1
|
Zhao J, Liu H, Zhao Y, Qi Y, Wang R, Lv Z, Yu Y, Sun S, Wang Y, Xie A. Construction of CS-SDAEM long-chain polysaccharide derivative on TA@CNTs coated PVDF membrane with effective oil-water emulsion purification and low contamination rate. Int J Biol Macromol 2024; 275:134230. [PMID: 39084996 DOI: 10.1016/j.ijbiomac.2024.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Currently, the most effective way to improve the anti-fouling performance of water treatment separation membrane is to enhance the hydrophilicity of the membrane surface, but it can still cause contamination, leading to the occurrence of flux reduction. The construction of a strong hydration layer to resist wastewater contamination is still a challenging task. In this study, a defect-free hydration layer barrier was achieved by grafting chitosan polysaccharide derivatives (CS-SDAEM) on the membrane, which achieved in effective fouling prevention and low flux decline rate. A layer of tannic acid-coated carbon nanotubes (TA@CNTs) has been uniformly deposited on the commercial PVDF membrane so that the surface was rich in -COOH groups, providing sufficient reaction sites. These reactive groups facilitate the grafting of amphiphilic polymers onto the membrane. This modification strategy achieved in enhancing the antifouling performance. The modified membrane achieved low contamination rate with DR of 16.9 % for wastewater filtration, and the flux recovery rate was above 95 % with PWF of 1100 (L·m-2·h-1). The membrane had excellent anti-fouling performance, which provided a new route for the future development of water treatment membrane.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuanhang Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Yiming Wang
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China
| | - Aihua Xie
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
| |
Collapse
|
2
|
Nguyen-Thi PT, Vo TK, Le HT, Nguyen NTT, Nguyen TT, Van Vo G. Translation from Preclinical Research to Clinical Trials: Transdermal Drug Delivery for Neurodegenerative and Mental Disorders. Pharm Res 2024; 41:1045-1092. [PMID: 38862719 DOI: 10.1007/s11095-024-03718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
Neurodegenerative diseases (NDs), particularly dementia, provide significant problems to worldwide healthcare systems. The development of therapeutic materials for various diseases has a severe challenge in the form of the blood-brain barrier (BBB). Transdermal treatment has recently garnered widespread favor as an alternative method of delivering active chemicals to the brain. This approach has several advantages, including low invasiveness, self-administration, avoidance of first-pass metabolism, preservation of steady plasma concentrations, regulated release, safety, efficacy, and better patient compliance. Topics include the transdermal method for therapeutic NDs, their classification, and the mechanisms that allow the medicine to enter the bloodstream through the skin. The paper also discusses the obstacles and potential outcomes of transdermal therapy, emphasizing the benefits and drawbacks of different approaches.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi, 100000, Vietnam
| | - Huong Thuy Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Nhat Thang Thi Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam.
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
4
|
Pouroutzidou GK, Papadopoulou L, Lazaridou M, Tsachouridis K, Papoulia C, Patsiaoura D, Tsamesidis I, Chrissafis K, Vourlias G, Paraskevopoulos KM, Anastasiou AD, Bikiaris DN, Kontonasaki E. Composite PLGA–Nanobioceramic Coating on Moxifloxacin-Loaded Akermanite 3D Porous Scaffolds for Bone Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030819. [PMID: 36986685 PMCID: PMC10053907 DOI: 10.3390/pharmaceutics15030819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Silica-based ceramics doped with calcium and magnesium have been proposed as suitable materials for scaffold fabrication. Akermanite (Ca2MgSi2O7) has attracted interest for bone regeneration due to its controllable biodegradation rate, improved mechanical properties, and high apatite-forming ability. Despite the profound advantages, ceramic scaffolds provide weak fracture resistance. The use of synthetic biopolymers such as poly(lactic-co-glycolic acid) (PLGA) as coating materials improves the mechanical performance of ceramic scaffolds and tailors their degradation rate. Moxifloxacin (MOX) is an antibiotic with antimicrobial activity against numerous aerobic and anaerobic bacteria. In this study, silica-based nanoparticles (NPs) enriched with calcium and magnesium, as well as copper and strontium ions that induce angiogenesis and osteogenesis, respectively, were incorporated into the PLGA coating. The aim was to produce composite akermanite/PLGA/NPs/MOX-loaded scaffolds through the foam replica technique combined with the sol–gel method to improve the overall effectiveness towards bone regeneration. The structural and physicochemical characterizations were evaluated. Their mechanical properties, apatite forming ability, degradation, pharmacokinetics, and hemocompatibility were also investigated. The addition of NPs improved the compressive strength, hemocompatibility, and in vitro degradation of the composite scaffolds, resulting in them keeping a 3D porous structure and a more prolonged release profile of MOX that makes them promising for bone regeneration applications.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Lazaridou
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Tsachouridis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Chrysanthi Papoulia
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Patsiaoura
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vourlias
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos M. Paraskevopoulos
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Dimitrios N. Bikiaris
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| |
Collapse
|
5
|
Qiu Y, Wu Z, Wang J, Zhang C, Zhang H. Introduction of Materials Genome Technology and Its Applications in the Field of Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1906. [PMID: 36903027 PMCID: PMC10004319 DOI: 10.3390/ma16051906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Traditional research and development (R&D) on biomedical materials depends heavily on the trial and error process, thereby leading to huge economic and time burden. Most recently, materials genome technology (MGT) has been recognized as an effective approach to addressing this problem. In this paper, the basic concepts involved in the MGT are introduced, and the applications of MGT in the R&D of metallic, inorganic non-metallic, polymeric, and composite biomedical materials are summarized; in view of the existing limitations of MGT for R&D of biomedical materials, potential strategies are proposed on the establishment and management of material databases, the upgrading of high-throughput experimental technology, the construction of data mining prediction platforms, and the training of relevant materials talents. In the end, future trend of MGT for R&D of biomedical materials is proposed.
Collapse
Affiliation(s)
| | | | | | - Chao Zhang
- Correspondence: (C.Z.); (H.Z.); Tel.: +86-20-39332145 (C.Z. & H.Z.)
| | - Heye Zhang
- Correspondence: (C.Z.); (H.Z.); Tel.: +86-20-39332145 (C.Z. & H.Z.)
| |
Collapse
|
6
|
Vlachou M, Siamidi A, Anagnostopoulou D, Protopapa C, Christodoulou E, Malletzidou L, Delli E, Siamidis I, Bikiaris ND. Tuning the release of the pineal hormone melatonin via poly(ε-caprolactone)-based copolymers matrix tablets. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Baharvandi Z, Salimi A, Arjmand R, Jelowdar A, Rafiei A. Development, Characterization, and In Vitro Biological Performance of Amphotericin B and Terbinafine Microemulsions Against Leishmania major. Curr Microbiol 2022; 79:386. [DOI: 10.1007/s00284-022-03075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
8
|
Özcan Bülbül E, Üstündağ Okur N, Mısırlı D, Cevher E, Tsanaktsis V, Bingöl Özakpınar Ö, Siafaka PI. Applying quality by design approach for the determination of potent paclitaxel loaded poly(lactic acid) based implants for localized tumor drug delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2067538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Duygu Mısırlı
- Department of Biochemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Vasilios Tsanaktsis
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panoraia I. Siafaka
- School of Health Studies, KES College, Nicosia, Cyprus
- Faculty of Pharmacy, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Vlachou M, Siamidi A, Anagnostopoulou D, Christodoulou E, Bikiaris ND. Modified Release of the Pineal Hormone Melatonin from Matrix Tablets Containing Poly(L-lactic Acid) and Its PLA-co-PEAd and PLA-co-PBAd Copolymers. Polymers (Basel) 2022; 14:polym14081504. [PMID: 35458252 PMCID: PMC9027688 DOI: 10.3390/polym14081504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022] Open
Abstract
In terms of drug delivery, the attractive properties of poly(L-lactic acid) (PLA) and its aliphatic polyesters, poly(ethylene adipate) (PEAd) and poly(butylene adipate) (PBAd), render them ideal co-formulants for the preparation of modified-release pharmaceutical formulations. Furthermore, we have previously demonstrated that by adding a “softer” aliphatic polyester onto the macromolecular chain of PLA, i.e., PEAd or PBAd, resulting in the formation of the PLA’s copolymers (PLA-co-PEAd and PLA-co-PBAd, in 95/5, 90/10, 75/25 and 50/50 weight ratios), the hydrolysis rate is also severely affected, leading to improved dissolution rates of the active pharmaceutical ingredients (API). In the present report, we communicate our findings on the in vitro modified release of the chronobiotic hormone melatonin (MLT), in aqueous media (pH 1.2 and 6.8), from poly(L-lactic acid) and the aforementioned copolymer matrix tablets, enriched with commonly used biopolymers, such as hydroxypropylmethylcellulose (HPMC K15), lactose monohydrate, and sodium alginate. It was found that, depending on the composition and the relevant content of these excipients in the matrix tablets, the release of MLT satisfied the sought targets for fast sleep onset and sleep maintenance. These findings constitute a useful background for pursuing relevant in vivo studies on melatonin in the future.
Collapse
Affiliation(s)
- Marilena Vlachou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece; (A.S.); (D.A.)
- Correspondence: ; Tel.: +30-2107274674
| | - Angeliki Siamidi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece; (A.S.); (D.A.)
| | - Dionysia Anagnostopoulou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece; (A.S.); (D.A.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (N.D.B.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (N.D.B.)
| |
Collapse
|
10
|
Evaluating Non-Conventional Chitosan Sources for Controlled Release of Risperidone. Polymers (Basel) 2022; 14:polym14071355. [PMID: 35406227 PMCID: PMC9002647 DOI: 10.3390/polym14071355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, two chitosan samples from cuttlebone and squid pen are produced and characterized. We studied the formation of thermoresponsive hydrogels with β-glycerol phosphate and found proper formulations that form the hydrogels at 37 °C. Gel formation depended on the chitosan source being possible to produce the thermoresponsive hydrogels at chitosan concentration of 1% with cuttlebone chitosan but 1.5% was needed for squid pen. For the first time, these non-commercial chitosan sources have been used in combination with β-glycerol phosphate to prepare risperidone formulations for controlled drug delivery. Three types of formulations for risperidone-controlled release have been developed, in-situ gelling formulations, hydrogels and xerogels. The release profiles show that in-situ gelling formulations and particularly hydrogels allow an extended control release of risperidone while xerogels are not appropriate formulations for this end since risperidone was completely released in 48 h.
Collapse
|
11
|
Applications of innovative technologies to the delivery of antipsychotics. Drug Discov Today 2021; 27:401-421. [PMID: 34601123 DOI: 10.1016/j.drudis.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Psychosis is a high-incidence pathology associated with a profound alteration in the perception of reality. The limitations of drugs available on the market have stimulated the search for alternative solutions to achieve effective antipsychotic therapies. In this review, we evaluate innovative formulations of antipsychotic drugs developed through the application of modern pharmaceutical technologies, including classes of micro and nanocarriers, such as lipid formulations, polymeric nanoparticles (NPs), solid dispersions, and cyclodextrins (CDs). We also consider alternative routes of administration to the oral and parenteral ones currently used. Improved solubility, stability of preparations, and pharmacokinetic (PK) and pharmacodynamic (PD) parameters confirm the potential of these new formulations in the treatment of psychotic disorders.
Collapse
|
12
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Lazaridou M, Nanaki S, Zamboulis A, Papoulia C, Chrissafis K, Klonos PA, Kyritsis A, Vergkizi-Nikolakaki S, Kostoglou M, Bikiaris DN. Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug. Int J Pharm 2021; 606:120925. [PMID: 34303816 DOI: 10.1016/j.ijpharm.2021.120925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Novel chitosan copolymers (CS-g-SBMA) grafted with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) in various molar ratio 1.5:1, 5:1, 11.5:1 and 20:1, were synthesized in the present study. SBMA was selected as zwitterion molecule showing promising antibacterial properties. Grafted chitosan derivatives were fully characterized for their successful synthesis by NMR and FT-IR, for their crystallinity by XRD showing reduced crystallinity compared to CS alone. Furthermore, swelling studies were conducted with the grafted derivatives showing extensive swelling capacity (maximum degree of swelling up to 1800%) and water absorption was studied with differential scanning calorimetry and equilibrium water adsorption/desorption isotherms were analyzed. Caspofungin, a novel antifungal drug, was used to prepare a double-acting system, with both antibacterial and antifungal properties, proper for topical use. Drug loaded hydrogels were prepared with 10, 20 and 30 wt% drug content and the loaded hydrogels were fully characterized while antimicrobial studies showed enhanced properties. Caspofungin in vitro release showed an initial burst effect followed by a diffusion process while data analysis verified the initial burst release followed by a quasi Fickian diffusion-driven sustained release. Enhance antimicrobial properties was also observed in caspofungin-loaded hydrogels showing the successful fulfill of our scope; an amphiphilic system having great potential for the development of patches with inherent antimicrobial properties and prolonged antifungal properties.
Collapse
Affiliation(s)
- Maria Lazaridou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Chrysanthi Papoulia
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | | | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Souzan Vergkizi-Nikolakaki
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Macedonia, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
14
|
Transdermal delivery of second-generation antipsychotics for management of schizophrenia; disease overview, conventional and nanobased drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Advances in controlled release hormonal technologies for contraception: A review of existing devices, underlying mechanisms, and future directions. J Control Release 2021; 330:797-811. [DOI: 10.1016/j.jconrel.2020.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
|
16
|
Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021; 16:24-46. [PMID: 33613728 PMCID: PMC7878458 DOI: 10.1016/j.ajps.2020.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases, especially cancer, is held great attention. Up to date, several approaches have been employed in order to develop smart nanotheranostics, which combine bioactive targeting on specific tissues as well as diagnostic properties. The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time. Consequently, the possibility of over- or under-dosing is decreased. Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes. Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging. In fact, various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics. Inorganic nanoparticles as gold, silver, silica based nanomaterials or organic nanoparticles as polymers, carbon based nanomaterials, liposomes have been reported as multifunctional nanotheranostics. In this review, the imaging modalities according to their use in various diseases are summarized, providing special details for radiolabeling. In further, the most current nanotheranostics categorized via the used nanomaterials are also summed up. To conclude, this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Üstündağ Okur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Istanbul, Turkey
| | - Ioannis D. Karantas
- 2nd Clinic of Internal Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | - Mehmet Evren Okur
- Faculty of Pharmacy, Department of Pharmacology, University of Health Sciences, Istanbul, Turkey
| | | |
Collapse
|
17
|
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020; 15:661-684. [PMID: 33363624 PMCID: PMC7750807 DOI: 10.1016/j.ajps.2019.11.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Wound healing is an unmet therapeutic challenge among medical society since wound assessment and management is a complex procedure including several factors playing major role in healing process. Wounds can mainly be categorized as acute or chronic. It is well referred that the acute wound displays normal wound physiology while healing, in most cases, is seemed to progress through the normal phases of wound healing. On the other hand, a chronic wound is physiologically impaired. The main problem in wound management is that the majority of wounds are colonized with microbes, whereas this does not mean that all wounds will be infected. In this review, we address the problems that clinicians face to manage while treat acute and chronic wounds. Moreover, we demonstrate the pathophysiology, etiology, prognosis and microbiology of wounds. We further introduce the state of art in pharmaceutical technology field as part of wound management aiming to assist health professionals to overcome the current implications on wound assessment. In addition, authors review researches which included the use of gels and dermal films as wound healing agents. It can be said that natural and synthetic drugs or carriers provide promising solutions in order to meet the wound management standards. However, are the current strategies as desirable as medical society wish?
Collapse
Affiliation(s)
- Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki 54124, Greece
| | - Zeynep Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
18
|
Bülbül EÖ, Karantas ID, Okur ME, Siafaka PI, Okur NÜ. Schizophrenia; A Review on Promising Drug Delivery Systems. Curr Pharm Des 2020; 26:3871-3883. [DOI: 10.2174/1381612826666200523173102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
Background:
Schizophrenia belongs to mental illnesses affecting 1% of the worldwide population. Its
therapy is still unmet; thus, researchers aimed to develop new pharmacological molecules which can improve its
management.
Methods:
Moreover, the current typical and atypical antipsychotics should be formulated in more efficacious
systems that can deliver the drug in the brain with as few side effects as possible. Further, the development of
long-acting efficient drug delivery systems could be significant in minimizing frequent dosing which is nonpreferred
to schizophrenics.
Results:
Herein, authors focused on current developments of antipsychotic medications used in schizophrenia
management. Various studies, which include the use of first and second-generation antipsychotics, were analyzed
according to their efficacy. In fact, in this review, oral, injectable, transdermal and intranasal formulations entrapped
antipsychotics are presented to be valuable guidance for scientists to formulate more effective drug delivery
systems for schizophrenic patients.
Conclusions:
This review aimed to assist researchers working on schizophrenia management by summarizing
current medications and newly synthesized drug delivery systems recently found in the literature.
Collapse
Affiliation(s)
- Ece Ö. Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki, Greece
| | - Mehmet E. Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Ü. Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
19
|
Okur NÜ, Yozgatli V, Okur ME. In vitro–in vivo evaluation of tetrahydrozoline‐loaded ocular in situ gels on rabbits for allergic conjunctivitis management. Drug Dev Res 2020; 81:716-727. [DOI: 10.1002/ddr.21677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of Health Sciences Istanbul Turkey
| | - Vildan Yozgatli
- Department of Pharmaceutical Technology, Faculty of PharmacyEge University İzmir Turkey
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of PharmacyUniversity of Health Sciences İstanbul Turkey
| |
Collapse
|
20
|
Analyzing Nanotheraputics-Based Approaches for the Management of Psychotic Disorders. J Pharm Sci 2019; 108:3757-3768. [DOI: 10.1016/j.xphs.2019.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
|
21
|
Ngan CL, Fard Masoumi HR, Basri M, Abdul Rahman MB. Development of nano-colloidal system for fullerene by ultrasonic-assisted emulsification techniques based on artificial neural network. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
McKinley D, Patel SK, Regev G, Rohan LC, Akil A. Delineating the effects of hot-melt extrusion on the performance of a polymeric film using artificial neural networks and an evolutionary algorithm. Int J Pharm 2019; 571:118715. [PMID: 31560958 DOI: 10.1016/j.ijpharm.2019.118715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022]
Abstract
The aim of this study was to utilize an artificial neural network (ANN) in conjunction with an evolutionary algorithm to investigate the relationship between hot melt extrusion (HME) process parameters and vaginal film performance. Investigated HME process parameters were: barrel temperature, screw speed, and feed rate. Investigated film performance attributes were: percent dissolution at 30 min, puncture strength, and drug content. An ANN model was successfully developed and validated with a root mean squared error of 0.043 and 0.098 for training and validation, respectively. Of all three assessed process parameters, the model revealed that barrel temperature has a significant impact on film performance. An increase in barrel temperature resulted in increased dissolution and punctures strength and decreased drug content. Additionally, a successful implementation of an evolutionary algorithm was carried out in order to demonstrate the potential applicability of the developed ANN model in film formulation optimization. In this analysis, the values predicted of film performance attributes were within 1% error of the experimental data. The findings of this study provide a quantitative framework to understand the relationship between HME parameters and film performance. This quantitative framework has the potential to be used for film formulation development and optimization.
Collapse
Affiliation(s)
- DeAngelo McKinley
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA
| | - Sravan Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Galit Regev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Lisa C Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Ayman Akil
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA.
| |
Collapse
|
23
|
Abruzzo A, Cerchiara T, Luppi B, Bigucci F. Transdermal Delivery of Antipsychotics: Rationale and Current Status. CNS Drugs 2019; 33:849-865. [PMID: 31493244 DOI: 10.1007/s40263-019-00659-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this article is to provide the rationale for the development of transdermal formulations of antipsychotics by highlighting their main advantages, starting with an overview of the antipsychotic formulations that are currently available on the market. Progress regarding transdermal antipsychotic formulations was investigated by performing a search of papers, patents and clinical trials published in the last 10 years. Available data on antipsychotic transdermal formulations are reported and discussed, focusing on the characteristics of the dosage forms and their ability to promote drug absorption. Despite the current availability of a large number of antipsychotics, only a few of these drugs (e.g. aripiprazole, asenapine, blonanserin, chlorpromazine, haloperidol, olanzapine, prochlorperazine, quetiapine, and risperidone) have been developed as transdermal delivery systems. Several papers and patents show that transdermal formulations, such as creams, films, gels, nanosystems, patches, solutions, and sprays, have been evaluated with the aim of expanding the clinical utility of antipsychotic drugs. In particular, the employment of different strategies, such as the use of nanoparticles/vesicles, or permeation enhancers as well as microneedles with iontophoresis, may improve the absorption of antipsychotic drugs through the skin. However, few clinical trials on transdermal delivery of antipsychotic drugs are available and only delivery systems containing asenapine and blonanserin have shown interesting clinical results in terms of pharmacokinetic data, efficacy, and tolerability. Recently, the transdermal patch formulation of blonanserin was approved in Japan for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| |
Collapse
|
24
|
McKinley D, Kumar Patel S, Regev G, Rohan LC, Akil A. WITHDRAWN: Delineating the Effects of Hot-Melt Extrusion on the Performance of a Polymeric Film using Artificial Neural Networks and an Evolutionary Algorithm. Int J Pharm X 2019. [DOI: 10.1016/j.ijpx.2019.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Üstündağ Okur N, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, Cevher E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 2019; 27:738-752. [PMID: 31297030 PMCID: PMC6598503 DOI: 10.1016/j.jsps.2019.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/19/2019] [Indexed: 01/31/2023] Open
Abstract
In this study, novel adhesive films were prepared for Mupirocin dermal delivery. Natural polymers as chitosan, sodium alginate and carbopol were used for films development to evaluate possible interactions and drug release properties. Solvent evaporation method was used for films preparation. Preliminary studies involved FT-IR spectroscopy and Scanning Electron Microscopy to specify interactions and morphology. Thickness, tensile strength and water uptake in phosphate buffer saline were evaluated whereas in vitro release studies were also performed. In vitro drug release studies demonstrated that mupirocin release was improved. Ex vivo bioadhesion and permeation studies using Balb-c mice were performed to check the suitability of the films. Antimicrobial ability was evaluated by agar well diffusion tests. Finally, excisional wound model applied to test the wound healing effect and evaluated macroscopic and histopathologically. One formulation was found more effective compared to the market product for wound healing at Balb-c mice.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| | - Nesrin Hökenek
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| | - Mehmet Evren Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, İstanbul, Turkey
| | - Şule Ayla
- Istanbul Medipol University, School of Medicine, Department of Histology and Embryology, Beykoz, Istanbul, Turkey
| | - Ayşegül Yoltaş
- Ege University, Faculty of Science, Department of Biology, Fundamental and Industrial Microbiology Division, Bornova, Izmir, Turkey
| | - Panoraia I Siafaka
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey.,Aristotle University of Thessaloniki, Department of Chemistry, Thessaloniki, Greece
| | - Erdal Cevher
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| |
Collapse
|
26
|
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris DN. Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations. Pharmaceutics 2018; 10:E130. [PMID: 30104505 PMCID: PMC6161267 DOI: 10.3390/pharmaceutics10030130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
The present study evaluates the preparation of risperidone controlled release microspheres as appropriate long-acting injectable formulations based on a series of novel biodegradable and biocompatible poly(lactic acid)⁻poly(propylene adipate) (PLA/PPAd) polymer blends. Initially, PPAd was synthesized using a two-stage melt polycondensation method (esterification and polycondensation) and characterized by 1H-NMR, differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD) analyses. DSC and XRD results for PLA/PPAd blends (prepared by the solvent evaporation method) showed that these are immiscible, while enzymatic hydrolysis studies performed at 37 °C showed increased mass loss for PPAd compared to PLA. Risperidone-polyester microparticles prepared by the oil⁻water emulsification/solvent evaporation method showed smooth spherical surface with particle sizes from 1 to 15 μm. DSC, XRD, and Fourier-transformed infrared (FTIR) analyses showed that the active pharmaceutical ingredient (API) was dispersed in the amorphous phase within the polymer matrices, whereas in vitro drug release studies showed risperidone controlled release rates in all PLA/PPAd blend formulations. Finally, statistical moment analysis showed that polyester hydrolysis had a major impact on API release kinetics, while in PLA/PPAd blends with high PLA content, drug release was mainly controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Iatrou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
27
|
Nanaki S, Barmpalexis P, Papakonstantinou Z, Christodoulou E, Kostoglou M, Bikiaris DN. Preparation of New Risperidone Depot Microspheres Based on Novel Biocompatible Poly(Alkylene Adipate) Polyesters as Long-Acting Injectable Formulations. J Pharm Sci 2018; 107:2891-2901. [PMID: 30096352 DOI: 10.1016/j.xphs.2018.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Risperidone (RIS)-loaded microspheres based on poly(alkylene adipate)s derived from dicarboxylic acids and different aliphatic diols were prepared by the oil in water emulsion and solvent evaporation method. Specifically, 3 polyesters, namely poly(ethylene adipate), poly(propylene adipate), and poly(butylene adipate), were prepared with the aid of a 2-stage melt-polycondensation method and characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry, and X-ray diffraction analysis. Results showed that the molecular weight of the polyesters increased as the diol molecular weight increased, while all polymers were of semi-crystalline nature and the melting temperature was varying from 49.1°C to 51.8°C and 65.9°C for poly(propylene adipate), poly(ethylene adipate), and poly(butylene adipate), respectively. The particle size of the RIS-loaded microspheres varied from 10 to 100 μm depending on the polyester type and the drug loading, while X-ray diffraction analysis revealed amorphous active pharmaceutical ingredient in the cases of high drug-loaded microspheres. In vitro drug release studies along with scanning electron microscopy images of microspheres after the completion of dissolution process showed that in all cases RIS release was controlled by the glass transition temperature of polyesters and physical state of active pharmaceutical ingredients via diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Zoi Papakonstantinou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
28
|
Üstündağ Okur N, Filippousi M, Okur ME, Ayla Ş, Çağlar EŞ, Yoltaş A, Siafaka PI. A novel approach for skin infections: Controlled release topical mats of poly(lactic acid)/poly(ethylene succinate) blends containing Voriconazole. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A, Orlando M, Perrone Donnorso M, Perozziello G, Benfenati F, Di Fabrizio E. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Mol Neurobiol 2018; 55:8788-8798. [PMID: 29600349 DOI: 10.1007/s12035-018-1022-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023]
Abstract
Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.
Collapse
Affiliation(s)
- T Limongi
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - A Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - F Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - H Tan
- Analytical Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - E Miele
- Nanostructures Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.,Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - A Giugni
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - M Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Neurophysiology, NeuroCure Excellence Cluster, Charité Universitäts Medizin, Charitéplatz 1, 10117, Berlin, Germany
| | - M Perrone Donnorso
- Nanostructures Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - G Perozziello
- Laboratory of Nanotechnology BioNEM Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Enzo Di Fabrizio
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
30
|
Shah R, Subhan F, Sultan SM, Ali G. Short-term oral administration of risperidone induces pancreatic damage and hyperamylasemia in Sprague-dawley rats. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rehmat Shah
- University of Peshawar, Pakistan; Government Moulvi Ameer Shah Memorial Hospital, Pakistan
| | | | | | | |
Collapse
|
31
|
Ebrahimi A, Sadrjavadi K, Hajialyani M, Shokoohinia Y, Fattahi A. Preparation and characterization of silk fibroin hydrogel as injectable implants for sustained release of Risperidone. Drug Dev Ind Pharm 2017; 44:199-205. [PMID: 28956466 DOI: 10.1080/03639045.2017.1386195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The principal objective of the present study is to achieve a depot formulation of Risperidone by gelation of silk fibroin (SF). For this purpose, hydrochloric acid (HCl)/acetone-based and methanol-based hydrogels were prepared with different drug/polymer ratios (1:3, 1:6, and 1:15). For all the drug-loaded methanol-based hydrogels, gel transition of SF solutions occurred immediately and the gelation time was 1 min, while the gelation time of HCL/acetone-based hydrogels was around 360 min. According to the results obtined from Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) spectra, solvent systems and Risperidone could induce β-sheet structure, but HCL/acetone system had the lowest effect on induction of β-sheets. The crystallinity was increased by increasing the amount of Risperidone, and drug to polymer ratio of 1:3 possessed the highest crystallinity. Thermogravimetric analysis (TGA) indicated that increasing the amount of drug in formulation increased the stability of hydrogels, and methanol-based hydrogel with a ratio of 1:3 had the most stable structure. The release rate of Risperidone from methanol-based hydrogel at ratio of 1:3 was lower than that for HCl/acetone-based one, and it decreased by increasing the amount of Risperidone. The release of Risperidone from methanol hydrogel at ratios 1:3 and 1:6 continued up to 25 d which is acceptable for depot form of Risperidone and shows that the extended release of Risperidone was achieved successfully. In conclusion, SF hydrogel with the ability to respond to the environmental stimuli is an excellent candidate for injectable implants for extended release of Risperidone.
Collapse
Affiliation(s)
- Atefeh Ebrahimi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Komail Sadrjavadi
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Marziyeh Hajialyani
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Yalda Shokoohinia
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ali Fattahi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran.,c Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Regenerative Medicine Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,e Nano Drug Delivery Research Center, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
32
|
A novel one-step microemulsion method for preparation of quercetin encapsulated poly(methyl methacrylate) nanoparticles. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Teng F, Deng P, Song Z, Zhou F, Feng R. Enhanced effect in combination of curcumin- and ketoconazole-loaded methoxy poly (ethylene glycol)-poly (ε-caprolactone) micelles. Biomed Pharmacother 2017; 88:43-51. [PMID: 28092844 DOI: 10.1016/j.biopha.2017.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
In order to enhance water-solubility and realize controlled release while keeping synergistic effects of ketoconazole and curcumin, drug-loaded methoxy poly (ethylene glycol)-b-poly (ε-caprolactone) micelles were prepared through thin membrane hydration method. Transmission electric microscopy and dynamitic light scattering characterization revealed the formation of ketoconazole- and curcumin-loaded micelles with an average size of 44.70nm and 39.56nm, respectively. The drug-loaded micelles endowed the two drugs' slow controlled release with water-solubility enhanced to 85 and 82000 folds higher than the corresponding raw drugs, respectively. In vitro antifungal activity test, chequerboard test and inhibition zone test indicated that efficacy of ketoconazole-loaded micelles was improved by introduction of curcumin-loaded micelles with a low fractional inhibitory concentration index (0.073). Biofilm formation inhibition assay also demonstrated that participation of curcumin-loaded micelles obviously strengthened the inhibition of fungal biofilms formation induced by ketoconazole-loaded micelles. The high synergistic activity of combinations is encouraging and the MPEG-PCL micelle is a potential drug delivery system for the combination of ketoconazole and curcumin.
Collapse
Affiliation(s)
- Fangfang Teng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, No. l6866 East Road of Jingshi, Jinan 250200, Shandong Province, PR China; Shandong Academy of Medical Sciences, No. 18877 Jingshi Road, Jinan 250062, Shandong Province, PR China
| | - Peizong Deng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Feilong Zhou
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| |
Collapse
|
34
|
Kajbafvala A, Salabat A, Salimi A. Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application. Pharm Dev Technol 2016; 23:741-750. [DOI: 10.1080/10837450.2016.1263995] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Azar Kajbafvala
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Alireza Salabat
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Anayatollah Salimi
- Department of Pharmaceutics, School of Pharmacy, Nanotechnology Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
35
|
Weng W, Quan P, Liu C, Zhao H, Fang L. Design of a Drug-in-Adhesive Transdermal Patch for Risperidone: Effect of Drug-Additive Interactions on the Crystallization Inhibition and In Vitro / In Vivo Correlation Study. J Pharm Sci 2016; 105:3153-3161. [DOI: 10.1016/j.xphs.2016.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022]
|
36
|
Siafaka PI, Barmbalexis P, Bikiaris DN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci 2016; 88:12-25. [PMID: 27039136 DOI: 10.1016/j.ejps.2016.03.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
Abstract
In the present work, a series of novel formulations consisting of poly(lactic acid)/poly(butylene adipate) (PLA/PBAd) electrospun blends was examined as controlled release matrices for Leflunomide's active metabolite, Teriflunomide (TFL). The mixtures were prepared using different ratios of PLA and PBAd in order to produce nanofibrous matrices with different characteristics. Miscibility studies of the blended polymeric fibers were performed through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolytic degradation in the prepared fibers was evaluated at 37°C using a phosphate buffered saline solution. Different concentrations of (TFL) (5, 10, 15wt.%) were incorporated into nanofibers for examining the drug release behavior in simulated body fluids (SBF), at 37°C. The drug-loaded nanofibrous formulations were further characterized by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, DSC and XRD. Gel permeation chromatography (GPC) analysis was used to evaluate the mechanism of TFL release. Artificial neural networks (ANN) and multi-linear-regression (MLR) models were used to evaluate the effect of % content of PBAd (X1) and TFL (X2) on an initial burst effect and a dissolution behavior. It was found that PLA/PBAd nanofibers have different diameters depending on the ratio of used polyesters and added drug. TFL was incorporated in an amorphous form inside the polymeric nanofibers. In vitro release studies reveal that a drug release behavior is correlated with the size of the nanofibers, drug loading and matrix degradation after a specific time. ANN dissolution modeling showed increased correlation efficacy compared to MLR.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Macedonia, Greece
| | - Panagiotis Barmbalexis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Macedonia, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Macedonia, Greece.
| |
Collapse
|
37
|
Siafaka PI, Üstündağ Okur N, Mone M, Giannakopoulou S, Er S, Pavlidou E, Karavas E, Bikiaris DN. Two Different Approaches for Oral Administration of Voriconazole Loaded Formulations: Electrospun Fibers versus β-Cyclodextrin Complexes. Int J Mol Sci 2016; 17:282. [PMID: 26927072 PMCID: PMC4813146 DOI: 10.3390/ijms17030282] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 01/24/2016] [Accepted: 02/19/2016] [Indexed: 12/03/2022] Open
Abstract
In this work, a comparison between two different preparation methods for the improvement of dissolution rate of an antifungal agent is presented. Poly(ε-caprolactone) (PCL) electrospun fibers and β-cyclodextrin (β-CD) complexes, which were produced via an electrospinning process and an inclusion complexation method, respectively, were addressed for the treatment of fungal infections. Voriconazole (VRCZ) drug was selected as a model drug. PCL nanofibers were characterized on the basis of morphology while phase solubility studies for β-CDs complexes were performed. Various concentrations (5, 10, 15 and 20 wt %) of VRCZ were loaded to PCL fibers and β-CD inclusions to study the in vitro release profile as well as in vitro antifungal activity. The results clearly indicated that all formulations showed an improved VRCZ solubility and can inhibit fungi proliferation.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece.
| | - Neslihan Üstündağ Okur
- School of Pharmacy, Department of Pharmaceutical Technology, Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey.
| | - Mariza Mone
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece.
| | - Spyridoula Giannakopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece.
| | - Sevda Er
- School of Pharmacy, Department of Microbiology, Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey.
| | - Eleni Pavlidou
- Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece.
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece.
| |
Collapse
|
38
|
Taktak F, Bütün V. Novel zwitterionic ABA-type triblock copolymer for pH- and salt-controlled release of risperidone. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1099100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|