1
|
Savoy EA, Olatunji FP, Mesbahi N, Ballard RK, Lovingier CL, Hendricksen AT, Fulton MD, Berkman CE. PSMA-targeted SMART molecules outfitted with SN38. Bioorg Med Chem Lett 2024; 101:129657. [PMID: 38360419 DOI: 10.1016/j.bmcl.2024.129657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Herein, we report the modular synthesis and evaluation of a prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugate (SMDC) carrying the chemotherapeutic agent, SN38. Due to the fluorogenic properties of SN38, payload release kinetics from the platform was observed in buffers representing the pH conditions of systemic circulation and cellular internalization. It was found that this platform is stable with minimal payload release at physiological pH with most rapid payload release observed at pH values representing the endosome complex. We confirmed selective payload release and chemotherapeutic efficacy for PSMA(+) prostate cancer cells over PSMA(-) cells. These results demonstrate that chemotherapeutic agents with limited solubility can be conjugated to a water-soluble targeting and linker platform without attenuating efficacy.
Collapse
Affiliation(s)
- Emily A Savoy
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Feyisola P Olatunji
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Nooshin Mesbahi
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Ryanne K Ballard
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Christine L Lovingier
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Aaron T Hendricksen
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Melody D Fulton
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States
| | - Clifford E Berkman
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, United States.
| |
Collapse
|
2
|
Qi QR, Tian H, Yue BS, Zhai BT, Zhao F. Research Progress of SN38 Drug Delivery System in Cancer Treatment. Int J Nanomedicine 2024; 19:945-964. [PMID: 38293612 PMCID: PMC10826519 DOI: 10.2147/ijn.s435407] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN38), is 100-1000 times more active than CPT-11 and has shown inhibitory effects on a range of cancer cells, including those from the rectal, small cell lung, breast, esophageal, uterine, and ovarian malignancies. Despite SN38's potent anticancer properties, its hydrophobicity and pH instability have caused substantial side effects and anticancer activity loss, which make it difficult to use in clinical settings. To solve the above problems, the construction of SN38-based drug delivery systems is one of the most feasible methods to improve drug solubility, enhance drug stability, increase drug targeting ability, improve drug bioavailability, enhance therapeutic efficacy and reduce adverse drug reactions. Therefore, based on the targeting mechanism of drug delivery systems, this paper reviews SN38 drug delivery systems, including polymeric micelles, liposomal nanoparticles, polymeric nanoparticles, protein nanoparticles, conjugated drug delivery systems targeted by aptamers and ligands, antibody-drug couplings, magnetic targeting, photosensitive targeting, redox-sensitive and multi-stimulus-responsive drug delivery systems, and co-loaded drug delivery systems. The focus of this review is on nanocarrier-based SN38 drug delivery systems. We hope to provide a reference for the clinical translation and application of novel SN38 medications.
Collapse
Affiliation(s)
- Qing-rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bao-sen Yue
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Feng Zhao
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
3
|
Adarsh Krishna TP, Ajeesh Krishna TP, Edachery B, Antony Ceasar S. Guggulsterone - a potent bioactive phytosteroid: synthesis, structural modification, and its improved bioactivities. RSC Med Chem 2024; 15:55-69. [PMID: 38283224 PMCID: PMC10809385 DOI: 10.1039/d3md00432e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
Guggulsterone is a phytosteroid derived from the oleo-gum resin of the critically endangered plant Commiphora wightii. This molecule has attracted increasing attention due to its excellent biochemistry potential and the compound has consequently been evaluated in clinical trials. With a low concentration in natural resources but wide medicinal and therapeutic value, chemists have developed several synthetic routes for guggulsterone starting from various steroid precursors. Moreover, numerous studies have attempted to modify its structure to improve the biological properties. Nowadays, green and sustainable chemistry has also attracted more attention for advanced chemical processes and reactions in steroid chemistry. The present review aimed to summarize the literature and provide an update about the improvements in the chemical synthesis and structural modification of guggulsterone from the view of green chemistry. Moreover, this review encompasses the improved activities of structurally modified guggulsterone derivatives. We expect that the information provided here will be useful to researchers working in this field and on this molecule.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Kerala 686 662 India
| | - T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Bioscience, Rajagiri College of Social Sciences Kochi Kerala 683 104 India
- Division of Phytochemistry and Drug-Design, Department of Bioscience, Rajagiri College of Social Sciences Kochi Kerala 683 104 India
| | - Baldev Edachery
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Kerala 686 662 India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Bioscience, Rajagiri College of Social Sciences Kochi Kerala 683 104 India
- Division of Phytochemistry and Drug-Design, Department of Bioscience, Rajagiri College of Social Sciences Kochi Kerala 683 104 India
| |
Collapse
|
4
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
5
|
Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102662. [PMID: 36746272 DOI: 10.1016/j.nano.2023.102662] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Oral cancer is a type of cancer that develops in the mouth and is one of the deadliest malignancies in the world. Currently surgical, radiation therapy, and chemotherapy are most common treatments. Better treatment and early detection strategies are required. Chemotherapeutic drugs fail frequently due to toxicity and poor tumor targeting. There are high chances of failure of chemotherapeutic drugs due to toxicity. Active, passive, and immunity-targeting techniques are devised for tumor-specific activity. Nanotechnology-based drug delivery systems are the best available solution and important for precise targeting. Nanoparticles, liposomes, exosomes, and cyclodextrins are nano-based carriers for drug delivery. Nanotechnology is being used to develop new techniques such as intratumoral injections, microbubble mediated ultrasonic therapy, phototherapies, and site-specific delivery. This systematic review delves into the details of such targeted and nano-based drug delivery systems in order to improve patient health and survival rates in oral cancer.
Collapse
Affiliation(s)
- Kunj Vyas
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Maharshsinh Rathod
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
6
|
Sadi KS, Mahmoudi A, Jaafari MR, Moosavian SA, Malaekeh-Nikouei B. The effect of AS1411 aptamer on anti-tumor effects of dendrimers containing SN38. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Almeida A, Castro F, Resende C, Lúcio M, Schwartz S, Sarmento B. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release 2022; 349:731-743. [PMID: 35905784 DOI: 10.1016/j.jconrel.2022.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with high incidence and mortality worldwide. The efficacy of conventional CRC chemotherapy is hampered by poor drug solubility and bioavailability and suboptimal pharmacokinetic profiles. In this work, camptothecin (CPT), a potent anticancer drug, was loaded into an amphiphilic chitosan modified with PEG and oleic acid, to reduce CRC progression after oral administration. While CPT-loaded micelles presented anticancer activity against HCT116, Caco-2 and HT29 CRC cell lines in vitro, empty micelles demonstrated a safe profile when incubated with human blood cells and colorectal cancer cell lines. In a more complex 3D CRC multicellular spheroid model, CPT-loaded micelles also exhibited a significant effect on the spheroid's metabolic activity and size reduction. Remarkably, in vivo studies performed in a HCT116 xenograft model, showed a significant reduction on the tumor growth during and after treatment with CPT-loaded micelles. Moreover, in a more biological relevant in vivo model of chemically-induced CRC, orally administered CPT-loaded micelles demonstrated a significant reduction on tumor incidence and inflammation signs. The findings here reported indicate that CPT-loaded into chitosan-based micelles, by improving drug solubility, alongside its safety profile for normal tissues, may have a promising role CRC chemotherapy.
Collapse
Affiliation(s)
- Andreia Almeida
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Flávia Castro
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Carlos Resende
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Simó Schwartz
- Banc de Sang i Teixits, Passeig del Taulat, 116, 08005 Barcelona, Spain
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central da Gandra, 137, 4585-116 Gandra, Portugal.
| |
Collapse
|
8
|
Liu M, Chen X, Chen H, Wu X, Fan W, Chen J. Nanotechnology-Based Drug Delivery System for Anticancer Active Ingredients from Traditional Chinese Medicines: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2011-2032. [DOI: 10.1142/s0192415x22500860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The variable dosage forms of most traditional Chinese medicines (TCMs) could be disadvantaged by low selectivity, poor biological distribution, limited bioavailability with low efficacy, and some adverse effects. These issues limit the control of clinical pharmacodynamics of the antitumor active components. With the progress of science and technology, many new polymer materials and new technologies have emerged, such as nanotechnology, cyclodextrin inclusion, solid dispersion, microcapsule and microsphere technologies. These new technologies provide a good basis for exploring novel TCM dosage forms for overcoming the shortcomings. The increased numbers of new technologies have been used to study TCM dosage forms with remarkable achievements. In this review paper, we will provide a systematic overview of the new dosage forms of nano-formulations and co-medications in relation to nano-delivery systems in an attempt to provide useful references for practical application of active antitumor ingredients from the TCMs.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Xinmei Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Hang Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
- Shanghai Wei Er Lab, Shanghai 200137, P. R. China
| | - Wei Fan
- Seventh People’s Hospital of Shanghai, University of Traditional Chinese Medicine, Shanghai 200137, P. R. China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
- Shanghai Wei Er Lab, Shanghai 200137, P. R. China
| |
Collapse
|
9
|
Shah A, Patel A, Dharamsi A. Optimization of Solid Lipid Nanoparticles and Nanostructured Lipidic Carriers as Promising Delivery for Gefitinib: Characterization and Invitro Evaluation. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885516666210125111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Response surface methodology is a unique tool for the optimization of Solid lipid Nanoparticles
and Nanostructured lipid carriers by developing the relationship between dependent and independent variables and
exploring their interactions.
Methods:
Central Composite Design and Box Benkhen Design was used to develop
optimized formulations of Gefitinib [GEF] Solid Lipid Nanoparticles [SLN] and Nanostructured Lipidic Carriers [NLC].
In the design matrix, the independent variables chosen were the amount of Solid Lipid, Liquid Lipid, and Surfactant and
dependent variables were Particle Size and Poly Dispersity Index.
Result:
The GEF-SLN under optimized conditions gave
rise to Particle size (187.9 nm ± 1.15), PDI (0.318 ± 0.006), %EE (95.38%±0.14), Zeta Potential (-8.75 mv ±0.18) and
GEF-NLC under optimized conditions gave rise to Particle size (188.6 nm± 1.12), PDI (0.395± 0.004), %EE (97.46%±
0.33), Zeta Potential (-5.72 mv± 0.04) respectively. SEM of the Freeze-dried optimized lipidic carriers showed spherical
particles. The in vitro experiments proved that Gefitinib in the lipidic carriers is released gradually throughout 24 h.
Conclusion:
This study showed that the response surface methodology could be efficiently applied for the modeling of
GEF-SLN & GEF-NLC.
Collapse
Affiliation(s)
- Akshat Shah
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Abhay Dharamsi
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
10
|
Shirazi AS, Varshochian R, Rezaei M, Ardakani YH, Dinarvand R. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:78. [PMID: 34191134 PMCID: PMC8245372 DOI: 10.1007/s10856-021-06538-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
SN38 is the active metabolite of irinotecan with 1000-fold greater cytotoxicity compared to the parent drug. Despite the potential, its application as a drug is still seriously limited due to its stability concerns and low solubility in acceptable pharmaceutical solvents. To address these drawbacks here nanostructured lipid carrier (NLC) containing SN38 was prepared and its cytotoxicity against U87MG glioblastoma cell line was investigated. The formulations were prepared using hot ultrasonication and solvent evaporation/emulsification methods. NLCs with a mean size of 140 nm and particle size distribution (PDI) of 0.25 were obtained. The average loading efficiency was 9.5% and its entrapment efficiency was 81%. In order to obtain an accurate determination of released amount of SN38 a novel medium and extraction method was designed, which lead to an appropriate in vitro release profile of the drug from the prepared NLCs. The MTT test results revealed the significant higher cytotoxicity of NLCs on U87MG human glioblastoma cell line compared with the free drug. The confocal microscopy images confirmed the proper penetration of the nanostructures into the cells within the first 4 h. Consequently, the results indicated promising potentials of the prepared NLCs as a novel treatment for glioblastoma.
Collapse
Affiliation(s)
- Ali Sabouri Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Varshochian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- School of chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Yalda Hosseinzadeh Ardakani
- Department of Pharmaceutics, Biopharmaceutics and Pharmacokinetics Division, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Sang R, Stratton B, Engel A, Deng W. Liposome technologies towards colorectal cancer therapeutics. Acta Biomater 2021; 127:24-40. [PMID: 33812076 DOI: 10.1016/j.actbio.2021.03.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common deadly cancer worldwide. After treatment with curative intent recurrence rates vary with staging 0-13% in Stage 1, 11-61% in S2 and 28-73% in Stage 3. The toxicity to healthy tissues from chemotherapy and radiotherapy and drug resistance severely affect the quality of life and cancer specific outcomes of CRC patients. To overcome some of these limitations, many efforts have been made to develop nanomaterial-based drug delivery systems. Among these nanocarriers, liposomes represented one of the most successful candidates in delivering targeted oncological treatment, improving safety profile and therapeutic efficacy of encapsulated drugs. In this review we will discuss liposome design with a particular focus on the targeting feature and triggering functions. We will also summarise the recent advances in liposomal delivery system for CRC treatment in both the preclinical and clinical studies. We will finally provide our perspectives on the liposome technology development for the future clinical translation. STATEMENT OF SIGNIFICANCE: Conventional treatments for colorectal cancer (CRC) severely affect the therapeutic effects for advanced patients. With the development of nanomedicines, liposomal delivery system appears to be one of the most promising nanocarriers for CRC treatment. In last three years several reviews in this area have been published focusing on the preclinical research and drug delivery function, which is a fairly narrow focus in the field of liposome technology for CRC therapy. Our review presented the most recent advances of the liposome technology (both clinical and preclinical applications) for CRC with strong potential for further clinical translation. We believe it will attract lots of attention from various audiences, including researchers, clinicians and the industry.
Collapse
|
12
|
Feng S, Wang L, Shao P, Sun P, Yang CS. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit Rev Food Sci Nutr 2021; 62:5638-5657. [PMID: 33612007 DOI: 10.1080/10408398.2021.1888692] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytosterols have been shown to lower cholesterol levels and to have antioxidant, anti-inflammatory and other biological activities. However, the high melting point and poor solubility limit their bioavailability and practical application. It is advantageous to modify phytosterols chemically and physically. This article reviews and discusses the chemical and physical modifications of phytosterols, as well as their effects on the bioavailability and possible toxicity in vivo. The current research on chemical modifications is mainly focused on esterification to increase the oil solubility and water solubility. For physical modifications (mainly microencapsulation), there are biopolymer-based, surfactant-based and lipid-based nanocarriers. Both chemical and physical modifications of phytosterols can effectively increase the absorption and bioavailability. The safety of modified phytosterols is also an important issue. Phytosterol esters are generally considered to be safe. However, phytosterol oxides, which may be produced during the synthesis of phytosterol esters, have shown toxicity in animal models. The toxicity of nanocarriers also needs further studies.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liling Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
13
|
The effect of efflux pump inhibitors on in vitro and in vivo efficacy of solid lipid nanoparticles containing SN38. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Jin X, Zhang J, Jin X, Liu L, Tian X. Folate Receptor Targeting and Cathepsin B-Sensitive Drug Delivery System for Selective Cancer Cell Death and Imaging. ACS Med Chem Lett 2020; 11:1514-1520. [PMID: 32832017 DOI: 10.1021/acsmedchemlett.0c00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, a folate receptor (FR)-mediated dual-targeting drug delivery system was synthesized to improve the tumor-killing efficiency and inhibit the side effects of anticancer drugs. We designed and synthesized an FR-mediated fluorescence probe (FA-Rho) and FR-mediated cathepsin B-sensitive drug delivery system (FA-GFLG-SN38). FA-GFLG-SN38 is composed of the FR ligand (folic acid, FA), the tetrapeptide substrate for cathepsin B (GFLG), and an anticancer drug (SN38). The rhodamine B (Rho)-labeled probe FA-Rho is suitable for specific fluorescence imaging of SK-Hep-1 cells overexpressing FR and inactive in FR-negative A549 and 16-HBE cells. FA-GFLG-SN38 exhibited strong cytotoxicity against FR-overexpressing SK-Hep-1, HeLa, and Siha cells, with IC50 values of 2-3 μM, but had no effect on FR-negative A549 and 16-HBE cells. The experimental results show that the FA-CFLG-SN38 drug delivery system proposed by us can effectively inhibit tumor proliferation in vitro, and it can be adopted for the diagnostics of tumor tissues and provide a basis for effective tumor therapy.
Collapse
Affiliation(s)
- Xiangmei Jin
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| | - Jun Zhang
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xiaoyan Jin
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xizhe Tian
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| |
Collapse
|
15
|
Khezri K, Saeedi M, Morteza-Semnani K, Akbari J, Rostamkalaei SS. An emerging technology in lipid research for targeting hydrophilic drugs to the skin in the treatment of hyperpigmentation disorders: kojic acid-solid lipid nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:841-853. [DOI: 10.1080/21691401.2020.1770271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Khadijeh Khezri
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal plant research center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| |
Collapse
|
16
|
Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101458] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Moideen MMJ, Karuppaiyan K, Kandhasamy R, Seetharaman S. Skimmed milk powder and pectin decorated solid lipid nanoparticle containing soluble curcumin used for the treatment of colorectal cancer. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muthu M. J. Moideen
- Department of Pharmaceutical TechnologyBharathidasan Institute of Technology, Anna University Tiruchirappalli Tamilnadu India
| | - Kavitha Karuppaiyan
- Department of Pharmaceutical TechnologyBharathidasan Institute of Technology, Anna University Tiruchirappalli Tamilnadu India
| | - Ruckmani Kandhasamy
- Department of Pharmaceutical TechnologyBharathidasan Institute of Technology, Anna University Tiruchirappalli Tamilnadu India
| | | |
Collapse
|
18
|
Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm 2019; 568:118499. [DOI: 10.1016/j.ijpharm.2019.118499] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
19
|
Zhang WY, Du F, He M, Bai L, Gu YY, Yang LL, Liu YJ. Studies of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes-loaded liposomes as drug delivery system. Eur J Med Chem 2019; 178:390-400. [DOI: 10.1016/j.ejmech.2019.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022]
|
20
|
Mahmoudi A, Jaafari MR, Ramezanian N, Gholami L, Malaekeh-Nikouei B. BR2 and CyLoP1 enhance in-vivo SN38 delivery using pegylated PAMAM dendrimers. Int J Pharm 2019; 564:77-89. [PMID: 30991135 DOI: 10.1016/j.ijpharm.2019.04.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
|
21
|
Chen F, Cai Y, Huang L, Chen Y, Luo X. Synthesis of a SN38 prodrug grafted to amphiphilic phosphorylcholine polymers and their prodrug miceller properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj04908d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer prodrug micelles, combining the advantages of prodrugs and polymer micelles, can greatly improve the solubility, permeability and stability of drugs.
Collapse
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuanyuan Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Lei Huang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Lab of Polymer Materials Engineering
| |
Collapse
|
22
|
Redox sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. Int J Pharm 2018; 549:352-362. [DOI: 10.1016/j.ijpharm.2018.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
|
23
|
Einafshar E, Asl AH, Nia AH, Mohammadi M, Malekzadeh A, Ramezani M. New cyclodextrin-based nanocarriers for drug delivery and phototherapy using an irinotecan metabolite. Carbohydr Polym 2018; 194:103-110. [DOI: 10.1016/j.carbpol.2018.03.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 12/31/2022]
|
24
|
Fang S, Hou Y, Ling L, Wang D, Ismail M, Du Y, Zhang Y, Yao C, Li X. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids Surf B Biointerfaces 2018; 166:235-244. [DOI: 10.1016/j.colsurfb.2018.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
25
|
Jogi H, Maheshwari R, Raval N, Kuche K, Tambe V, Mak KK, Pichika MR, Tekade RK. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine (Lond) 2018; 13:1187-1220. [DOI: 10.2217/nnm-2017-0397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is estimated to be a significant health problem of the 21st century. The situation gets even tougher when it comes to its treatment using chemotherapy employing synthetic anticancer molecules with numerous side effects. Recently, there has been a paradigm shift toward the adoption of herbal drugs for the treatment of cancer. In this context, a suitable delivery system is principally warranted to deliver these herbal biomolecules specifically at the tumorous site. To achieve this goal, carbon nanotubes (CNTs) have been widely explored to deliver anticancer herbal molecules with improved therapeutic efficacy and safety. This review uniquely expounds the biopharmaceutical, clinical and safety aspects of different anticancer herbal drugs delivered through CNTs with a cross-talk on their outcomes. This review will serve as a one-stop-shop for the readers on various anticancer herbal drugs delivered through CNTs as a futuristic delivery device.
Collapse
Affiliation(s)
- Hardi Jogi
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kaushik Kuche
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kit-Kay Mak
- School of Postgraduate Studies & Research, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| |
Collapse
|
26
|
Alibolandi M, Abnous K, Anvari S, Mohammadi M, Ramezani M, Taghdisi SM. CD133-targeted delivery of self-assembled PEGylated carboxymethylcellulose-SN38 nanoparticles to colorectal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [PMID: 29519158 DOI: 10.1080/21691401.2018.1446969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Poor aqueous solubility of chemotherapeutics such as SN38 (7-ethyl-10-hydroxycamptothecin) and the associated systemic adverse effects are serious limitations of their clinical use. To improve the drug delivery efficiency of such compounds, they were covalently conjugated to hydrophilic macromolecular carriers that specifically deliver the drug moiety to the tumour cells. In the current study, we developed a PEGylated acetylated carboxymethylcellulose conjugate of SN38 which was covalently attached to an aptamer against a cancer stem cell marker, CD133. Then, the designed nanoplatform was used to specifically deliver SN38 to colorectal cancer cells. The results demonstrated that the synthesized conjugate was self-assembled to nanoparticles with 169 nm in size and poly dispersity index of 0.11. Besides, the targeted self-assembled nanoparticles could significantly enhance the cellular uptake by CD133-expressing HT29 cell line confirmed by fluorescent microscopy and flow cytometry. Moreover, our results revealed that the targeted self-assembled nanoconjugate exhibited significantly lower IC50 in HT29 cells overexpressing CD133 compared to non-targeted self-assembled nanoconjugate. The promising data suggest that the prepared targeted self-assembled drug conjugate nanoparticles possess the potential to offer the desirable physicochemical properties thereby enhancing the solubility and the therapeutic index of poorly soluble cytotoxic agents.
Collapse
Affiliation(s)
- Mona Alibolandi
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khalil Abnous
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sajjad Anvari
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Marzieh Mohammadi
- b Nanotechnology Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran.,b Nanotechnology Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- c Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
27
|
Daneshmand S, Golmohammadzadeh S, Jaafari MR, Movaffagh J, Rezaee M, Sahebkar A, Malaekeh-Nikouei B. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J Cell Biochem 2018; 119:4251-4264. [PMID: 29243841 DOI: 10.1002/jcb.26617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Solid lipid nanoparticles (SLNs), as alternative colloidal carriers, have been used for the sustained release of lipophilic drugs with poor water solubility. One of the most important parameters in the characterization of SLNs is entrapment efficiency (EE). Despite the importance of this factor in estimating the drug loading capacity, EE does not always represent the exact percentage of the entrapped drug. Several variables such as the stirring speed and duration, and concentration of surfactant, emulsifier, and drug play important roles in determining the final EE. In addition, EE is mainly affected by the type and concentration of the lipid. There are two major methods for the measurement of EE are in which the encapsulated drug in SLNs is either directly measured (direct method) or the amount of unencapsulated drug in the supernatant is measured (indirect method). Accuracy of drug analysis is the main challenge for EE calculation, and is either performed in the separated aqueous medium or the particles. In this review, we aimed to introduce the available methods for EE determination in SLNs and discuss the advantages and shortcomings of each method.
Collapse
Affiliation(s)
- Sara Daneshmand
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Faculty of Medicine, Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Hou Y, Yao C, Ling L, Du Y, He R, Ismail M, Zhang Y, Fu Z, Li X. Novel dual VES phospholipid self-assembled liposomes with an extremely high drug loading efficiency. Colloids Surf B Biointerfaces 2017; 156:29-37. [PMID: 28499202 DOI: 10.1016/j.colsurfb.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/30/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Abstract
Vitamin E succinate (VES), a unique selective anti-cancer drug, has attracted much attention for its ability to induce apoptosis in various cancer cells. Importantly, it has been reported that VES is largely non-toxic to normal cells. However, poor aqueous solubility and bioavailability extensively restricted its clinical utility. In this report, dual VES phospholipid conjugate (di-VES-GPC) prodrug based liposomes were prepared in order to develop an efficient delivery system for VES. Di-VES-GPC was first synthesized by conjugating VES with l-α-glycerophosphorylcholine (GPC) using N,N'-dicyclohexylcarbodiimide (DCC) as a coupling agent. The di-VES-GPC prodrug was able to self-assemble into liposomes by reverse-phase evaporation method. The structure of the liposomes was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM. The results showed that di-VES-GPC assembled liposomes were spherical with an average diameter approximately 183nm. Cryo-TEM data confirmed the formation of multilamellar liposomes with the bilayer thickness about 5nm by the assembly of the conjugate without any excipient. The VES drug loading highly reaches up to 82.8wt% in the liposomes after a simple calculation. Furthermore, the in vitro release behavior of di-VES-GPC liposomes was evaluated in different media. It was found that the liposomes could release free VES at a weakly acidic microenvironment but exhibited good stability under a simulated biological condition. The cellular uptake and intracellular drug release tests demonstrated that di-VES-GPC liposomes could be internalized effectively and converted into parent drug VES in cancer cells. Furthermore, in vitro antitumor activities of the di-VES-GPC liposomes were evaluated by MTT assay and flow cytometry. It was revealed that the liposomes presented comparable cytotoxicities to free VES. Taken together, the di-VES-GPC liposomes might provide an excellent formulation of VES which have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Yongpeng Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ruiyu He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhenglin Fu
- National Center for Protein Science, Shanghai 200000, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
29
|
Du Y, Zhang W, He R, Ismail M, Ling L, Yao C, Fu Z, Li X. Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects. Bioorg Med Chem 2017; 25:3247-3258. [PMID: 28465086 DOI: 10.1016/j.bmc.2017.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/09/2017] [Indexed: 11/20/2022]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), as a highly active topoisomerase I inhibitor, is 200-2000-fold more cytotoxic than irinotecan (CPT-11) commercially available as Camptosar®. However, poor solubility and low stability extensively restricted its clinical utility. In this report, dual SN38 phospholipid conjugate (Di-SN38-PC) prodrug based liposomes were developed in order to compact these drawbacks. Di-SN38-PC prodrug was first synthesized by inhomogeneous conjugation of two SN38-20-O-succinic acid molecules with L-α-glycerophosphorylcholine (GPC). The assembly of the prodrug was carried out without any excipient by using thin film method. Dynamic light scattering (DLS), transmission electron microscope (TEM) and cryogenic transmission electron microscopy (cyro-TEM) characterization indicated that Di-SN38-PC can form spherical liposomes with narrow particle size (<200nm) and negatively charged surface (-21.6±3.5mV). The loading efficiency of SN38 is 65.2 wt.% after a simple calculation. In vitro release test was further performed in detail. The results demonstrated that Di-SN38-PC liposomes were stable in neutral environment but degraded in a weakly acidic condition thereby released parent drug SN38 effectively. Cellular uptake studies reflected that the liposomes could be internalized into cells more significantly than SN38. In vitro antitumor activities were finally evaluated by MTT assay, colony formation assay, flow cytometry, RT-PCR analysis and Western Blot. The results showed that Di-SN38-PC liposomes had a comparable cytotoxicity with SN38 against MCF-7 and HBL-100, and a selective promotion of apoptosis of tumor cells. Furthermore, a pharmacokinetics test showed that Di-SN38-PC liposomes had a longer circulating time in blood compared with the parent drug. All the results indicate that Di-SN38-PC liposomes are an effective delivery system of SN38.
Collapse
Affiliation(s)
- Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ruiyu He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhenglin Fu
- National Center for Protein Science, Shanghai 201210, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
30
|
Ling L, Du Y, Ismail M, He R, Hou Y, Fu Z, Zhang Y, Yao C, Li X. Self-assembled liposomes of dual paclitaxel-phospholipid prodrug for anticancer therapy. Int J Pharm 2017; 526:11-22. [PMID: 28412448 DOI: 10.1016/j.ijpharm.2017.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
In this report, a newly liposomal formulation of paclitaxel (PTX) based on dual paclitaxel succinate glycerophosphorylcholine (Di-PTX-GPC) prodrug was developed. The Di-PTX-GPC prodrug was synthesized by conjugating PTX with GPC through esterification under N,N'-carbonyldiimidazole (CDI) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) catalytic system. Di-PTX-GPC liposomes were prepared by thin film method and characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The results indicated that the liposomes have an average diameter of 157.9nm with well-defined spherical morphology. In vitro drug release studies confirmed that the Di-PTX-GPC liposomes have controlled release profile of PTX at a weakly acidic environment, which formulates them suitable for sustained drug delivery. Additionally, in vitro cellular uptake analysis and cytotoxicity evaluation showed that Di-PTX-GPC liposomes were internalized successfully into tumor cells to induce the apoptosis against MCF-7, HeLa and HepG-2 cells. In vivo pharmacokinetics study revealed that such liposomal formulation of Di-PTX-GPC has longer retention half-life in bloodstream, which subsequently leads to slight accumulate in tumor sites due to enhanced permeability and retention (EPR) effect. More importantly, Di-PTX-GPC liposomes demonstrated good in vivo anticancer activities compared to Taxol with reduced adverse effects. Conclusively, these results suggest that Di-PTX-GPC liposomes could be an effective PTX delivery vehicles in clinical cancer chemotherapy.
Collapse
Affiliation(s)
- Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Ruiyu He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yongpeng Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Zhenglin Fu
- National Center for Protein Science, Shanghai, 200000, PR China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
31
|
England RM, Hare JI, Barnes J, Wilson J, Smith A, Strittmatter N, Kemmitt PD, Waring MJ, Barry ST, Alexander C, Ashford MB. Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. J Control Release 2017; 247:73-85. [DOI: 10.1016/j.jconrel.2016.12.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
|