1
|
Barrios-Esteban S, Reimóndez-Troitiño S, Cabezas-Sainz P, de la Fuente M, Sánchez L, Rahman R, Alexander C, Garcia-Fuentes M, Csaba NS. Protamine-Based Nanotherapeutics for Gene Delivery to Glioblastoma Cells. Mol Pharm 2025; 22:2466-2481. [PMID: 40173305 PMCID: PMC12124719 DOI: 10.1021/acs.molpharmaceut.4c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
Isocitrate dehydrogenase wild-type glioblastoma is the most aggressive primary brain tumor classified as grade 4 of malignancy. Standard treatment, combining surgical resection, radiotherapy, and chemotherapy, often leads to severe side effects, with the emergence of tumor recurrence in all cases. Nucleic acid-based therapy has emerged as a promising strategy for cancer treatment. Non-viral nanosystems have become the vehicles of choice for gene delivery, due to their efficient nucleic acid encapsulation, protection, and intracellular transport. This work explores the potential of a formulation of low molecular weight protamine (LMWP) and dextran sulfate for gene delivery. The nanoparticles (NPs) were evaluated in terms of particle size, surface charge, morphology, and capacity to condense different nucleic acids. NPs formed by ionic complexation resulted in a homogeneous population of spherical particles with a low polydispersity index (PDI), small size, and positive surface charge. Competitive displacement assay demonstrated that the NPs could condense nucleic acids without alterations in their morphology and physicochemical characteristics, even after long-term storage. The efficacy of this formulation as a gene delivery system was evaluated in vitro in different glioblastoma cell lines and three-dimensional (3D) spheroids and in vivo using zebrafish models, showing negligible toxicity, efficient internalization, and consistent expression of fluorescent/luminescent proteins. Overall, these cationic polymeric NPs show promising features for their use as non-viral gene delivery vehicles for glioblastoma treatments.
Collapse
Affiliation(s)
- Sheila Barrios-Esteban
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706Santiago de Compostela, Spain
| | - Sonia Reimóndez-Troitiño
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706Santiago de Compostela, Spain
| | - Pablo Cabezas-Sainz
- School
of Veterinary, University of Santiago de
Compostela, Campus de
Lugo, 27002Lugo, Spain
| | - María de la Fuente
- Health
Research Institute of Santiago de Compostela (IDIS), 15706Santiago de Compostela, Spain
| | - Laura Sánchez
- School
of Veterinary, University of Santiago de
Compostela, Campus de
Lugo, 27002Lugo, Spain
| | - Ruman Rahman
- Children’s
Brain Tumor Research Centre (CBTR) and Biodiscovery Institute (BDI), University of Nottingham, University Park, NG7 2RDNottingham, U.K.
| | - Cameron Alexander
- School of
Pharmacy, Boots Science Building (BSB), University of Nottingham, East Dr, NG7 2TQNottingham, U.K.
| | - Marcos Garcia-Fuentes
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706Santiago de Compostela, Spain
- Department
Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706Santiago de Compostela, Spain
| | - Noemi S. Csaba
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706Santiago de Compostela, Spain
- Department
Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706Santiago de Compostela, Spain
| |
Collapse
|
2
|
Borrajo ML, Lou G, Anthiya S, Lapuhs P, Álvarez DM, Tobío A, Loza MI, Vidal A, Alonso MJ. Nanoemulsions and nanocapsules as carriers for the development of intranasal mRNA vaccines. Drug Deliv Transl Res 2024; 14:2046-2061. [PMID: 38811465 PMCID: PMC11208213 DOI: 10.1007/s13346-024-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles (LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messenger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were identified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine development for combating infectious diseases.
Collapse
Affiliation(s)
- Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - David Moreira Álvarez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
| | - Araceli Tobío
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María Isabel Loza
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, Santiago de Compostela, 15782, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| |
Collapse
|
3
|
Yang S, Luo J, Zhang L, Feng L, He Y, Gao X, Xie S, Gao M, Luo D, Chang K, Chen M. A Smart Nano-Theranostic Platform Based on Dual-microRNAs Guided Self-Feedback Tetrahedral Entropy-Driven DNA Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301814. [PMID: 37085743 DOI: 10.1002/advs.202301814] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) can act as oncogenes or tumor suppressors, capable of up or down-regulating gene expression during tumorigenesis; they are diagnostic biomarkers or therapeutic targets for tumors. To detect low abundance of intracellular oncogenic miRNAs (onco-miRNAs) and realize synergistic gene therapy of onco-miRNAs and tumor suppressors, a smart nano-theranostic platform based on dual-miRNAs guided self-feedback tetrahedral entropy-driven DNA circuit is created. The platform as a delivery vehicle is a DNA tetrahedral framework, in which the entropy-driven DNA circuit achieves a dual-miRNAs guided self-feedback, between an in situ amplification of the onco-miRNAs and activation of suppressor miRNAs release. To test this platform, dual-miRNAs are selected, miRNA-155, an up-regulated miRNA, as cancer indicators, and miRNA-122, a down-regulated miRNA as therapy targets in hepatocellular carcinoma, respectively. Through the circuit, the platform to detect onco-miRNAs at femtomolar level as well as visualized miRNAs inside cells, fixed tissues, and mice is programmed. Furthermore, triggered by miRNA-155, preloaded miRNA-122 is amplified via the self-feedback and released into target cells; the sudden increase of miRNA-122 and simultaneous decrease of miRNA-155 synergistically served as therapeutic drugs for gene regulation with enhanced antitumor efficacy and superior biosafety. It is envisioned that this nano-theranostic platform will initiate an essential step toward tumor theranostics in personalized/precise medicine.
Collapse
Affiliation(s)
- Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Ligai Zhang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Liu Feng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Yuan He
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Xueping Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Shuang Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853-5701, USA
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, P. R. China
| |
Collapse
|
4
|
Arpaç B, Devrim Gökberk B, Küçüktürkmen B, Özakca Gündüz I, Palabıyık İM, Bozkır A. Design and in vitro/in vivo Evaluation of Polyelectrolyte Complex Nanoparticles Filled in Enteric-Coated Capsules for Oral Delivery of Insulin. J Pharm Sci 2023; 112:718-730. [PMID: 36150470 DOI: 10.1016/j.xphs.2022.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
Insulin is one of the most important drugs in the treatment of diabetes. There is an increasing interest in the oral administration of insulin as it mimics the physiological pathway and potentially reduces the side effects associated with subcutaneous injection. Therefore, insulin-loaded polyelectrolyte complex (PEC) nanoparticles were prepared by the ionic cross-linking method using protamine sulfate as the polycationic and sodium alginate as the anionic polymer. Taguchi experimental design was used for the optimization of nanoparticles by varying the concentration of sodium alginate, the mass ratio of sodium alginate to protamine, and the amount of insulin. The optimized nanoparticle formulation was used for further in vitro characterization. Then, insulin-loaded PEC nanoparticles were placed in hard gelatin capsules and the capsules were enteric-coated by Eudragit L100-55 (PEC-eCAPs). Hypoglycemic effects PEC-eCAPs were determined in vivo by oral administration to diabetic rats. Furthermore, in vivo distribution of PEC nanoparticles was evaluated by fluorescein isothiocyanate (FITC) labelled nanoparticles. The experimental design led to nanoparticles with a size of 194.4 nm and a polydispersity index (PDI) of 0.31. The encapsulation efficiency (EE) was calculated as 95.96%. In vivo studies showed that PEC-eCAPs significantly reduced the blood glucose level of rats at the 8th hour compared to oral insulin solution. It was concluded that PEC nanoparticles loaded into enteric-coated hard gelatin capsules provide a promising delivery system for the oral administration of insulin.
Collapse
Affiliation(s)
- Büşra Arpaç
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, 06560, Ankara, Turkey
| | - Burcu Devrim Gökberk
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, 06560, Ankara, Turkey.
| | - Berrin Küçüktürkmen
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, 06560, Ankara, Turkey
| | - Işıl Özakca Gündüz
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, 06560, Ankara, Turkey
| | - İsmail Murat Palabıyık
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
| | - Asuman Bozkır
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, 06560, Ankara, Turkey
| |
Collapse
|
5
|
Hyaluronan-cecropin B interactions studied by ultrasound velocimetry and isothermal titration calorimetry. Int J Biol Macromol 2023; 227:786-794. [PMID: 36549616 DOI: 10.1016/j.ijbiomac.2022.12.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Interactions between hyaluronan and the antimicrobial peptide cecropin B were studied in water and PBS using high-resolution ultrasonic spectroscopy and isothermal titration calorimetry. Although each technique is fundamentally different, they both gave identical results. It was found that the molecular weight of hyaluronan plays an important role in the interactions - in particular, the transition between the rod conformation and the random coil conformation. In water, interactions were saturated in a molar charge ratio of 1.5 and not 1.0 as expected. The later saturation of the interaction probably occurred either for steric reasons or due to the interaction between functional groups in the cecropin structure, which allowed complete dissociation of the antimicrobial peptide. In PBS, in contrast to water, no interactions were observed, irrespective of the molecular weight of hyaluronan. Thus, at a sufficiently high ionic strength, the interactions were suppressed.
Collapse
|
6
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Wei W, Lu M, Xu W, Polyakov NE, Dushkin AV, Su WK. Preparation of protamine-hyaluronic acid coated core-shell nanoparticles for enhanced solubility, permeability, and oral bioavailability of decoquinate. Int J Biol Macromol 2022; 218:346-355. [PMID: 35878671 DOI: 10.1016/j.ijbiomac.2022.07.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
Decoquinate (DQ) has low oral bioavailability owing to its poor water solubility. In this study, a DQ solid dispersion (DQ-SD) was fabricated using mechanochemical technology to encapsulate DQ and improve its oral bioavailability. DQ-SD is easily generated via self-assembly in the aqueous phase to form micelles consisting of disodium glycyrrhizinate (Na2GA) nanoparticles with a protamine (PRM) and anionic hyaluronic acid (HA) layers. The spherical DQ nanoparticles with an average diameter of 114.95 nm were obtained in an aqueous phase with a critical micelle concentration of 0.157 mg/mL, zeta potential of -38.38 mV, polydispersity index of 0.200, and drug loading of 5.66 %. The dissolution rate and cumulative release of DQ-SD were higher than those of pure DQ. Furthermore, the bioavailability of DQ-SD was approximately 6.3 times higher than that of pure DQ. Pharmacokinetic and biodistribution studies indicated that DQ-SD possessed a significantly higher concentration in the blood and preferential liver tissue accumulation, than that of pure DQ. The developed DQ-SD exhibited considerable potential for developing old DQ for a new application as a hematogenous parasite drug and provides a reference for developing more efficient delivery systems for hydrophobic bioactive agents.
Collapse
Affiliation(s)
- Wei Wei
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Min Lu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenhao Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Nikolay E Polyakov
- Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia; Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Alexandr V Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia.
| | - Wei-Ke Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
8
|
Valdivia-Olivares RY, Rodriguez-Fernandez M, Álvarez-Figueroa MJ, Kalergis AM, González-Aramundiz JV. The Importance of Nanocarrier Design and Composition for an Efficient Nanoparticle-Mediated Transdermal Vaccination. Vaccines (Basel) 2021; 9:vaccines9121420. [PMID: 34960166 PMCID: PMC8705631 DOI: 10.3390/vaccines9121420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that the pandemic caused by the SARS-CoV-2 virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance of vaccination programs and the urgency of working on new technologies that allow an efficient, safe, and effective immunization. From this perspective, nanomedicine has provided novel tools for the design of the new generation of vaccines. Among the challenges of the new vaccine generations is the search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and low acceptance in the population associated with the parenteral route. Along these lines, transdermal immunization has been raised as a promising alternative for antigen delivery and vaccination based on a large absorption surface and an abundance of immune system cells. These features contribute to a high barrier capacity and high immunological efficiency for transdermal immunization. However, the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical forms for transdermal antigen delivery. This review addresses the biological bases for transdermal immunomodulation and the technological advances in the field of nanomedicine, from the passage of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an emphasis on the importance of design and composition towards the new generation of needle-free nanometric transdermal systems.
Collapse
Affiliation(s)
- Rayen Yanara Valdivia-Olivares
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins No. 340, Santiago 7810000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| |
Collapse
|
9
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
10
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
11
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
12
|
Carboxymethyl-β-glucan/chitosan nanoparticles: new thermostable and efficient carriers for antigen delivery. Drug Deliv Transl Res 2021; 11:1689-1702. [PMID: 33797035 PMCID: PMC8015750 DOI: 10.1007/s13346-021-00968-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
In the last few decades, nanotechnology has emerged as an important tool aimed at enhancing the immune response against modern antigens. Nanocarriers designed specifically for this purpose have been shown to provide protection, stability, and controlled release properties to proteins, peptides, and polynucleotide-based antigens. Polysaccharides are particularly interesting biomaterials for the construction of these nanocarriers given their wide distribution among pathogens, which facilitates their recognition by antigen-presenting cells (APCs). In this work, we focused on an immunostimulant beta-glucan derivative, carboxymethyl-β-glucan, to prepare a novel nanocarrier in combination with chitosan. The resulting carboxymethyl-β-glucan/chitosan nanoparticles exhibited adequate physicochemical properties and an important protein association efficiency, with ovalbumin as a model compound. Moreover, thermostability was achieved through the optimization of a lyophilized form of the antigen-loaded nanoparticles, which remained stable for up to 1 month at 40 ºC. Biodistribution studies in mice showed an efficient drainage of the nanoparticles to the nearest lymph node following subcutaneous injection, and a significant co-localization with dendritic cells. Additionally, subcutaneous immunization of mice with a single dose of the ovalbumin-loaded nanoparticles led to induced T cell proliferation and antibody responses, comparable to those achieved with alum-adsorbed ovalbumin. These results illustrate the potential of these novel nanocarriers in vaccination.
Collapse
|
13
|
Abstract
Influenza viruses cause seasonal epidemics and represent a pandemic risk. With current vaccine methods struggling to protect populations against emerging strains, there is a demand for a next-generation flu vaccine capable of providing broad protection. Recombinant biotechnology, combined with nanomedicine techniques, could address this demand by increasing immunogenicity and directing immune responses toward conserved antigenic targets on the virus. Various nanoparticle candidates have been tested for use in vaccines, including virus-like particles, protein and carbohydrate nanoconstructs, antigen-carrying lipid particles, and synthetic and inorganic particles modified for antigen presentation. These methods have yielded some promising results, including protection in animal models against antigenically distinct influenza strains, production of antibodies with broad reactivity, and activation of potent T cell responses. Based on the evidence of current research, it is feasible that the next generation of influenza vaccines will combine recombinant antigens with nanoparticle carriers.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Drug Carriers/chemistry
- Humans
- Immunogenicity, Vaccine
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacokinetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Nanoparticles/chemistry
- Protein Engineering
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/pharmacokinetics
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
14
|
Robla S, Alonso MJ, Csaba NS. Polyaminoacid-based nanocarriers: a review of the latest candidates for oral drug delivery. Expert Opin Drug Deliv 2020; 17:1081-1092. [DOI: 10.1080/17425247.2020.1776698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sandra Robla
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Noemi S. Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Gieszinger P, Stefania Csaba N, Garcia-Fuentes M, Prasanna M, Gáspár R, Sztojkov-Ivanov A, Ducza E, Márki Á, Janáky T, Kecskeméti G, Katona G, Szabó-Révész P, Ambrus R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur J Pharm Biopharm 2020; 153:177-186. [PMID: 32531424 DOI: 10.1016/j.ejpb.2020.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Nanocapsules (NCs) have become one of the most researched nanostructured drug delivery systems due to their advantageous properties and versatility. NCs can enhance the bioavailabiliy of hydrophobic drugs by impoving their solubility and permeability. Also, they can protect these active pharmaceutical agents (APIs) from the physiological environment with preventing e.g. the enzymatic degradation. NCs can be used for many administration routes: e.g. oral, dermal, nasal and ocular formulations are exisiting in liquid and solid forms. The nose is one of the most interesting alternative drug administration route, because local, systemic and direct central nervous system (CNS) delivery can be achived; this could be utilized in the therapy of CNS diseases. Therefore, the goal of this study was to design, prepare and investigate a novel, lamotrigin containing NC formulation for nasal administration. The determination of micrometric parameters (particle size, polydispersity index, surface charge), in vitro (drug loading capacity, release and permeability investigations) and in vivo characterization of the formulations were performed in the study. The results indicate that the formulation could be a promising alternative of lamotrigine (LAM) as the NCs were around 305 nm size with high encapsulation efficiency (58.44%). Moreover, the LAM showed rapid and high release from the NCs in vitro and considerable penetration to the brain tissues was observed during the in vivo study.
Collapse
Affiliation(s)
- Péter Gieszinger
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Noemi Stefania Csaba
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain.
| | - Marcos Garcia-Fuentes
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain.
| | - Maruthi Prasanna
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Árpád Márki
- Department of Medical Physics and Informatics, University of Szeged, Faculty of Medicine, H-6720 Szeged, Korányi fasor 9., Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Katona
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Piroska Szabó-Révész
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Rita Ambrus
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
16
|
Carton F, Chevalier Y, Nicoletti L, Tarnowska M, Stella B, Arpicco S, Malatesta M, Jordheim LP, Briançon S, Lollo G. Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery. Int J Pharm 2019; 568:118526. [DOI: 10.1016/j.ijpharm.2019.118526] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
|
17
|
Dacoba T, Omange RW, Li H, Crecente-Campo J, Luo M, Alonso MJ. Polysaccharide Nanoparticles Can Efficiently Modulate the Immune Response against an HIV Peptide Antigen. ACS NANO 2019; 13:4947-4959. [PMID: 30964270 PMCID: PMC6607401 DOI: 10.1021/acsnano.8b07662] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/08/2019] [Indexed: 05/30/2023]
Abstract
The development of an effective HIV vaccine continues to be a major health challenge since, so far, only the RV144 trial has demonstrated a modest clinical efficacy. Recently, the targeting of the 12 highly conserved protease cleavage sites (PCS1-12) has been presented as a strategy seeking to hamper the maturation and infectivity of HIV. To pursue this line of research, and because peptide antigens have low immunogenicity, we have included these peptides in engineered nanoparticles, aiming at overcoming this limitation. More specifically, we investigated whether the covalent attachment of a PCS peptide (PCS5) to polysaccharide-based nanoparticles, and their coadministration with polyinosinic:polycytidylic acid (poly(I:C)), improved the generated immune response. To this end, PCS5 was first conjugated to two different polysaccharides (chitosan and hyaluronic acid) through either a stable or a cleavable bond and then associated with an oppositely charged polymer (dextran sulfate and chitosan) and poly(I:C) to form the nanoparticles. Nanoparticles associating PCS5 by ionic interactions were used in this study as the control formulation. In vivo, all nanosystems elicited high anti-PCS5 antibodies. Nanoparticles containing PCS5 conjugated and poly(I:C) seemed to induce the strongest activation of antigen-presenting cells. Interestingly, T cell activation presented different kinetics depending on the prototype. These findings show that both the nanoparticle composition and the conjugation of the HIV peptide antigen may play an important role in the generation of humoral and cellular responses.
Collapse
Affiliation(s)
- Tamara
G. Dacoba
- Center
for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus
Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, Campus Vida, Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| | - Robert W. Omange
- Department
of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hongzhao Li
- Department
of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - José Crecente-Campo
- Center
for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus
Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, Campus Vida, Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| | - Ma Luo
- Department
of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- National
Microbiology Laboratory, Public Health Agency
of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Maria Jose Alonso
- Center
for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus
Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, Campus Vida, Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
18
|
Bussio JI, Molina-Perea C, González-Aramundiz JV. Hyaluronic Acid Nanocapsules as a Platform for Needle-Free Vaccination. Pharmaceutics 2019; 11:E246. [PMID: 31130688 PMCID: PMC6571624 DOI: 10.3390/pharmaceutics11050246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Vaccination faces many challenges nowadays, and among them the use of adjuvant molecules and needle-free administration are some of the most demanding. The combination of transcutaneous vaccination and nanomedicine through a rationally designed new-formulation could be the solution to this problem. This study focuses on this rational design. For this purpose, new hyaluronic acid nanocapsules (HA-NCs) have been developed. This new formulation has an oily nucleus with immunoadjuvant properties (due to α tocopherol) and a shell made of hyaluronic acid (HA) and decorated with ovalbumin (OVA) as the model antigen. The resulting nanocapsules are smaller than 100 nm, have a negative superficial charge and have a population that is homogeneously distributed. The systems show high colloidal stability in storage and physiological conditions and high OVA association without losing their integrity. The elevated interaction of the novel formulation with the immune system was demonstrated through complement activation and macrophage viability studies. Ex vivo studies using a pig skin model show the ability of these novel nanocapsules to penetrate and retain OVA in higher quantities in skin when compared to this antigen in the control solution. Due to these findings, HA-NCs are an interesting platform for needle-free vaccination.
Collapse
Affiliation(s)
- Juan I Bussio
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - Carla Molina-Perea
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- Centro de Investigación en Nanotecnología y Materiales Avanzados "CIEN-UC", Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 340E McCourtney Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
19
|
|
20
|
Štaka I, Cadete A, Surikutchi BT, Abuzaid H, Bradshaw TD, Alonso MJ, Marlow M. A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. Int J Pharm 2019; 565:151-161. [PMID: 31029659 DOI: 10.1016/j.ijpharm.2019.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Herein, an injectable formulation composed of a low molecular weight gelator (LMWG) based hydrogel and drug-loaded polymeric nanocapsules (NCs) is described. The NCs, made of hyaluronic acid and polyglutamic acid and loaded with C14-Gemcitabine (GEM C14), showed a size of 40 and 80 nm and a encapsulation efficiency >90%. These NCs exhibited a capacity to control the release of the encapsulated drug for >1 month. GEM C14-loaded NCs showed activity against various cancer cell lines in vitro; cell growth inhibition by 50% (GI50) values of 15 ± 6, 10 ± 9, 13 ± 3 and 410 ± 463 nM were obtained in HCT 116, MIA PaCa-2, Panc-1 and Panc-1 GEM resistant cell lines respectively. Nanocomposite hydrogels were prepared using the LMWG - N4-octanoyl-2'-deoxycytidine and loaded for the first time with polymeric NCs. 2% and 4% w/v nanocapsule concentrations as compared to 8% w/v NC concentrations with 2% and 3% w/v gelator concentrations gave mechanically stronger gels as determined by oscillatory rheology. Most importantly, the nanocomposite formulation reformed instantly into a gel after injection through a needle. Based on these properties, the nanocomposite gel formulation has potential for the intratumoural delivery of anticancer drugs.
Collapse
Affiliation(s)
- Ivana Štaka
- CIMUS Research University, University of Santiago de Compostela, 15706 Campus Vida, Spain; Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK; Boots Science Building, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Ana Cadete
- CIMUS Research University, University of Santiago de Compostela, 15706 Campus Vida, Spain
| | | | - Haneen Abuzaid
- Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - Maria J Alonso
- CIMUS Research University, University of Santiago de Compostela, 15706 Campus Vida, Spain.
| | - Maria Marlow
- Boots Science Building, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
21
|
Alvarez-Figueroa MJ, Abarca-Riquelme JM, González-Aramundiz JV. Influence of protamine shell on nanoemulsions as a carrier for cyclosporine-A skin delivery. Pharm Dev Technol 2018; 24:630-638. [DOI: 10.1080/10837450.2018.1550789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - José María Abarca-Riquelme
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
González-Aramundiz JV, Peleteiro M, González-Fernández Á, Alonso MJ, Csaba NS. Protamine Nanocapsules for the Development of Thermostable Adjuvanted Nanovaccines. Mol Pharm 2018; 15:5653-5664. [PMID: 30375877 DOI: 10.1021/acs.molpharmaceut.8b00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the main challenges in the development of vaccine has been to improve their stability at room temperature and eliminate the limitations associated with the cold chain storage. In this paper, we describe the development and optimization of thermostable nanocarriers consisting of an oily core with immunostimulating activity, containing squalene or α tocopherol surrounded by a protamine shell. The results showed that these nanocapsules can efficiently associate the recombinant hepatitis B surface antigen (rHBsAg) without compromising its antigenicity. Furthermore, the freeze-dried protamine nanocapsules were able to preserve the integrity and bioactivity of the associated antigen upon storage for at least 12 months at room temperature. In vitro studies evidenced the high internalization of the nanocapsules by immunocompetent cells, followed by cytokine secretion and complement activation. In vivo studies showed the capacity of rHBsAg-loaded nanocapsules to elicit protective levels upon intramuscular or intranasal administration to mice. Overall, our data indicate that protamine nanocapsules are an innovative thermostable nanovaccine platform for improved antigen delivery.
Collapse
Affiliation(s)
- José Vicente González-Aramundiz
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain.,Departamento de Farmacia, Facultad de Química , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Mercedes Peleteiro
- Inmunologı́a, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia) , Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo , Vigo , Spain
| | - África González-Fernández
- Inmunologı́a, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia) , Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo , Vigo , Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Noemi Stefánia Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| |
Collapse
|
23
|
Protamine nanocapsules as carriers for oral peptide delivery. J Control Release 2018; 291:157-168. [PMID: 30343137 DOI: 10.1016/j.jconrel.2018.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
Peptides represent a promising therapeutic class with the potential to alleviate many severe diseases. A key limitation of these active molecules relies on the difficulties for their efficient oral administration. The objective of this work has been the rational design of polymer nanocapsules (NCs) intended for the oral delivery of peptide drugs. For this purpose, we selected insulin glulisine as a model peptide. The polymer shell of the NCs was made of a single layer of protamine, a cationic polypeptide selected for its cell penetration properties, or a double protamine/polysialic acid (PSA) layer. Insulin glulisine-loaded protamine and protamine/PSA NCs, prepared by the solvent displacement method, exhibited a size that varied in the range of 200-400 nm and a neutral surface charge (from +8 mV to -6 mV), depending on the formulation. The stability of the encapsulated peptide was assessed using circular dichroism and an in vitro cell activity study. Colloidal stability studies were also performed in simulated intestinal media containing enzymes and the results indicated that protamine NCs were stable and able to protect insulin from the harsh intestinal environment, and that this capacity could be further enhanced with a double PSA-Protamine layer. These NCs were freeze-dried and stored at room temperature without alteration of the physicochemical properties. When the insulin-loaded protamine NCs were administered intra-intestinally to diabetic rats (12 h fasting) it resulted in a prolonged glucose reduction (60%) as compared to the control insulin solution. This work raises prospects that protamine NCs may have a potential as oral peptide delivery nanocarriers.
Collapse
|
24
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Reimondez-Troitiño S, Alcalde I, Csaba N, Íñigo-Portugués A, de la Fuente M, Bech F, Riestra AC, Merayo-Lloves J, Alonso MJ. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv Transl Res 2017; 6:708-721. [PMID: 27392604 DOI: 10.1007/s13346-016-0312-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corneal injuries are one of the most frequently observed ocular diseases, leading to permanent damage and impaired vision if they are not treated properly. In this sense, adequate wound healing after injury is critical for keeping the integrity and structure of the cornea. The goal of this work was to assess the potential of polymeric nanocapsules, either unloaded or loaded with cyclosporine A or vitamin A, alone or in combination with mitomycin C, for the treatment of corneal injuries induced by photorefractive keratectomy surgery. The biopolymers selected for the formation of the nanocapsules were polyarginine and protamine, which are known for their penetration enhancement effect. The results showed that, following topical instillation to a mouse model of corneal injury, all the nanocapsule formulations, either unloaded or loaded with cyclosporine A or vitamin A, were able to stimulate corneal wound healing. In addition, the healing rate observed for the combination of unloaded protamine nanocapsules with mitomycin C was comparable to the one observed for the positive control Cacicol®, a biopolymer known as a corneal wound healing enhancer. Regarding the corneal opacity, the initial grade of corneal haze (>3) induced by the photorefractive keratectomy was more rapidly reduced in the case of the positive control, Cacicol®, than in corneas treated with the nanocapsules. In conclusion, this work shows that drug-free arginine-rich (polyarginine, protamine) nanocapsules exhibit a positive behavior with regard to their potential use for corneal wound healing.
Collapse
Affiliation(s)
- Sonia Reimondez-Troitiño
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.,Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Noemi Csaba
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Almudena Íñigo-Portugués
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - María de la Fuente
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Bech
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Ana C Riestra
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain.
| | - María J Alonso
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Thwala LN, Beloqui A, Csaba NS, González-Touceda D, Tovar S, Dieguez C, Alonso MJ, Préat V. The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. J Control Release 2016; 243:109-120. [DOI: 10.1016/j.jconrel.2016.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 02/09/2023]
|
27
|
González-Aramundiz JV, Presas E, Dalmau-Mena I, Martínez-Pulgarín S, Alonso C, Escribano JM, Alonso MJ, Csaba NS. Rational design of protamine nanocapsules as antigen delivery carriers. J Control Release 2016; 245:62-69. [PMID: 27856263 DOI: 10.1016/j.jconrel.2016.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022]
Abstract
Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens. CHEMICAL COMPOUNDS Protamine sulphate (PubChem SID: 7849283), Sodium Cholate (PubChem CID: 23668194), Miglyol (PubChem CID: 53471835), α tocopherol (PubChem CID: 14985), Tween® 20(PubChem CID: 443314), Tween® 80(PubChem CID: 5281955), TPGS (PubChem CID: 71406).
Collapse
Affiliation(s)
- José Vicente González-Aramundiz
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain; Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile.
| | - Elena Presas
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| | - Inmaculada Dalmau-Mena
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Madrid, Spain.
| | - Covadonga Alonso
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - José M Escribano
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| | - Noemi Stefánia Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| |
Collapse
|