± 15% of MI drugs released within 12 h. The confocal microscopy study of rhodamine-loaded MPPs indicated that they possessed a high fluorescence intensity at a depth of 15 μm, while as the penetration trajectory in the vaginal tissue increased to 35 μm, their intensity was reduced, appearing to be more prominent in the blood vessels. The analyzed data of MPPs-gel suggest that the optimized MPPs-gel formulation has potential to reach the targeted area via the uterovaginal mucosa, which has a wide network of blood vessels. Subsequently, in vivo studies were conducted and the results revealed that the proposed MPPs-gel formulation could regulate the estrous cycle of the reproductive system compared to the conventional formulation. Moreover, the formulation significantly reduced the weight of the ovaries compared to the control and conventional vaginal gel. Biochemical estimation showed improved insulin and sex hormone levels. Thus, the obtained data revealed that the deep penetration and deposition of MTF and MI on the targeted area through intravaginal delivery resulted in better therapeutic effects than the conventional vaginal gel. The obtained results confirmed the amelioration of PCOS upon treatment using the prepared MPPs-gel formulation. According to the relevant evaluation studies, it was concluded that MPPs-gel was retained in the vaginal cavity for systemic effects. Also, the sustained and non-irritating therapeutic effect meets the safety aspects. This work serves as a promising strategy for intravaginal drug delivery.
Collapse
Affiliation(s)
- Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj Saudi Arabia
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| |
Collapse
|
14
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Anjum A, Shabbir K, Din FU, Shafique S, Zaidi SS, Almari A, Alqahtani T, Maryiam A, Moneeb Khan M, Al Fatease A, Bashir S, Khan GM. Co-delivery of amphotericin B and pentamidine loaded niosomal gel for the treatment of Cutaneous leishmaniasis. Drug Deliv 2023; 30:2173335. [PMID: 36722301 PMCID: PMC9897754 DOI: 10.1080/10717544.2023.2173335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Topical drug delivery is preferable route over systemic delivery in case of Cutaneous leishmaniasis (CL). Among the available agents, amphotericin B (AmB) and pentamidine (PTM) showed promising result against CL. However, monotherapy is associated with incidences of reoccurrence and resistance. Combination therapy is therefore recommended. Thin film hydration method was employed for amphotericin B-pentamidine loaded niosomes (AmB-PTM-NIO) preparation followed by their incorporation into chitosan gel. The optimization of AmB-PTM-NIO was done via Box Behnken Design method and in vitro and ex vivo analysis was performed. The optimized formulation indicated 226 nm particle size (PS) with spherical morphology, 0.173 polydispersity index (PDI), -36 mV zeta potential (ZP) and with entrapment efficiency (EE) of 91% (AmB) and 79% (PTM), respectively. The amphotericin B-pentamidine loaded niosomal gel (AmB-PTM-NIO-Gel) showed desirable characteristics including physicochemical properties, pH (5.1 ± 0.15), viscosity (31870 ± 25 cP), and gel spreadability (280 ± 26.46%). In vitro release of the AmB and PTM from AmB-PTM-NIO and AmB-PTM-NIO-Gel showed more prolonged release behavior as compared to their respective drug solution. Higher skin penetration, greater percentage inhibition and lower IC50 against the promastigotes shows that AmB-PTM-NIO has better antileishmanial activity. The obtained findings suggested that the developed AmB-PTM-NIO-Gel has excellent capability of permeation via skin layers, sustained release profile and augmented anti-leishmanial outcome of the incorporated drugs.
Collapse
Affiliation(s)
- Adnan Anjum
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Kanwal Shabbir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,CONTACT Fakhar Ud Din
| | - Shumaila Shafique
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi
| | - Syed Saoud Zaidi
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Aleena Maryiam
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Moneeb Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sidra Bashir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Islamia College University, Peshawar, Pakistan,Gul Majid Khan Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Mendes M, Branco F, Vitorino R, Sousa J, Pais A, Vitorino C. A two-pronged approach against glioblastoma: drug repurposing and nanoformulation design for in situ-controlled release. Drug Deliv Transl Res 2023; 13:3169-3191. [PMID: 37574500 PMCID: PMC10624718 DOI: 10.1007/s13346-023-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GB) is one of the most lethal types of neoplasms. Its biologically aggressive nature and the presence of the blood-brain barrier (BBB) limit the efficacy of standard therapies. Several strategies are currently being developed to both overcome the BBB and deliver drugs site specifically to tumor cells. This work hypothesizes a two-pronged approach to tackle GB: drug repurposing with celecoxib (CXB) and a nanoformulation using ultra-small nanostructured lipid carriers (usNLCs). CXB antitumor druggable activity was inspected bioinformatically and screened in four glioma cell lines aiming at the comparison with temozolomide (TMZ), as standard of care. Delving into formulation design, it was tailored aiming at (i) improving the drug solubility/loading properties, (ii) assigning a thermal-triggerable drug release based on a lipid matrix with a low melting point, and (iii) enhancing the cytotoxic effect by selecting a template targetable to tumor cells. For this purpose, an integrated analysis of the critical material attributes (CMAs), critical process parameters (CPPs), and critical quality attributes (CQAs) was conducted under the umbrella of a quality by design approach. CMAs that demonstrate a high-risk level for the final quality and performance of the usNLCs include the drug solubility in lipids (solid and liquid), the lipid composition (envisioning a thermoresponsive approach), the ratio between lipids (solid vs. liquid), and the surfactant type and concentration. Particle size was shown to be governed by the interaction lipid-surfactant followed by surfactant type. The drug encapsulation did not influence colloidal characteristics, making it a promising carrier for lipophilic drugs. In general, usNLCs exhibited a controlled drug release during the 72 h at 37 °C with a final release of ca. 25%, while at 45 °C this was doubled. The in vitro cellular performance depended on the surfactant type and lipid composition, with the formulations containing a sole solid lipid (Suppocire® NB) and Kolliphor® RH40 as surfactant being the most cytotoxic. usNLCs with an average diameter of ca. 70 nm and a narrow size distribution (PdI lower than 0.2) were yielded, exhibiting high stability, drug protection, sustained and thermo-sensitive release properties, and high cytotoxicity to glioma cells, meeting the suitable CQAs for parenteral administration. This formulation may pave the way to a multi-addressable purpose to improve GB treatment.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Rui Vitorino
- iBiMED-Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, UnIC, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
17
|
Tan X, Hao Y, Ma N, Yang Y, Jin W, Meng Y, Zhou C, Zheng W, Zhang Y. M6P-modified solid lipid nanoparticles loaded with matrine for the treatment of fibrotic liver. Drug Deliv 2023; 30:2219432. [PMID: 37300371 DOI: 10.1080/10717544.2023.2219432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Liver fibrosis is a key pathological process shared by the progression of various chronic liver diseases. Treatment of liver fibrosis can effectively block the occurrence and development of hepatic cirrhosis or even carcinoma. Currently, there is no effective drug delivery vehicle for curing liver fibrosis. In this study, we designed matrine (MT)-loaded mannose 6-phosphate (M6P) modified human serum albumin (HSA) conjugated solid lipid nanoparticles (SLN), named M6P-HSA-MT-SLN for treatment of hepatic fibrosis. We demonstrated that M6P-HSA-MT-SLN exhibited controlled and sustained release properties and good stability over 7 days. The drug release experiments showed that M6P-HSA-MT-SLN exhibited slow and controlled drug release characteristics. In addition, M6P-HSA-MT-SLN showed a significant targeted ability to fibrotic liver. Importantly, in vivo studies indicated that M6P-HSA-MT-SLN could significantly improve histopathological morphology and inhibit the fibrotic phenotype. In addition, in vivo experiments demonstrate that M6P-HSA-MT-SLN could reduce the expression of fibrosis markers and alleviate the damage of liver structure. Hence, the M6P-HSA-MT-SLN provide a promising strategy to deliver therapeutic agents to fibrotic liver to prevent liver fibrosis.
Collapse
Affiliation(s)
- Xiaochuan Tan
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yumei Hao
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nai Ma
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yige Yang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenzhen Jin
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya Meng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chuchu Zhou
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wensheng Zheng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yujia Zhang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Bashir S, Shabbir K, Din FU, Khan SU, Ali Z, Khan BA, Kim DW, Khan GM. Nitazoxanide and quercetin co-loaded nanotransfersomal gel for topical treatment of cutaneous leishmaniasis with macrophage targeting and enhanced anti-leishmanial effect. Heliyon 2023; 9:e21939. [PMID: 38027656 PMCID: PMC10661431 DOI: 10.1016/j.heliyon.2023.e21939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Anti-leishmanial medications administered by oral and parenteral routes are less effective for treatment of cutaneous leishmaniasis (CL) and cause toxicity, hence targeted drug delivery is an efficient way to improve drug availability for CL with reduced toxicity. This study aimed to develop, characterize and evaluate nitazoxanide and quercetin co-loaded nanotransfersomal gel (NTZ-QUR-NTG) for the treatment of CL. Methods NTZ-QUR-NT were prepared by thin film hydration method and were statistically optimized using Box-Behnken design. To ease the topical delivery and enhance the retention time, the NTZ-QUR-NT were dispersed in 2 % chitosan gel. Moreover, in-vitro drug release, ex-vivo permeation, macrophage uptake, cytotoxicity and anti-leishmanial assays were performed. Results The optimized formulation indicated mean particle size 210 nm, poly dispersity index (PDI) 0.16, zeta potential (ZP) -15.1 mV and entrapment efficiency (EE) of NTZ and QUR was 88 % and 85 %, respectively. NTZ-QUR-NT and NTZ-QUR-NTG showed sustained release of the incorporated drugs as compared to the drug dispersions. Skin permeation of NTZ and QUR in NTZ-QUR-NTG was 4 times higher in comparison to the plain gels. The NTZ-QUR-NT cell internalization was almost 10-folds higher than NTZ-QUR dispersion. The cytotoxicity potential (CC50) of NTZ-QUR-NT (71.95 ± 3.32 μg/mL) was reduced as compared to NTZ-QUR dispersion (49.77 ± 2.15 μg/mL. A synergistic interaction was found between NTZ and QUR. Moreover, in-vitro anti-leishmanial assay presented a lower IC50 value of NTZ-QUR-NT as compared to NTZ-QUR dispersion. Additionally, a significantly reduced lesion size was observed in NTZ-QUR-NTG treated BALB/c mice, indicating its antileishmanial potential. Conclusion It can be concluded that nanotransfersomal gel has the capability to retain and permeate the incorporated drugs through stratum corneum and induce synergetic anti-leishmanial effect of NTZ and QUR against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Sidra Bashir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Kanwal Shabbir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Fakhar ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, KPK, Pakistan
| | - Zakir Ali
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Barkat Ali Khan
- Drugs Design and Cosmetics Lab (DDCL), Faculty of Pharmacy Gomal University, Dera Ismail Khan, Pakistan
| | - Dong Wuk Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
19
|
Guo Z, Afza R, Moneeb Khan M, Khan SU, Khan MW, Ali Z, Batool S, Din FU. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In-vitro and in-vivo analyses. Heliyon 2023; 9:e20107. [PMID: 37810010 PMCID: PMC10559869 DOI: 10.1016/j.heliyon.2023.e20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoporosis (OP), is a systemic bone disorder associated with low bone mass and bone tissue corrosion. Worsening of the disease condition leads to bone delicacy and fracture. Various drugs are available for the treatment of OP, however they have limitations including poor solubility, bioavailability and toxicity. Herein, Raloxifene-loaded polymeric nanoparticles (RLX-PNPs) were developed and investigated for the treatment of OP with possible solutions to the above mentioned problems. RLX-PNPs were prepared by modified ionic gelation method followed by determining their particle properties. FTIR, DSC and PXRD analysis of the RLX-PNPs were performed to check chemical interaction, thermal behavior and crystallinity, respectively. In-vitro release profile of RLX-PNPs was checked in lab setting, whereas its pharmacokinetics was investigated in Sprague-Dawley rats, in-vivo. Finally, the treatment potential of RLX-PNPs was analyzed in OP induced animal model. The optimized PNPs formulation indicated 134.5 nm particle size, +24.4 mV charge and 91.73% % EE. TEM analysis showed spherical and uniform sized particles with no interactions observed in FTIR analysis. In-vitro release of RLX from RLX-PNPs showed more sustained release behavior as compared to RLX-suspension. Moreover, pharmacokinetic investigations showed a significantly enhanced bioavailability of the RLX-PNPs as well as reduced serum levels of alkaline phosphatase and calcium in OP induced rats when compared with RLX-Suspension after oral administration. Findings of this study suggested that the developed RLX-PNPs have the potential to treat OP due to sustained release and improved bioavailability of the incorporated drug.
Collapse
Affiliation(s)
- Zhonghua Guo
- Department of Orthopaedics, Henan Province Hospital of TCM, Zhengzhou City, Henan Province, 450002, China
| | - Rabia Afza
- Department of Botany, Hazara University Mansehra KP, Pakistan
| | - Muhammad Moneeb Khan
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, KPK, Pakistan
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences Khyber Medical University, Peshawar, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
20
|
Erol ÜH, Güncüm E, Işıklan N. Development of chitosan-graphene oxide blend nanoparticles for controlled flurbiprofen delivery. Int J Biol Macromol 2023; 246:125627. [PMID: 37406912 DOI: 10.1016/j.ijbiomac.2023.125627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
The use of natural polymeric nanoparticles (Nps) as drug carriers is a highly promising area of research in the field of drug delivery systems because of their high efficiency. In this study, flurbiprofen (FB) loaded chitosan-graphene oxide (CS-GO) blend Nps were synthesized as a controlled delivery system using the emulsion method. The crystalline, molecular, and morphological structures of the prepared CS-GO Nps were characterized using a variety of analytical methods, including Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-Ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was found that the introduction of GO into the CS nanoparticle formulation increased its thermal stability. The range of the average particle size was between 362 ± 5.06 and 718 ± 2.21 nm, with negative zeta potential values between -7.67 ± 4.16 and - 27.93 ± 2.26 mV. The effects of the CS/GO ratio, the FB/polymer ratio, the amount of span 80, and the cross-linker concentration were assessed on FB release profiles. In vitro release studies displayed a two-stage release behaviour with a fast initial release of the FB, followed by sustained and extended release, and the incorporation of GO into the CS Nps made the FB release more sustained and controlled manner. Besides, the cytotoxicity test of the FB-loaded CS-GO Nps was studied through MTT assay, and it was found that they were biocompatible. Based on these findings, it can be inferred that the prepared CS-GO Nps might be a promising candidate drug carrier system for FB.
Collapse
Affiliation(s)
- Ümit Haydar Erol
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey; Advanced Technology Application and Research Center, Kilis 7 Aralık University, 79000 Kilis, Turkey
| | - Enes Güncüm
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
21
|
Andre G, Boschetto F, Gokani V, Singhal M, Jing Y, Kim HKW, Ma C. Ex vivo study of detergent-assisted intraosseous bone wash treatment of osteonecrosis. J Orthop Res 2023; 41:1482-1493. [PMID: 36453529 PMCID: PMC10232679 DOI: 10.1002/jor.25496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Avascular necrosis (AVN) involves ischemic cell death of the bone. AVN leaves an abundance of necrotic lipids and debris in the bone marrow, which instigates inflammatory bone repair. Consequently, the necrotic bone microenvironment stimulates excessive bone resorption, leading to joint deformities and osteoarthritis. Here, we performed a detergent-assisted bone wash using poloxamer 407 (P407) to clean the necrotic bone environment by removing lipids and necrotic debris. The new concept was tested using an established ex vivo AVN model of porcine cadaver humeral heads. The P407 wash was performed using P407 solution and followed with saline via two intraosseous needles. Visual inspection and image analyses of average pixel light intensity showed that the P407 wash produced a better-cleaned bone than the saline wash. Analyses of the collected bone wash solution showed a two-fold increase in triglycerides (101 vs. 53 mmol/head, p = 0.006) and a 10-fold increase in the dry weight of the removed debris (1.34 vs. 0.13 g/head, p = 0.02) with the P407 wash compared to saline. The histological evaluation showed significantly decreased Oil-Red-O (fats) staining in the P407-washed bone compared with the saline-washed bone. The in vitro assays of Alizarin red and qPCR showed the P407 wash neither altered the osteogenic behaviors of porcine bone marrow-derived mesenchymal cells (pBMMCs) nor raised inflammatory responses of porcine bone marrow-derived macrophages (pBMMs). In conclusion, detergent-assisted bone wash using P407 produced a better removal of nonsoluble debris from the bone marrow space than the saline wash without causing changes to osteogenesis or inflammatory reactions.
Collapse
Affiliation(s)
- Graham Andre
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Francesco Boschetto
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Vishal Gokani
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Mo Singhal
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Yan Jing
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Texas, USA
| | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chi Ma
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Mfoafo K, Omidi Y, Omidian H. Thermoresponsive mucoadhesive hybrid gels in advanced drug delivery systems. Int J Pharm 2023; 636:122799. [PMID: 36914019 DOI: 10.1016/j.ijpharm.2023.122799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Thermoresponsive polymers have seen extensive use in the development of stimuli-responsive drug formulations for oral, buccal, nasal, ocular, topical, rectal, parenteral, and vaginal routes of administration. Despite their great potential, their use has been limited by various obstacles, such as undesirable high polymer concentration, wide gelation temperature, low gel strength, poor mucoadhesiveness, and short retention. Mucoadhesive polymers have been suggested to improve the mucoadhesive features of thermoresponsive gels, leading to increased drug bioavailability and efficacy. This article highlights the use of in-situ thermoresponsive mucoadhesive hydrogel blends or hybrids that have been developed and assessed in various routes of administration.
Collapse
Affiliation(s)
- Kwadwo Mfoafo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
23
|
ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Investigating the Targeting Power to Brain Tissues of Intranasal Rasagiline Mesylate-Loaded Transferosomal In Situ Gel for Efficient Treatment of Parkinson's Disease. Pharmaceutics 2023; 15:pharmaceutics15020533. [PMID: 36839855 PMCID: PMC9967009 DOI: 10.3390/pharmaceutics15020533] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Rasagiline mesylate (RSM) is a hydrophilic drug with poor oral bioavailability (36%) because of hepatic first-pass metabolism. The present study focuses on delivering RSM directly to the brain through its inclusion within transferosomal in situ gel administered through the intranasal (IN) route. Transferosomes were formed by the thin-film hydration method with the aid of Design-Expert® software by varying the edge activator (EA) type in the absence or presence of cholesterol. By desirability calculations, the optimum formulation was composed of phosphatidylcholine and sodium deoxycholate as an EA (5:1% w/w) with no cholesterol. The optimum formulation was 198.63 ± 34.98 nm in size and displayed an entrapment efficiency of 95.73 ± 0.09%. Transmission electron microscopy revealed discrete and spherical vesicles. Optimized transferosomes were further incorporated into an in situ gel composed of 0.5% pectin, 15% Pluronic® F-127, and 5% Pluronic® F-68 and tested for the in vivo performance. The systemic as well as brain kinetics were assessed in rats by comparing the IN-administered in situ gel to the IV aqueous solution. The optimum in situ gel showed safety and biocompatibility on rats' nasal mucosa with enhanced brain bioavailability (131.17%). Drug targeting efficiency and direct transport percentage indices (304.53% and 67.16%, respectively) supported successful brain targeting offering direct nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
| | - Rana R. Makar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
| | - Alaa H. Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence:
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
24
|
Yang W. Co-delivery of trifluralin and miltefosin with enhanced skin penetration and localization in Leishmania affected macrophages. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2022.2159833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenjuan Yang
- Clinical Nursing Higher Vocational Education, Weinan Vocational & Technical College, Weinan City, Shaanxi Province, China
| |
Collapse
|
25
|
Nirmayanti N, Alhidayah A, Usman JT, Nur JF, Amir MN, Permana AD. Combinatorial Approach of Thermosensitive Hydrogels and Solid Microneedles to Improve Transdermal Delivery of Valsartan: an In Vivo Proof of Concept Study. AAPS PharmSciTech 2022; 24:5. [PMID: 36447099 DOI: 10.1208/s12249-022-02462-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Due to the limitations of oral administration of valsartan, in this study, we aimed to develop thermosensitive hydrogel for sustained transdermal delivery and improved bioavailability of valsartan, which was further improved using solid microneedles. The thermosensitive gel formula was made using Poloxamer 407 and Poloxamer 188 in various ratios. Valsartan thermosensitive gels were evaluated for their gelation temperature, pH values, drug content, spreadability, viscosity, rheological properties, in vitro drug release, in vitro permeation, and ex vivo permeation. Finally, in vivo study was conducted, compared to oral administration. The results presented the formulations showed required characteristic for transdermal administration with desired thermosensitive properties. Based on the permeation test with and without microneedles, it was found that the use of microneedles could affect the permeation of valsartan. Specifically, the increase of microneedles' needle length also increased valsartan permeation. The combination with the highest permeation was produced by 1.55 mm MNs with the amount of drug permeated of 2.27 ± 0.01 mg. Importantly, the transdermal delivery of valsartan using this combination approach could significantly improve the bioavailability of valsartan in in vivo study. The concentration of poloxamer was able to affect the properties of the hydrogels, and the use of solid microneedles improved the transdermal delivery of valsartan. In vivo studies showed the improvement of the bioavailability of valsartan compared to oral administration, showing the effectiveness of this combination approach.
Collapse
Affiliation(s)
| | | | | | | | - Muh Nur Amir
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
| |
Collapse
|
26
|
Ali Z, Din FU, Zahid F, Sohail S, Imran B, Khan S, Malik M, Zeb A, Khan GM. Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout. BMC Pharmacol Toxicol 2022; 23:86. [PMID: 36443818 PMCID: PMC9703780 DOI: 10.1186/s40360-022-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Allopurinol (ALP), a xanthine oxidase inhibitor, is a first line drug for the treatment of gout and hyperuricemia. Being the member of BCS class II drugs, ALP has solubility problem, which affects its bioavailability. Also, ALP has shorter half-life and showed GI related problems. In present study, ALP was encapsulated in nanostructured lipid carriers (NLCs) to ensure enhanced bioavailability, improved efficacy and safety in vivo. METHODOLOGY ALP-loaded NLCs were fabricated by micro-emulsion technique. The prepared NLCs were optimized via design expert in term of particle size, zeta potential and entrapment efficiency. FTIR, PXRD and TEM analysis were carried out to check chemical interaction, polymorphic form and surface morphology of the optimized formulation. ALP-loaded NLCs were then loaded into HPMC based poloxamer-407 gel and were characterized. In vitro and ex vivo analysis were carried out via dialysis membrane method and franz diffusion cell, respectively. Uric acid was used for induction of gout and the anti-gout activity of ALP-loaded NLCs gel was performed and compared with ALP suspension. RESULTS The optimized formulation had particles in nano-range (238.13 nm) with suitable zeta potential (-31.5 mV), poly-dispersity index (0.115) and entrapment of 87.24%. FTIR results confirmed absence of chemical interaction among formulation ingredients. XRD indicated amorphous nature of ALP-loaded NLCs, whereas TEM analysis confirmed spherical morphology of nanoparticles. The optimized formulation was successfully loaded in to gel and characterized accordingly. The in vitro release and drug release kinetics models showed sustained release of the drug from ALP-loaded NLCs gel. Furthermore, about 28 fold enhanced permeation was observed from ALP-loaded NLCs gel as compared to conventional gel. Skin irritation study disclosed safety of ALP-loaded NLCs gel for transdermal application. Furthermore, ALP-loaded NLCs gel showed significantly enhanced anti-gout activity in Sprague-Dawley rats after transdermal administration as compared to oral ALP suspension. CONCLUSION ALP-loaded NLCs gel after transdermal administration sustained the drug release, avoid gastrointestinal side effects and enhance the anti-gout performance of ALP. It can be concluded, that NLCs have the potential to deliver drugs via transdermal route as indicated in case of allopurinol.
Collapse
Affiliation(s)
- Zakir Ali
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar ud Din
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fatima Zahid
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Saba Sohail
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Basalat Imran
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Salman Khan
- grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Maimoona Malik
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alam Zeb
- grid.414839.30000 0001 1703 6673Department of Pharmacy, Riphah International University, Islamabad, Pakistan
| | - Gul Majid Khan
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan ,grid.459615.a0000 0004 0496 8545Islamia College University, Peshawar, Pakistan
| |
Collapse
|
27
|
Raza H, Shah SU, Ali Z, Khan AU, Rajput IB, Farid A, Mohaini MA, Alsalman AJ, Al Hawaj MA, Mahmood S, Hussain A, Shah KU. In Vitro and Ex Vivo Evaluation of Fluocinolone Acetonide-Acitretin-Coloaded Nanostructured Lipid Carriers for Topical Treatment of Psoriasis. Gels 2022; 8:746. [PMID: 36421568 PMCID: PMC9689900 DOI: 10.3390/gels8110746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 10/19/2023] Open
Abstract
Psoriasis is chronic autoimmune disease that affects 2-5% of the global population. Fluocinolone acetonide (FLU) and acitretin (ACT) are widely used antipsoriatic drugs that belong to BCS classes II and IV, respectively. FLU exhibits side effects, such as skin irritation and a burning sensation. ACT also shows adverse effects, such as gingivitis, teratogenic effects and xerophthalmia. In the present study, topical nanostructured lipid carriers (NLCs) were fabricated to reduce the side effects and enhance the therapeutic efficacy. FLU-ACT-coloaded NLCs were prepared by the modified microemulsion method and optimized by the Box-Behnken model of Design Expert® version 12. The optimization was based on the particle size (PS), zeta potential (ZP) and percentage of encapsulation efficiency (%EE). The physicochemical analyses were performed by TEM, FTIR, XRD and DSC to assess the morphology, chemical interactions between excipients, crystallinity and thermal behavior of the optimized FLU-ACT-coloaded NLCs. The FLU-ACT-coloaded NLCs were successfully loaded into gel and characterized appropriately. The dialysis bag method and Franz diffusion cells were used for the in vitro release and ex vivo permeation studies, respectively. The optimized FLU-ACT-coloaded NLCs had the desired particle size of 288.2 ± 2.3 nm, ZP of -34.2 ± 1.0 mV and %EE values of 81.6 ± 1.1% for ACT and 75 ± 1.3% for FLU. The TEM results confirmed the spherical morphology, while the FTIR results showed the absence of chemical interactions of any type among the ingredients of the FLU-ACT-coloaded NLCs. The XRD and DSC analyses confirmed the amorphous nature and thermal behavior. The in vitro study showed the sustained release of the FLU and ACT from the optimized FLU-ACT-coloaded NLCs and FLU-ACT-coloaded NLC gel compared with the FLU-ACT suspension and conventional gel. The ex vivo study confirmed the minimal permeation of both drugs from the FLU-ACT-coloaded NLC gel.
Collapse
Affiliation(s)
- Hassan Raza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Aam University, Islamabad 45230, Pakistan
| | | | - Zakir Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Aam University, Islamabad 45230, Pakistan
| | - Atif Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Aam University, Islamabad 45230, Pakistan
| | - Irfa Basharat Rajput
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Aam University, Islamabad 45230, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia
- King Abdullah International Medical Research Center, Alahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Ahsa 31982, Saudi Arabia
| | - Saima Mahmood
- Faculty of pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Abid Hussain
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Aam University, Islamabad 45230, Pakistan
| |
Collapse
|
28
|
Khan MM, Zaidi SS, Siyal FJ, Khan SU, Ishrat G, Batool S, Mustapha O, Khan S, Din FU. Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Rathi R, Sanshita, Kumar A, Vishvakarma V, Huanbutta K, Singh I, Sangnim T. Advancements in Rectal Drug Delivery Systems: Clinical Trials, and Patents Perspective. Pharmaceutics 2022; 14:2210. [PMID: 36297645 PMCID: PMC9609333 DOI: 10.3390/pharmaceutics14102210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
The rectal route is an effective route for the local and systemic delivery of active pharmaceutical ingredients. The environment of the rectum is relatively constant with low enzymatic activity and is favorable for drugs having poor oral absorption, extensive first-pass metabolism, gastric irritation, stability issues in the gastric environment, localized activity, and for drugs that cannot be administered by other routes. The present review addresses the rectal physiology, rectal diseases, and pharmaceutical factors influencing rectal delivery of drugs and discusses different rectal drug delivery systems including suppositories, suspensions, microspheres, nanoparticles, liposomes, tablets, and hydrogels. Clinical trials on various rectal drug delivery systems are presented in tabular form. Applications of different novel drug delivery carriers viz. nanoparticles, liposomes, solid lipid nanoparticles, microspheres, transferosomes, nano-niosomes, and nanomicelles have been discussed and demonstrated for their potential use in rectal administration. Various opportunities and challenges for rectal delivery including recent advancements and patented formulations for rectal drug delivery have also been included.
Collapse
Affiliation(s)
- Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanshita
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Alpesh Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | | | | | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
30
|
Ouyang H, Hu J, Qiu X, Wu S, Guo F, Tan Y. Improved biopharmaceutical performance of antipsychotic drug using lipid nanoparticles via intraperitoneal route. Pharm Dev Technol 2022; 27:853-863. [PMID: 36124550 DOI: 10.1080/10837450.2022.2124521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aims to develop, characterize, and examine olanzapine-loaded solid lipid nanocarriers (OLAN-SLNs) for effective brain delivery. OLAN has poor water solubility and low penetration through blood-brain barrier (BBB). Herein, OLAN-SLNs were fabricated using high-pressure homogenization (HPH) method followed by their investigation for particle properties. Moreover, in vitro release and in vivo pharmacokinetics profiles of OLAN-SLNs were compared with pure drug. Anti-psychotic activity was performed in LPS-induced psychosis mice model. Furthermore, expressions of the COX-2 and NF-κB were measured trailed by histopathological examination. The optimized formulation demonstrated nanoparticle size (149.1 nm) with rounded morphology, negative zeta potential (-28.9 mV), lower PDI (0.334), and excellent entrapment efficiency (95%). OLAN-SLNs significantly retarded the drug release and showed sustained release pattern as compared to OLAN suspension. Significantly enhanced bioavailability (ninefold) was demonstrated in OLAN-SLNs when compared with OLAN suspension. Behavioral tests showed significantly less immobility and more struggling time in OLAN-SLNs treated mice group. Additionally, reduced expression of COX-2 and -NF κB in brain was found. Altogether, it can be concluded that SLNs have the potential to deliver active pharmaceutical ingredients to brain, most importantly to enhance their bioavailability and antipsychotic effect, as indicated for OLAN in this study.
Collapse
Affiliation(s)
- Hezhong Ouyang
- Department of Neurology, The People's Hospital of Danyang, Danyang, China
| | - Jinquan Hu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - XingYing Qiu
- Department of Neurology, People's Liberation Army Joint Support Force 900th Hospital, Cangshan Hospital District, Fuzhou, China
| | - Shaochang Wu
- Department of Geriatrics, The Second People's Hospital of LiShui, Lishui, China
| | - Fudong Guo
- Department of Neurology, Affiliated Hospital of Chifeng University, Chifeng city, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental health Centre, Zigong, China
| |
Collapse
|
31
|
Novel Curcumin-Encapsulated α-Tocopherol Nanoemulsion System and Its Potential Application for Wound Healing in Diabetic Animals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7669255. [PMID: 36158895 PMCID: PMC9499807 DOI: 10.1155/2022/7669255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Objective This project was aimed at formulating a novel nanoemulsion system and evaluating it for open incision wound healing in diabetic animals. Methods The nanoemulsions were characterized for droplet size and surface charge, drug content, antioxidant and antimicrobial profiling, and wound healing potential in diabetic animals. The skin samples excised were also analyzed for histology, mechanical strength, and vibrational and thermal analysis. Results The optimized nanoemulsion (CR-NE-II) exhibited droplet size of26.76 ± 0.9 nm with negative surface charge (−10.86 ± 1.06 mV), was homogenously dispersed with drug content of68.05 ± 1.2%, released almost82.95 ± 2.2%of the drug within first 2 h of experiment with synergistic antioxidant (95 ± 2.1%) and synergistic antimicrobial activity against selected bacterial strains in comparison to blank nanoemulsion, and promoted significantly fast percent reepithelization (96.47%). The histological, vibrational, thermal, and strength analysis of selected skin samples depicted a uniform and even distribution of collagen fibers which translated into significant increase in strength of skin samples in comparison to the control group. Conclusions The optimized nanoemulsion system significantly downregulated the oxidative stress, enhanced collagen deposition, and precluded bacterial contamination of wound, thus accelerating the skin tissue regeneration process.
Collapse
|
32
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
33
|
Raloxifene-loaded solid lipid nanoparticles decorated gel with enhanced treatment potential of osteoporosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Jamshaid H, Din FU, Malik M, Mukhtiar M, Choi HG, Ur-Rehman T, Khan GM. A cutback in Imiquimod cutaneous toxicity; comparative cutaneous toxicity analysis of Imiquimod nanotransethosomal gel with 5% marketed cream on the BALB/c mice. Sci Rep 2022; 12:14244. [PMID: 35987944 PMCID: PMC9392762 DOI: 10.1038/s41598-022-18671-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Herein, Imiquimod (IMQ) was incorporated in nanotransethosomes (nTES) to develop the IMQ-nTES nano-drug delivery system. IMQ-nTES was optimized using 23 factorial design. The optimized formulation was expressed with a particle size of 192.4 ± 1.60 nm, Poly-dispersibility of 0.115 ± 0.008, and IMQ percent entrapment efficiency of 91.05 ± 3.22%. Smooth and round morphology of IMQ-nTES vesicles was confirmed by TEM micrographs. Moreover, FTIR results have shown drug-excipient compatibility. The IMQ-nTES was laden inside the low molecular weight chitosan gel, which exhibited easy application, spreadability and no irritation to the applied skin. The release pattern has clearly exhibited improved dissolution properties of IMQ with the provision of the sustain release pattern. Higher IMQ content was deposited in deeper epidermis and dermis with IMQ-nTES gel, in contrast to ALDARA. In vivo, comparative toxicity study on BALB/c mice has shown significantly reduced (p < 0.001) psoriatic area severity index (PASI) score and less increment in ear thickness. Epidermal hyperplasia was an obvious finding with ALDARA which was, providentially, minimal in IMQ-nTES gel-treated skin. FTIR analysis of skin tissue has shown an enhancement of lipid and protein content in the ALDARA group, however, in the IMQ-nTES group no such change was observed. With ALDARA application, CD4+ T-cells and constitutive NF-κβ expression were significantly elevated, in comparison to the IMQ-nTES gel treated group. Moreover, the adequate expression of IFN-γ and cytotoxic CD8+ T-cells were suggesting the preserved IMQ efficacy with IMQ-nTES gel. Quantification of cutaneous as well as systemic inflammatory markers has also suggested the reduced psoriatic potential of IMQ-nTES gel. In essence, IMQ-nTES gel can be a suitable alternative to ALDARA owing to its better safety profile.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Pharmacy, Ibadat International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Maimoona Malik
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Mukhtiar
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, Rawalakot, AJK, Pakistan
| | - Han Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
| | - Tofeeq Ur-Rehman
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
35
|
Zahid F, Batool S, Ud-Din F, Ali Z, Nabi M, Khan S, Salman O, Khan GM. Antileishmanial Agents Co-loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity. AAPS PharmSciTech 2022; 23:226. [PMID: 35970966 DOI: 10.1208/s12249-022-02384-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
The prime objective of this study was to develop amphotericin B (AMB) and rifampicin (RIF) co-loaded transfersomal gel (AMB-RIF co-loaded TFG) for effective treatment of cutaneous leishmaniasis (CL). AMB-RIF co-loaded TF was prepared by the thin-film hydration method and was optimized based on particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (%EE), and deformability index. Similarly, AMB-RIF co-loaded TFG was characterized in terms of rheology, spread ability, and pH. In vitro, ex vivo, and in vivo assays were performed to evaluate AMB-RIF co-loaded TF as a potential treatment option for CL. The optimized formulation had vesicles in nanosize range (167 nm) with suitable PDI (0.106), zeta potential (- 19.05 mV), and excellent %EE of RIF (66%) and AMB (85%). Moreover, it had appropriate deformability index (0.952). Additionally, AMB-RIF co-loaded TFG demonstrated suitable rheological behavior for topical application. AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG showed sustained release of the incorporated drugs as compared to AMB-RIF suspension. Furthermore, RIF permeation from AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG was enhanced fivefold and threefold, whereas AMB permeation was enhanced by eightfold and 6.6-fold, respectively. The significantly different IC50, higher CC50, and FIC50 (p < 0.5) showed synergistic antileishmanial potential of AMB-RIF co-loaded TF. Likewise, reduced lesion size and parasitic burden in AMB-RIF co-loaded TF-treated mouse group further established the antileishmanial effect of the optimized formulation. Besides, AMB-RIF co-loaded TFG showed a better safety profile. This study concluded that TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of CL.
Collapse
Affiliation(s)
- Fatima Zahid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar Ud-Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Zakir Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Nabi
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Omer Salman
- Department of Pharmacy, Forman Christian University, Lahore, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan. .,Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
36
|
Eiro N, Fraile M, González-Jubete A, González LO, Vizoso FJ. Mesenchymal (Stem) Stromal Cells Based as New Therapeutic Alternative in Inflammatory Bowel Disease: Basic Mechanisms, Experimental and Clinical Evidence, and Challenges. Int J Mol Sci 2022; 23:ijms23168905. [PMID: 36012170 PMCID: PMC9408403 DOI: 10.3390/ijms23168905] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are an example of chronic diseases affecting 40% of the population, which involved tissue damage and an inflammatory process not satisfactorily controlled with current therapies. Data suggest that mesenchymal stem cells (MSC) may be a therapeutic option for these processes, and especially for IBD, due to their multifactorial approaches such as anti-inflammatory, anti-oxidative stress, anti-apoptotic, anti-fibrotic, regenerative, angiogenic, anti-tumor, or anti-microbial. However, MSC therapy is associated with important limitations as safety issues, handling difficulties for therapeutic purposes, and high economic cost. MSC-derived secretome products (conditioned medium or extracellular vesicles) are therefore a therapeutic option in IBD as they exhibit similar effects to their parent cells and avoid the issues of cell therapy. In this review, we proposed further studies to choose the ideal tissue source of MSC to treat IBD, the implementation of new standardized production strategies, quality controls and the integration of other technologies, such as hydrogels, which may improve the therapeutic effects of derived-MSC secretome products in IBD.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-98-5320050 (ext. 84216) (N.E.); Fax: +34-98-531570 (N.E.)
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
| | | | - Luis O. González
- Department of Anatomical Pathology, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
- Department of Surgery, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-98-5320050 (ext. 84216) (N.E.); Fax: +34-98-531570 (N.E.)
| |
Collapse
|
37
|
Bibi M, Din FU, Anwar Y, Alkenani NA, Zari AT, Mukhtiar M, Abu Zeid IM, Althubaiti EH, Nazish H, Zeb A, Ullah I, Khan GM, Choi HG. Cilostazol-loaded solid lipid nanoparticles: Bioavailability and safety evaluation in an animal model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Salem HF, Ali AA, Rabea YK, El-Ela FIA, Khallaf RA. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: in vitro optimization and in vivo appraisal. Drug Deliv Transl Res 2022; 12:3083-3103. [PMID: 35622235 DOI: 10.1007/s13346-022-01172-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Duloxetine HCl (DXH) is a reuptake inhibitor of serotonin and norepinephrine used to treat the major depressive disorder. Following its extensive hepatic metabolism, acid-labile nature, and limited aqueous solubility, DXH has poor oral bioavailability (40%). The rectal route has been suggested as another route of administration to surmount such challenges. The present study aimed to prepare DXH-loaded glycerosomal (DXH-GLYS) in situ gel for rectal administration to increase DXH permeability and improve its bioavailability. Box-Behnken design (BBD) was adopted to prepare and optimize nanoglycerosomes. The impact of Phospholipon 90G (PL90G), Tween 80 concentrations, and glycerol percentage on encapsulation efficiency, nanoglycerosomal size, % cumulative DXH released, and the cumulative DXH permeated per unit area after 24 h were studied by the design. The pharmacokinetic and pharmacodynamic behavior of optimized formulation was investigated in rats. The formulated DXH-GLYS had a vesicle size ranging between 135.9 and 430.6 nm and an entrapment efficiency between 69.11 and 98.12%. The permeation experiment revealed that the optimized DXH-GLYS in situ gel increased DXH permeation by 2.62-fold compared to DXH solution. Pharmacokinetics studies disclosed that the DXH-GLYS in situ rectal gel exhibited 2.24-times increment in DXH bioavailability relative to oral DXH solution. The pharmacodynamic study revealed that the DXH-GLYS rectal treatment significantly improved the behavioral analysis parameters and was more efficacious as an antidepressant than the oral DXH solution. Collectively, these findings demonstrate that GLYS can be considered a potentially valuable rectal nanocarrier that could boost the DXH efficacy.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmine K Rabea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, 62511, Egypt
| | - Rasha A Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
40
|
Huang CH, Hu PY, Wu QY, Xia MY, Zhang WL, Lei ZQ, Li DX, Zhang GS, Feng JF. Preparation, in vitro and in vivo Evaluation of Thermosensitive in situ Gel Loaded with Ibuprofen-Solid Lipid Nanoparticles for Rectal Delivery. Drug Des Devel Ther 2022; 16:1407-1431. [PMID: 35586185 PMCID: PMC9109935 DOI: 10.2147/dddt.s350886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, shows poor gastrointestinal absorption due to its low solubility, which limits its clinical application. Objective In the present study, we aimed to develop thermosensitive gel-mediated ibuprofen-solid lipid nanoparticles (IBU-SLN-ISG) to improve the dissolution and bioavailability of IBU after rectal delivery. Methods IBU-loaded SLNs (IBU-SLNs) were developed and optimized applying Box-Behnken design. The optimized IBU-SLNs were characterized by physicochemical parameters and morphology. Then, the optimized IBU-SLNs was incorporated into the gel and characterized for gel properties and rheology and investigated its release in vitro, pharmacokinetics in vivo, rectal irritation and rectal retention time. Results The optimized SLNs had an EE of 90.74 ± 1.40%, DL of 11.36 ± 1.20%, MPS of 166.77 ± 2.26 nm, PDI of 0.27 ± 0.08, and ZP of −21.00 ± 0.59 mV. The FTIR spectra confirmed successful encapsulation of the drug inside the nanoparticle as only peaks responsible for the lipid could be identified. This corroborated well with XRD spectra, which showed a completely amorphous state of the IBU-SLNs as compared to the crystalline nature of the pure drug. The gelation temperature of the prepared IBU-SLN-ISG was 33.30 ± 0.78°C, the gelation time was 14.67 ± 2.52 s, the gel strength was 54.00 ± 1.41 s, and the mucoadhesion was (11.54±0.37) × 102dyne/cm2. The in vitro results of IBU-SLNs and IBU-SLN-ISG showed a biphasic release pattern with initial burst release followed by sustained release. More importantly, IBU-SLN-ISG produced much better absorption of IBU and improved bioavailability in rats. In addition, IBU-SLN-ISG caused no irritation or damage to rectal tissues, and could be retained in the rectum for a long time. Conclusion Thermosensitive in situ gel loaded with IBU-solid lipid nanoparticles might be further developed as a more convenient and effective rectal dosage form.
Collapse
Affiliation(s)
- Chun-hui Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China
| | - Peng-yi Hu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Qiu-yan Wu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Ming-yan Xia
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Wen-liu Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Zhi-qiang Lei
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Dong-xun Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Guo-song Zhang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People’s Republic of China
- Correspondence: Guo-song Zhang, National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China, Email
| | - Jian-fang Feng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang, 330006, People’s Republic of China
- Jian-fang Feng, School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, People’s Republic of China, Email
| |
Collapse
|
41
|
Gundogdu E, Demir ES, Ekinci M, Ozgenc E, Ilem-Ozdemir D, Senyigit Z, Gonzalez-Alvarez I, Bermejo M. An Innovative Formulation Based on Nanostructured Lipid Carriers for Imatinib Delivery: Pre-Formulation, Cellular Uptake and Cytotoxicity Studies. NANOMATERIALS 2022; 12:nano12020250. [PMID: 35055267 PMCID: PMC8778264 DOI: 10.3390/nano12020250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Imatinib (IMT) is a tyrosine kinase enzyme inhibitor and extensively used for the treatment of gastrointestinal stromal tumors (GISTs). A nanostructured lipid carrier system (NLCS) containing IMT was developed by using emulsification-sonication methods. The characterization of the developed formulation was performed in terms of its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, loading capacity, sterility, syringeability, stability, in vitro release kinetics with mathematical models, cellular uptake studies with flow cytometry, fluorescence microscopy and cytotoxicity for CRL-1739 cells. The particle size, PDI, loading capacity and zeta potential of selected NLCS (F16-IMT) were found to be 96.63 ± 1.87 nm, 0.27 ± 0.15, 96.49 ± 1.46% and -32.7 ± 2.48 mV, respectively. F16-IMT was found to be stable, thermodynamic, sterile and syringeable through an 18 gauze needle. The formulation revealed a Korsmeyer-Peppas drug release model of 53% at 8 h, above 90% of cell viability, 23.61 µM of IC50 and induction of apoptosis in CRL-1739 cell lines. In the future, F16-IMT can be employed to treat GISTs. A small amount of IMT loaded into the NLCSs will be better than IMT alone for therapy for GISTs. Consequently, F16-IMT could prove to be useful for effective GIST treatment.
Collapse
Affiliation(s)
- Evren Gundogdu
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Emine-Selin Demir
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Meliha Ekinci
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Emre Ozgenc
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Derya Ilem-Ozdemir
- Radiopharmacy Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; (E.G.); (E.-S.D.); (M.E.); (E.O.); (D.I.-O.)
| | - Zeynep Senyigit
- Pharmaceutical Technology Department, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir 35400, Turkey;
| | - Isabel Gonzalez-Alvarez
- Pharmaceutical Technology Department, Faculty of Pharmacy, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain;
- Correspondence:
| | - Marival Bermejo
- Pharmaceutical Technology Department, Faculty of Pharmacy, Miguel Hernández University, Avenida de la Universidad, 03202 Elche, Spain;
| |
Collapse
|
42
|
Mushtaq A, Baseer A, Zaidi SS, Waseem Khan M, Batool S, Elahi E, Aman W, Naeem M, Din FU. Fluconazole-loaded thermosensitive system: In vitro release, pharmacokinetics and safety study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Khan K, Shah SU, Althobaithi YS, Shah KU, Ullah A, Amin A, Khan MK. Preparation, characterizations and in vitro evaluation of Econazole-Btamethasone loaded solid lipid nanoparticles (SLNs). MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tremendous increase of fungal infections in hospitalized or immune compromised patients has been reported from the last two decades. These infections are commonly treated using econazole and miconazole that have shorter half-life and produce severe side effects. All such issues can be addressed using targeted drug delivery. We developed SNLs based formulation for the treatment of mycosis. The high pressure homogenization method was employed for formulation followed by characterization, assay for antifungal activity, in vitro drug release and ex vivo permeation. The particle size of Econazole-Betamethasone-loaded SLNs, Econazole-loaded SLNs, Betamethasone-loaded SLNs and Blank SLNs were 377.4±23 nm, 298.7±9 nm, 177.7±15 nm and 113.4±6 nm respectively. The SEM images displayed that droplets are uniform and spherical in shape which ranged from 113.4±6 to 377.4±23 nm. In DSC, the SLNs formulation showed endothermic peak at 185.2 °C±0.9. Drug content of Econazole loaded SLNs was 82±0.1 and its entrapment efficiency was approximately 90.4±0.2. Betamethasone SLNs displayed highest drug content which was 83.5±0.4 while encapsulation efficiency of same formulation was 94.2±0.4. The Econazole and Betamethasone combined SLNs exhibited drug content of 80±0.3 while its encapsulation efficiency was 93.1±0.5. E-SLNs have significantly high drug release (p < 0.05) as compared to other formulation B-SLNs and EB-SLNs.The Econazole loaded formulations displayed antifungal activity with no synergistic or antagonistic effect with each other. Drug permeation from Econazole SLNs, Betamethasone SLNs and combined Econazole and Betamethasone SLNs was 45%, 40% and 38% respectively. Overall, SLN’s are an effective carrier for topical delivery of antifungals agents and that may be helpful in bypassing the serious side effects associated with oral delivery.
Collapse
Affiliation(s)
- Kamran Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University D.I.Khan, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University D.I.Khan, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| | - Yusuf S. Althobaithi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
| | | | - Aman Ullah
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Adnan Amin
- Natural Product Research Lab (NPRL), Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Muhammad Khalid Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University D.I.Khan, Pakistan
| |
Collapse
|
44
|
Rashid SA, Bashir S, Naseem F, Farid A, Rather IA, Hakeem KR. Olive Oil Based Methotrexate Loaded Topical Nanoemulsion Gel for the Treatment of Imiquimod Induced Psoriasis-like Skin Inflammation in an Animal Model. BIOLOGY 2021; 10:biology10111121. [PMID: 34827114 PMCID: PMC8615261 DOI: 10.3390/biology10111121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Psoriasis, being chronic inflammatory illness, provoked by genetic and environmental factors is linked to several other life-threatening diseases. Methotrexate is regarded as gold standard for the management of psoriasis, so an attempt was made to incorporate this drug into nanoemulsion gel. Thus olive oil based formulation was fabricated to target animal model induced psoriasis- like skin inflammation. The optimized methotrexate nanoemulsion gel formulation produced a psoriasis area and severity Index (PASI) decrease that was similar or better than the 91% reduction seen in the methotrexate tablet group. The results of this study revealed effectiveness of methotrexate nanoemulsion gel formulation to treat psoriasis and reduce the remission of psoriasis-like symptoms. Abstract Psoriasis, a chronic inflammatory illness, is on the rise and is linked to several other life-threatening diseases. The primary goal of this study was to create a nanoemulsion gel loaded with methotrexate and olive oil (MTX NEG). The formulation was evaluated for physicochemical characterization, entrapment efficiency, drug release kinetics, skin permeation studies and stability tests. In addition, the efficacy of MTX NEG against psoriasis was tested using imiquimod-induced psoriasis in a rat model. The final optimized MTX NEG was developed with a particle size of 202.6 ± 11.59 nm and a PDI of 0.233 ± 0.01, with a 76.57 ± 2.48% average entrapment efficiency. After 20 h, the release kinetics predicted a 72.47% drug release at pH 5.5. FTIR findings demonstrated that the optimized MTX NEG formulation effectively fluidized both the epidermis and dermis of the skin, potentially increasing drug permeability and retention. The application of Tween 80 and PEG 400, on the other hand, significantly enhanced these effects, as these are well known penetration enhancers. After 24 h, an average of 70.78 ± 5.8 μg/cm2 of methotrexate was permeated from the nanoemulsion gel with a flux value of 2.078 ± 0.42 μg/cm2/h, according to permeation measurements. Finally, in vivo experiments on rabbit skin revealed that the increased skin penetration of methotrexate-loaded nanoemulsion gel was not due to structural alterations in intercellular lipid layers in the stratum corneum. In vivo antipsoriatic studies on rats revealed that MTX NEG produced a PASI decrease that was extremely similar and even better than the 91% reduction seen in the MTX tablet group. According to the pharmacokinetic profile, Cmax was 8.5 μg/mL, Tmax was 12 h, and t1/2 was 15.5 ± 2.37 h. These findings reinforce that MTX-NEG based on olive oil could be a possible treatment for psoriasis and could decrease the remission of psoriasis-like symptoms.
Collapse
Affiliation(s)
- Sheikh Abdur Rashid
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| | - Sajid Bashir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Faiza Naseem
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Arshad Farid
- Gomal Centre of Biochemistry & Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| |
Collapse
|
45
|
Constantinou AP, Provatakis N, Li Q, Georgiou TK. Homopolymer and ABC Triblock Copolymer Mixtures for Thermoresponsive Gel Formulations. Gels 2021; 7:116. [PMID: 34449601 PMCID: PMC8395906 DOI: 10.3390/gels7030116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Our group has recently invented a novel series of thermoresponsive ABC triblock terpolymers based on oligo(ethylene glycol) methyl ether methacrylate with average Mn 300 g mol-1 (OEGMA300, A unit), n-butyl methacrylate (BuMA, B unit) and di(ethylene glycol) methyl ether methacrylate (DEGMA, C unit) with excellent thermogelling properties. In this study, we investigate how the addition of OEGMA300x homopolymers of varying molar mass (MM) affects the gelation characteristics of the best performing ABC triblock terpolymer. Interestingly, the gelation is not disrupted by the addition of the homopolymers, with the gelation temperature (Tgel) remaining stable at around 30 °C, depending on the MM and content in OEGMA300x homopolymer. Moreover, stronger gels are formed when higher MM OEGMA300x homopolymers are added, presumably due to the homopolymer chains acting as bridges between the micelles formed by the triblock terpolymer, thus, favouring gelation. In summary, novel formulations based on mixtures of triblock copolymer and homopolymers are presented, which can provide a cost-effective alternative for use in biomedical applications, compared to the use of the triblock copolymer only.
Collapse
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (A.P.C.); (Q.L.)
| | - Nikitas Provatakis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| | - Qian Li
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (A.P.C.); (Q.L.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (A.P.C.); (Q.L.)
| |
Collapse
|
46
|
Sendon-Lago J, Rio LGD, Eiro N, Diaz-Rodriguez P, Avila L, Gonzalez LO, Vizoso FJ, Perez-Fernandez R, Landin M. Tailored Hydrogels as Delivery Platforms for Conditioned Medium from Mesenchymal Stem Cells in a Model of Acute Colitis in Mice. Pharmaceutics 2021; 13:pharmaceutics13081127. [PMID: 34452089 PMCID: PMC8400526 DOI: 10.3390/pharmaceutics13081127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increasingly prevalent and current therapies are not completely effective. Mesenchymal stem cells are emerging as a promising therapeutic option. Here, the effect of local hydrogel application loaded with conditioned medium (CM) from human uterine cervical stem cells (hUCESC-CM) in an experimental acute colitis mice model has been evaluated. Colitis induction was carried out in C57BL/6 mice by dissolving dextran sulfate sodium (DSS) in drinking water for nine days. Ulcers were treated by rectal administration of either mesalazine (as positive control) or a mucoadhesive and thermosensitive hydrogel loaded with hUCESC-CM (H-hUCESC-CM). Body weight changes, colon length, and histopathological analysis were evaluated. In addition, pro-inflammatory TNF-α, IL-6, and IFN-γ mRNA levels were measured by qPCR. Treatment with H-hUCESC-CM inhibited body weight loss and colon shortening and induced a significant decrease in colon mucosa degeneration, as well as TNF-α, IFN-γ, and IL-6 mRNA levels. Results indicate that H-hUCESC-CM effectively alleviated DSS-induced colitis in mice, suggesting that H-hUCESC-CM may represent an attractive cell-free therapy for local treatment of IBD.
Collapse
Affiliation(s)
- Juan Sendon-Lago
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
| | - Lorena Garcia-del Rio
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
| | - Noemi Eiro
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
| | - Leandro Avila
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
| | - Luis O. Gonzalez
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
| | - Francisco J. Vizoso
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| | - Roman Perez-Fernandez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| |
Collapse
|
47
|
Zhang Z, Pan Y, Zhao Y, Ren M, Li Y, Lu G, Wu K, He S. Topotecan-loaded thermosensitive nanocargo for tumor therapy: In vitro and in vivo analyses. Int J Pharm 2021; 606:120871. [PMID: 34246742 DOI: 10.1016/j.ijpharm.2021.120871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023]
Abstract
This study demonstrates the development of topotecan (TCN) loaded thermosensitive nanocargos (TCN-TS-NC) for intramuscular (IM) administration with enhanced antitumor activity. In this regards, TCN loaded temperature dependent solid lipid nanoparticles (SLNs) were prepared with micro-emulsion method, which were then incorporated into temperature sensitive poloxamer solution to develop TCN-TS-NC. The particle size, entrapment efficiency (%EE), zeta potential and transmission electron microscopy (TEM) analysis of the TCN-TS-NC were performed. Moreover, the inject-ability, release pattern, apoptosis, cellular uptake, pharmacokinetics and antitumor studies of the TCN-TS-NC were attained and compared with TCN solution and TCN-Emulgel (poloxamer solution containing TCN). At room temperature, the TCN loaded SLNs were solid and poloxamer solution remains liquid, however, TCN loaded SLNs melted to liquid and Emulgel converted into gel from, at body temperature, resulting controlled release of the incorporated drug. The TCN-TS-NC showed enhanced cellular uptake and better apoptosis. Similarly, it reduces Cmax and sustained its level for a significantly longer time in rats, as compared to the TCN-Emulgel and TCN solution. Moreover, a significantly improved antitumor activity was observed in TCN-TS-NC treated tumor bearing athymic nude mice when compared with the control, TCN solution and TCN-Emulgel applied mice. Thus, the TCN-TS-NC system showed control release of the drug with no initial fast effect. Furthermore, it enhanced the antitumor activity of TCN with comparatively no toxicity. It is therefore concluded that TCN-TS-NC could be a potentially more suitable drug delivery system for the delivery of TCN.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
48
|
Xing R, Mustapha O, Ali T, Rehman M, Zaidi SS, Baseer A, Batool S, Mukhtiar M, Shafique S, Malik M, Sohail S, Ali Z, Zahid F, Zeb A, Shah F, Yousaf A, Din F. Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9968602. [PMID: 34285920 PMCID: PMC8275402 DOI: 10.1155/2021/9968602] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chemotherapeutic drugs cause severe toxicities if administered unprotected, without proper targeting, and controlled release. In this study, we developed topotecan- (TPT-) loaded solid lipid nanoparticles (SLNs) for their chemotherapeutic effect against colorectal cancer. The TPT-SLNs were further incorporated into a thermoresponsive hydrogel system (TRHS) (TPT-SLNs-TRHS) to ensure control release and reduce toxicity of the drug. Microemulsion technique and cold method were, respectively, used to develop TPT-SLNs and TPT-SLNs-TRHS. Particle size, polydispersive index (PDI), and incorporation efficiency (IE) of the TPT-SLNs were determined. Similarly, gelation time, gel strength, and bioadhesive force studies of the TPT-SLNs-TRHS were performed. Additionally, in vitro release and pharmacokinetic and antitumour evaluations of the formulation were done. RESULTS TPT-SLNs have uniformly distributed particles with mean size in nanorange (174 nm) and IE of ~90%. TPT-SLNs-TRHS demonstrated suitable gelation properties upon administration into the rat's rectum. Moreover, drug release was exhibited in a control manner over an extended period of time for the incorporated TPT. Pharmacokinetic studies showed enhanced bioavailability of the TPT with improved plasma concentration and AUC. Further, it showed significantly enhanced antitumour effect in tumour-bearing mice as compared to the test formulations. CONCLUSION It can be concluded that SLNs incorporated in TRHS could be a potential source of the antitumour drug delivery with better control of the drug release and no toxicity.
Collapse
Affiliation(s)
- R. Xing
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - O. Mustapha
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, DOW University of Health Sciences, 74200 Karachi, Pakistan
| | - T. Ali
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, DOW University of Health Sciences, 74200 Karachi, Pakistan
| | - M. Rehman
- HE.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - S. S. Zaidi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, DOW University of Health Sciences, 74200 Karachi, Pakistan
| | - A. Baseer
- Department of Pharmacy, Abasyn University Peshawar, KPK, Pakistan
| | - S. Batool
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M. Mukhtiar
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, AJK, Pakistan
| | - S. Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, DOW University of Health Sciences, 74200 Karachi, Pakistan
| | - M. Malik
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S. Sohail
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Z. Ali
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - F. Zahid
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - A. Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Sector G-7/4, Islamabad 44000, Pakistan
| | - F. Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Sector G-7/4, Islamabad 44000, Pakistan
| | - A. Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - F. Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
49
|
Liu C, Ma Y, Guo S, He B, Jiang T. Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence. Biomater Sci 2021; 9:4356-4363. [PMID: 34127987 DOI: 10.1039/d0bm01766c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Residual microtumours after surgical resection leading to tumour relapse is one of the major challenges for cancer therapy. Herein, we developed a nano-hybrid oligopeptide hydrogel for topical delivery of a chemotherapeutic drug, docetaxel (DTX), to inhibit the post-surgical tumour recurrence. This nano-hybrid hydrogel (DTX-CTs/Gel) was prepared by encapsulating DTX in cell-penetrating peptide-modified transfersomes followed by embedment in an oligopeptide hydrogel. The obtained DTX-CTs/Gel showed paintable and injectable properties, and could support prolonged retention at the administrated sites after topical administration. DTX-CTs released from the hydrogel presented high skin and tumour penetration capabilities, and increased the accumulation of DTX in the cancer cells leading to enhanced cell death. We showed that the topical delivery of DTX using DTX-CTs/Gel efficiently slowed down the tumour relapse in post-surgical mouse melanoma and breast tumour models.
Collapse
Affiliation(s)
- Chendan Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Yudi Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Song Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
50
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|