1
|
Lee SM, Lee JG, Yun TH, Kim CH, Cho JH, Kim KS. The Impact of Polymers on Enzalutamide Solid Self-Nanoemulsifying Drug Delivery System and Improved Bioavailability. Pharmaceutics 2024; 16:457. [PMID: 38675118 PMCID: PMC11055097 DOI: 10.3390/pharmaceutics16040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Enzalutamide (ENZ), marketed under the brand name Xtandi® as a soft capsule, is an androgen receptor signaling inhibitor drug actively used in clinical settings for treating prostate cancer. However, ENZ's low solubility and bioavailability significantly hinder the achievement of optimal therapeutic outcomes. In previous studies, a liquid self-nanoemulsifying drug delivery system (L-SNEDDS) containing ENZ was developed among various solubilization technologies. However, powder formulations that included colloidal silica rapidly formed crystal nuclei in aqueous solutions, leading to a significant decrease in dissolution. Consequently, this study evaluated the efficacy of adding a polymer as a recrystallization inhibitor to a solid SNEDDS (S-SNEDDS) to maintain the drug in a stable, amorphous state in aqueous environments. Polymers were selected based on solubility tests, and the S-SNEDDS formulation was successfully produced via spray drying. The optimized S-SNEDDS formulation demonstrated through X-ray diffraction and differential scanning calorimetry data that it significantly reduced drug crystallinity and enhanced its dissolution rate in simulated gastric and intestinal fluid conditions. In an in vivo study, the bioavailability of orally administered formulations was increased compared to the free drug. Our results highlight the effectiveness of solid-SNEDDS formulations in enhancing the bioavailability of ENZ and outline the potential translational directions for oral drug development.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Jeong-Gyun Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Tae-Han Yun
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Chul-Ho Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Jung-Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| |
Collapse
|
2
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Yu YM, Bu FZ, Meng SS, Yan CW, Wu ZY, Li YT. The first nano-cocrystal formulation of marine drug cytarabine with uracil based on cocrystal nanonization strategy for long-acting injection exhibiting enhanced antitumor activity. Int J Pharm 2023; 644:123300. [PMID: 37567370 DOI: 10.1016/j.ijpharm.2023.123300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
To emphasize the superiority of uracil (UR) in ameliorating biopharmaceutical characteristics of marine antitumor medicine cytarabine (ARA), thus gaining some innovative opinions for the exploitation of nanococrystal formulation, a cocrystal nanonization strategy is proposed by integrating cocrystallization and nanosize preparation techniques. For one thing, based on UR's unique structural features and natures together with advantages of preferential uptake by tumor cells, cocrystallizing ARA with UR is expected to improve the in vitro/vivo performances. For another, the nanonization procedure is oriented towards maintaining the long-term effective drug level. Along this route, a cocrystal of ARA with UR, viz., ARA-UR, is successfully synthesized and then transformed into nano-cocrystal. The cocrystal structure is precisely confirmed by various methods, demonstrating that a 1:1 ARA and UR in the crystal forms cytosine-UR hydrogen-bonding interactions, thus constructing supramolecular frameworks by strong π-π stacking interplays; while the nano-cocrystal is block-shaped particles of 562.70 nm with zeta potential -33.40 mV. The properties of cocrystal ARA-UR and its nano-cocrystal in vitro/vivo are comparatively explored by theoretical calculations and experimental analyses, revealing that permeability of both is significantly increased than ARA per se. Notably, the meliorative natures of both the cocrystal and nano-cocrystal in vitro bring excellent antitumor activity, but the latter has greater strengths over the former. More notably, the nano-cocrystal can sustain effective concentration for a relatively longer time, causing lengthened retention time and better absorption in vivo. The contribution offers a fire-new dosage form of ARA for long-lasting delivery, thus filling the vacancy in nanococrystal studies about marine drugs.
Collapse
Affiliation(s)
- Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Fan-Zhi Bu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Su-Su Meng
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China.
| |
Collapse
|
4
|
Guo M, Peng T, Wu C, Pan X, Huang Z. Engineering Ferroptosis Inhibitors as Inhalable Nanomedicines for the Highly Efficient Treatment of Idiopathic Pulmonary Fibrosis. Bioengineering (Basel) 2023; 10:727. [PMID: 37370658 PMCID: PMC10295167 DOI: 10.3390/bioengineering10060727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) refers to chronic progressive fibrotic interstitial pneumonia. It is called a "tumor-like disease" and cannot be cured using existing clinical drugs. Therefore, new treatment options are urgently needed. Studies have proven that ferroptosis is closely related to the development of IPF, and ferroptosis inhibitors can slow down the occurrence of IPF by chelating iron or reducing lipid peroxidation. For example, the ferroptosis inhibitor deferoxamine (DFO) was used to treat a mouse model of pulmonary fibrosis, and DFO successfully reversed the IPF phenotype and increased the survival rate of mice from 50% to 90%. Given this, we perceive that the treatment of IPF by delivering ferroptosis inhibitors is a promising option. However, the delivery of ferroptosis inhibitors faces two bottlenecks: low solubility and targeting. For one thing, we consider preparing ferroptosis inhibitors into nanomedicines to improve solubility. For another thing, we propose to deliver nanomedicines through pulmonary drug-delivery system (PDDS) to improve targeting. Compared with oral or injection administration, PDDS can achieve better delivery and accumulation in the lung, while reducing the systemic exposure of the drug, and is an efficient and safe drug-delivery method. In this paper, three possible nanomedicines for PDDS and the preparation methods thereof are proposed to deliver ferroptosis inhibitors for the treatment of IPF. Proper administration devices and challenges in future applications are also discussed. In general, this perspective proposes a promising strategy for the treatment of IPF based on inhalable nanomedicines carrying ferroptosis inhibitors, which can inspire new ideas in the field of drug development and therapy of IPF.
Collapse
Affiliation(s)
- Mengqin Guo
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| |
Collapse
|
5
|
Kim YH, Kim SB, Choi SH, Nguyen TTL, Ahn SH, Moon KS, Cho KH, Sim TY, Heo EJ, Kim ST, Jung HS, Jee JP, Choi HG, Jang DJ. Development and Evaluation of Self-Microemulsifying Drug Delivery System for Improving Oral Absorption of Poorly Water-Soluble Olaparib. Pharmaceutics 2023; 15:1669. [PMID: 37376117 DOI: 10.3390/pharmaceutics15061669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study is to develop and evaluate a self-microemulsifying drug delivery system (SMEDDS) to improve the oral absorption of poorly water-soluble olaparib. Through the solubility test of olaparib in various oils, surfactants and co-surfactants, pharmaceutical excipients were selected. Self-emulsifying regions were identified by mixing the selected materials at various ratios, and a pseudoternary phase diagram was constructed by synthesizing these results. The various physicochemical properties of microemulsion incorporating olaparib were confirmed by investigating the morphology, particle size, zeta potential, drug content and stability. In addition, the improved dissolution and absorption of olaparib were also confirmed through a dissolution test and a pharmacokinetic study. An optimal microemulsion was generated in the formulation of Capmul® MCM 10%, Labrasol® 80% and PEG 400 10%. The fabricated microemulsions were well-dispersed in aqueous solutions, and it was also confirmed that they were maintained well without any problems of physical or chemical stability. The dissolution profiles of olaparib were significantly improved compared to the value of powder. Associated with the high dissolutions of olaparib, the pharmacokinetic parameters were also greatly improved. Taken together with the results mentioned above, the microemulsion could be an effective tool as a formulation for olaparib and other similar drugs.
Collapse
Affiliation(s)
- Yong-Han Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul 03722, Republic of Korea
| | - Se-Hee Choi
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Pharmaceutical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | | | - Sung-Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyung-Sun Moon
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwan-Hyung Cho
- College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Tae-Yong Sim
- Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Ji Heo
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Pharmaceutical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung Tae Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Hyun-Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong-Jin Jang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Liu M, Higashi K, Ueda K, Moribe K. Supersaturation maintenance of carvedilol and chlorthalidone by cyclodextrin derivatives: Pronounced crystallization inhibition ability of methylated cyclodextrin. Int J Pharm 2023; 637:122876. [PMID: 36963642 DOI: 10.1016/j.ijpharm.2023.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Cyclodextrin (CD) is used to solubilize poorly water-soluble drugs by inclusion complex formation. In this study, we investigated the effect of CD derivatives on stabilizing the supersaturation by inhibiting the crystallization of two poorly water-soluble drugs, carvedilol (CVD) and chlorthalidone (CLT). The phase solubility test showed that β-CD and γ-CD derivatives enhanced the solubility of CVD to a greater extent, whereas the solubility of CLT was enhanced more by β-CD derivatives. The solubilization efficacy of CD derivatives was dependent on the size fitness between the drug molecule and the CD cavity. In the drug crystallization induction time measurement, the same initial drug supersaturation ratio (S) was employed in all the CD solutions, and the methylated CD derivatives greatly outperformed unmethylated CD derivatives in stabilizing the supersaturation of both CVD and CLT. The crystallization inhibition strength of CD derivatives was strongly affected by the CD derivative substituent. Moreover, the calculated logarithm of octanol/water partition coefficients (log P) of CD derivatives showed a good correlation with drug crystallization inhibition ability. Thus, the high hydrophobicity of methylated CD plays an essential role in inhibiting crystallization. These findings can provide a valuable guide for selecting appropriate stabilizing agents for drug-supersaturation formulations.
Collapse
Affiliation(s)
- Mengyao Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
7
|
Witika BA, Choonara YE, Demana PH. A SWOT analysis of nano co-crystals in drug delivery: present outlook and future perspectives. RSC Adv 2023; 13:7339-7351. [PMID: 36895773 PMCID: PMC9989744 DOI: 10.1039/d3ra00161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The formulation of poorly soluble drugs is an intractable challenge in the field of drug design, development and delivery. This is particularly problematic for molecules that exhibit poor solubility in both organic and aqueous media. Usually, this is difficult to resolve using conventional formulation strategies and has resulted in many potential drug candidates not progressing beyond early stage development. Furthermore, some drug candidates are abandoned due to toxicity or have an undesirable biopharmaceutical profile. In many instances drug candidates do not exhibit desirable processing characteristics to be manufactured at scale. Nanocrystals and co-crystals, are progressive approaches in crystal engineering that can solve some of these limitations. While these techniques are relatively facile, they also require optimisation. Combining crystallography with nanoscience can yield nano co-crystals that feature the benefits of both fields, resulting in additive or synergistic effects to drug discovery and development. Nano co-crystals as drug delivery systems can potentially improve drug bioavailability and reduce the side-effects and pill burden of many drug candidates that require chronic dosing as part of treatment regimens. In addition, nano co-crystals are carrier-free colloidal drug delivery systems with particle sizes ranging between 100 and 1000 nm comprising a drug molecule, a co-former and a viable drug delivery strategy for poorly soluble drugs. They are simple to prepare and have broad applicability. In this article, the strengths, weaknesses, opportunities and threats to the use of nano co-crystals are reviewed and a concise incursion into the salient aspects of nano co-crystals is undertaken.
Collapse
Affiliation(s)
- Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University Pretoria 0208 South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences University of the Witwatersrand 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Patrick H Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University Pretoria 0208 South Africa
| |
Collapse
|
8
|
Zhan X, Wu Z, Chen Z, Cui X. Mechanism of the Micellar Solubilization of Curcumin by Mixed Surfactants of SDS and Brij35 via NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155032. [PMID: 35956981 PMCID: PMC9370735 DOI: 10.3390/molecules27155032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
The micellar solubilization mechanism of curcumin by mixed surfactants of SDS and Brij35 was investigated at the molecular scale by NMR spectroscopy. Through the investigation of the micelle formation process, types and structures of mixed micelles and solubilization sites, the intrinsic factors influencing the solubilization capacity were revealed. For systems with αSDS = 0.5 and 0.2, the obtained molar solubilization ratios (MSRs) are consistent with the MSRideal values. However, for αSDS = 0.8, the solubilization capacity of curcumin is weakened compared to the MSRideal. Furthermore, only one single mixed SDS/Brij35 micelles are formed for αSDS = 0.5 and 0.2. However, for αSDS = 0.8, there are separate SDS-rich and Brij35-rich mixed micelles formed. In addition, NOESY spectra show that the interaction patterns of SDS and Brij35 in mixed micelles are similar for three systems, as are the solubilization sites of curcumin. Therefore, for αSDS = 0.5 and 0.2 with single mixed micelles formed, the solubility of curcumin depends only on the mixed micelle composition, which is almost equal to the surfactant molar ratio. Although curcumin is solubilized in both separate micelles at αSDS = 0.8, a less stable micelle structure may be responsible for the low solubility. This study provides new insights into the investigation and application of mixed micelle solubilization.
Collapse
|
9
|
Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm 2022; 626:122043. [PMID: 35902056 DOI: 10.1016/j.ijpharm.2022.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
In recent years, poorly water-soluble drug candidates in the drug development pipeline have been a challenging issue for the pharmaceutical industry. Many delivery systems such as nanocrystals, cocrystals, nanoparticles, and amorphous solid dispersions (ASDs) have been developed to overcome these problems. A large number of methods are utilized to realize the above delivery systems. Among all the preparation methods, the antisolvent coprecipitation method is a relatively simple, cost-effective method, offering many advantages over conventional methods. An overview of recent developments for each solubility enhancement approach using the antisolvent coprecipitation method is presented. This current review details a comprehensive overview of the antisolvent coprecipitation process and its properties, as well as the fundamentals for enhancing the solubility and bioavailability of poorly water-soluble drugs by nanotization, polymorph control with polymers and/or surfactants. Furthermore, this review also presents insights into the factors affecting the antisolvent coprecipitation process.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
10
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
11
|
Huang Z, Staufenbiel S, Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm Res 2022; 39:949-961. [PMID: 35552985 PMCID: PMC9160134 DOI: 10.1007/s11095-022-03243-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Purpose Solubility and dissolution rate are essential for the oral absorption and bioavailability of poorly soluble drugs. The aim of this study was to prepare nano-co-crystals by combination of nanocrystal and co-crystal technologies, and investigate its effect, in situ, on increased kinetic solubility and dissolution rate. Methods Co-crystals of itraconazole-fumaric acid, itraconazole-succinic acid, indomethacin-saccharin and indomethacin-nicotinamide were prepared and nano-sized by wet milling. The particle size and solid state of the co-crystals were characterized by optical microscope, LD, PCS, DSC and XRPD before and after milling. Results 300-450 nm sized nano-co-crystals with a stable physical solid state were successfully prepared. Nano-co-crystals exhibited a lower crystallinity reduction than nanocrystals after wet milling. The particle size effect on the kinetic solubility of co-crystals was analysed for macro-, micro- and nano-co-crystals with in situ kinetic solubility studies. The maximum kinetic solubility of nano-co-crystals increased with excess conditions until a plateau. The highest increase was obtained with itraconazole-succinic acid nano-co-crystals with a kinetic solubility of 263.5 ± 3.9 μg/mL which was 51.5 and 6.6 times higher than the solubility of raw itraconazole and itraconazole-succinic acid co-crystal. Conclusions The synergistic effect of nanocrystals and co-crystals with regard to increased kinetic solubility and dissolution rate was proven. The combination of the advantages of nanocrystals and co-crystals is a promising formulation strategy to increase both the solubility and dissolution rate of poorly soluble drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03243-9.
Collapse
Affiliation(s)
- Zun Huang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Sven Staufenbiel
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany.
| |
Collapse
|
12
|
O'Sullivan A, Long B, Verma V, Ryan KM, Padrela L. Solid-State and Particle Size Control of Pharmaceutical Cocrystals using Atomization-Based Techniques. Int J Pharm 2022; 621:121798. [PMID: 35525471 DOI: 10.1016/j.ijpharm.2022.121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Poor bioavailability and aqueous solubility represent a major constraint during the development of new API molecules and can influence the impact of new medicines or halt their approval to the market. Cocrystals offer a novel and competitive advantage over other conventional methods with respect towards the substantial improvement in solubility profiles relative to the single-API crystals. Furthermore, the production of such cocrystals through atomization-based methods allow for greater control, with respect to particle size reduction, to further increase the solubility of the API. Such atomization-based methods include supercritical fluid methods, conventional spray drying and electrohydrodynamic atomization/electrospraying. The influence of process parameters such as solution flow rates, pressure and solution concentration, in controlling the solid-state and final particle size are discussed in this review with respect to atomization-based methods. For the last decade, literature has been attempting to catch-up with new regulatory rulings regarding the classification of cocrystals, due in part to data sparsity. In recent years, there has been an increase in cocrystal publications, specifically employing atomization-based methods. This review considers the benefits to employing atomization-based methods for the generation of pharmaceutical cocrystals, examines the most recent regulatory changes regarding cocrystals and provides an outlook towards the future of this field.
Collapse
Affiliation(s)
- Aaron O'Sullivan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Barry Long
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
13
|
Incorporation of itraconazole nano-co-crystals into multiparticulate oral dosage forms. Eur J Pharm Biopharm 2022; 176:75-86. [DOI: 10.1016/j.ejpb.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
|
14
|
Fitriani L, Fitriandi AD, Hasanah U, Zaini E. Nano‐Cocrystals of Piperine‐Succinic Acid: Physicochemical Characterization and Dissolution Rate Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lili Fitriani
- Department of Pharmaceutics Faculty of Pharmacy Universitas Andalas Padang Indonesia 25163
| | | | - Uswatul Hasanah
- Department of Pharmaceutics Faculty of Pharmacy Universitas Andalas Padang Indonesia 25163
| | - Erizal Zaini
- Department of Pharmaceutics Faculty of Pharmacy Universitas Andalas Padang Indonesia 25163
| |
Collapse
|
15
|
Yu YM, Liu L, Bu FZ, Li YT, Yan CW, Wu ZY. A novice cocrystal nanomicelle formulation of 5-fluorouracil with proline: the design, self-assembly and in vitro/vivo biopharmaceutical characteristics. Int J Pharm 2022; 617:121635. [DOI: 10.1016/j.ijpharm.2022.121635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
16
|
Huang Z, Staufenbiel S, Bodmeier R. Kinetic solubility improvement and influence of polymers on controlled supersaturation of itraconazole-succinic acid nano-co-crystals. Int J Pharm 2022; 616:121536. [PMID: 35124120 DOI: 10.1016/j.ijpharm.2022.121536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
Nano-co-crystals enhance the solubility and dissolution rate of poorly soluble drugs. The objective of this study was to obtain a better understanding of the dissolution process of nano-co-crystals and of the precipitation inhibition by various polymers. Itraconazole-succinic acid (ITZ-SUC) nano-co-crystal was chosen as model drug formulation to investigate the supersaturation and precipitation inhibition capabilities of various polymers (HPMC E5, HPMC E50, HPMCAS, HPC-SSL, PVPK30 and PVPVA64). The kinetic concentration-time profiles of nano-co-crystal were measured under non-sink conditions with in situ UV-VIS spectroscopy. HPMC E5 performed best by achieving the greatest extended supersaturation/precipitation inhibition. The precipitation inhibition capacity of HPMC E5 was proportional to its concentration. The maximum achievable supersaturation was proportional to the dissolution rate which can be modulated by the rate of supersaturation generation (i.e., addition rate or dose). Supersaturation could be prolonged significantly resulting in 2-5-fold increased area under the dissolution curves compared to nano-co-crystals alone. This effect was limited by a critical excess of undissolved particles with high specific surface area which acted as crystallization seeds resulting in faster precipitation. The study highlighted that a faster dissolution rate and the use of precipitation inhibitors were two key factors determining the extent and time of supersaturation of nano-co-crystals.
Collapse
Affiliation(s)
- Zun Huang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Sven Staufenbiel
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
17
|
Ohyama M, Amari S, Takiyama H. Operation Design of Co-Crystallization Using Homogeneity Evaluation Including “Single Component Excess” Index. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mitsuki Ohyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Shuntaro Amari
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Hiroshi Takiyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
18
|
Santos JAV, Baptista JA, Santos IC, Maria TMR, Canotilho J, Castro RAE, Eusébio MES. Pharmaceutical nanococrystal synthesis: a novel grinding approach. CrystEngComm 2022. [DOI: 10.1039/d1ce00407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanococrystals – a new green in situ surfactant-assisted mechanochemical synthesis.
Collapse
Affiliation(s)
| | | | - Inês C. Santos
- CQC, Departamento de Química, Universidade de Coimbra, Portugal
| | | | - João Canotilho
- CQC, Departamento de Química, Universidade de Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | - Ricardo A. E. Castro
- CQC, Departamento de Química, Universidade de Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | | |
Collapse
|
19
|
Mohammady M, Hadidi M, Iman Ghetmiri S, Yousefi G. Design of ultra-fine carvedilol nanococrystals: Development of a safe and stable injectable formulation. Eur J Pharm Biopharm 2021; 168:139-151. [PMID: 34481906 DOI: 10.1016/j.ejpb.2021.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/18/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Carvedilol (CAR) is a strategic beta-blocker agent which its application has been limited by its very low water solubility. The present study describes a soluble form of drug based on nano-cocrystal (NCC) anti-solvent precipitation technique. The COSMOquick software was employed to select the optimum coformer (tartaric acid, TA) and organic solvent (acetone) relying on the enthalpy changes of cocrystallization and solubilization. Central Composite Design (CCD) considering the impact of CAR, TA, poloxamer 188 (stabilizer) concentrations, and anti-solvent/solvent ratio on CAR NCCs particle size (PS) could produce ultra-fine NCCs (about 1 nm). The lyophilization of NCCs investigating slow/fast freezing rates, various types and concentrations of cryprotectants and lyoprotectants indicated that PEG and trehalose (5 % w/vconcentration) under slow freezing rate could re-produce the initial PSs successfully. CAR NCCs indicated about 2000 fold increase in solubility compared with pure CAR. DSC and PXRD experiments proved that the formulations containing trehalose led to more crystalline and the ones comprising PEG led to more amorphous structures. Interestingly, the slow freezed PEG protected NCCs were physically stable for at least 18 months. In conclusion, the NCC technology could produce the first safe soluble form of CAR for treating hypertension urgencies easy for industrial scale-up.
Collapse
Affiliation(s)
- Mohsen Mohammady
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadidi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Iman Ghetmiri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. CRYSTALS 2021. [DOI: 10.3390/cryst11050463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, many commercial drugs have poor solubility and bioavailability. Cocrystals are formulated to modulate active pharmaceutical ingredients’ properties with improved solubility, dissolution, and bioavailability compared to their pristine individual components in the pharmaceutical industry. Nano-cocrystals, crystals in the nano range, can further enhance these properties because of not only the cocrystal structure, but also the large surface to volume ratio of nanocrystals. Even though there are many studies on cocrystals, the research of pharmaceutical nano-cocrystals is still in the initial stage. Thus, it is necessary to conduct a systematic study on pharmaceutical nano-cocrystals. In this review, the possible preparation approaches of nano-cocrystals have been reported. To have a comprehensive understanding of nano-cocrystals, some analytical techniques and characterizations will be discussed in detail. In addition, the feasible therapeutic application of nano-cocrystals will be presented. This work is expected to provide guidance to develop new nano-cocrystals with commercial value in the pharmaceutical industry.
Collapse
|
21
|
Application of Fundamental Techniques for Physicochemical Characterizations to Understand Post-Formulation Performance of Pharmaceutical Nanocrystalline Materials. CRYSTALS 2021. [DOI: 10.3390/cryst11030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocrystalline materials (NCM, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from drug delivery and electronics to optics. Drug nanocrystals (NC) and nano co-crystals (NCC) are examples of NCM with fascinating physicochemical properties and have attracted significant attention in drug delivery. NCM are categorized by advantageous properties, such as high drug-loading efficiency, good long-term physical stability, steady and predictable drug release, and long systemic circulation time. These properties make them excellent formulations for the efficient delivery of a variety of active pharmaceutical ingredients (API). In this review, we summarize the recent advances in drug NCM-based therapy options. Currently, there are three main methods to synthesize drug NCM, including top-down, bottom-up, and combination methods. The fundamental characterization methods of drug NCM are elaborated. Furthermore, the applications of these characterizations and their implications on the post-formulation performance of NCM are introduced.
Collapse
|
22
|
Das T, Anand U, Pandey SK, Ashby CR, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and β-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
23
|
Synthesis and Characterization of Nano-Sized 4-Aminosalicylic Acid-Sulfamethazine Cocrystals. Pharmaceutics 2021; 13:pharmaceutics13020277. [PMID: 33669489 PMCID: PMC7923100 DOI: 10.3390/pharmaceutics13020277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Drug–drug cocrystals are formulated to produce combined medication, not just to modulate active pharmaceutical ingredient (API) properties. Nano-crystals adjust the pharmacokinetic properties and enhance the dissolution of APIs. Nano-cocrystals seem to enhance API properties by combining the benefits of both technologies. Despite the promising opportunities of nano-sized cocrystals, the research at the interface of nano-technology and cocrystals has, however, been described to be in its infancy. In this study, high-pressure homogenization (HPH) and high-power ultrasound were used to prepare nano-sized cocrystals of 4-aminosalysilic acid and sulfamethazine in order to establish differences between the two methods in terms of cocrystal size, morphology, polymorphic form, and dissolution rate enhancement. It was found that both methods resulted in the formation of form I cocrystals with a high degree of crystallinity. HPH yielded nano-sized cocrystals, while those prepared by high-power ultrasound were in the micro-size range. Furthermore, HPH produced smaller-size cocrystals with a narrow size distribution when a higher pressure was used. Cocrystals appeared to be needle-like when prepared by HPH compared to those prepared by high-power ultrasound, which had a different morphology. The highest dissolution enhancement was observed in cocrystals prepared by HPH; however, both micro- and nano-sized cocrystals enhanced the dissolution of sulfamethazine.
Collapse
|
24
|
Wong SN, Chen YCS, Xuan B, Sun CC, Chow SF. Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00825k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight presents an overview of pharmaceutical cocrystal production and its potential in reviving problematic properties of drugs in different dosage forms. The challenges and future outlook of its translational development are discussed.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Yu Chee Sonia Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Department of Pharmacy, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| |
Collapse
|
25
|
Abstract
Lamivudine (3TC) and zidovudine (AZT) are antiretroviral agents used to manage HIV/AIDS infection. A wet media milling top-down approach was used to develop and produce nano co-crystals of 3TC and AZT. Micro co-crystals were prepared by solvent evaporation and subsequently milled in the presence of two surfactants, viz., sodium lauryl sulfate (SLS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000). Optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) to establish and identify parameters that may affect the manufacturing of nano co-crystals. The impact of SLS and TPGS 1000 concentration, milling time, and number of units of milling medium on the manufacturing of nano co-crystals, was investigated. The critical quality attributes (CQA) monitored were particle size (PS), Zeta potential (ZP), and polydispersity index (PDI). Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, transmission electron microscopy, energy dispersive X-ray spectroscopy scanning electron microscopy, and cytotoxicity assays were used for additional characterization of the optimised nano co-crystal. The mean PS, PDI, and ZP of the optimised top-down nanocrystal were 271.0 ± 92.0 nm, 0.467 ± 0.073, and −41.9 ± 3.94 mV, respectively. In conclusion, a simple, inexpensive, rapid, and precise method of nano co-crystal manufacturing was developed, validated, and optimised using DoE and RSM, and the final product exhibited the target CQA.
Collapse
|
26
|
Nugrahani I, Auli WN. Diclofenac-proline nano-co-crystal development, characterization, in vitro dissolution and diffusion study. Heliyon 2020; 6:e04864. [PMID: 32964159 PMCID: PMC7490817 DOI: 10.1016/j.heliyon.2020.e04864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has been widely developed to improve the solubility of active pharmaceutical ingredients. Co-crystal discovery has also taken much attention in drug design and development. A combination of the two techniques generates “nano-co-crystallization”, a new approach to obtaining the superior character of drugs. Previously, a new diclofenac-proline co-crystal (DPC) arrangement has been reported. The present research attempted to develop a nano-diclofenac-proline-co-crystal (NDPC) and to evaluate its formation kinetics, and dissolution-diffusion improvements. Both top-down and bottom-up methods optimized nano-co-crystal production. The top-down technique was used through the wet milling procedure and neat grinding procedures, while the bottom-up technique was performed through the globule inversion phase and fast evaporation assisted microwaving. The NDPCs obtained were then characterized by dynamic light scattering, binocular microscope, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, powder x-ray diffractometry, and Fourier transform infrared spectrophotometry. The kinetics of NDPC formation was determined based on the difference of microwaving versus the co-crystal yield, which was analyzed using Fourier transform infrared spectroscopy. Dissolution was tested by type 2 apparatus, and diffusion was tested using Franz diffusion cells. The bottom-up method by fast evaporation assisted microwaving provided the best nano-co-crystal with a mean diameter of 598.2 ± 63.2 nm and a polydispersity index of 0.278 ± 0.062. Nano-co-crystal formation kinetic, which was evaluated by FTIR, indicated to follow first order. Finally, NDPC showed the superior dissolution and diffusion profile than conventional-DPC. In this study, we demonstrate a promising alternative for improving the dissolution and diffusion of the drug by nano-co-crystallization.
Collapse
Affiliation(s)
- Ilma Nugrahani
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Winni Nur Auli
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
27
|
Physicochemical and structural characteristics of nano eggshell calcium prepared by wet ball milling. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Abstract
The objective of this study was to improve the solubility of poorly water-soluble drugs by pharmaceutical cocrystal engineering techniques and select the best pharmaceutical forms with high solubility and solubilized formulations for progress from the early discovery stage toward the clinical stage. Several pharmaceutical cocrystals of TAK-020, a Bruton tyrosine kinase inhibitor, were newly discovered in the screening based on the solid grinding method and the slurry method, considering thermodynamic factors that dominate cocrystal formation. TAK-020/gentisic acid cocrystal (TAK-020/GA CC) was selected based on a physicochemical property of enhanced dissolution rate. TAK-020/GA CC was proven to be a reliable cocrystal formation with a definitive stoichiometric ratio by a variety of analytical techniques—pKa calculation, solid-state nuclear magnetic resonance, and single X-ray structure analysis from the view of regulation. Furthermore, its absorption was remarkable and beyond those achieved in currently existing solubilized formulation techniques, such as nanocrystal, amorphous solid dispersion, and lipid-based formulation, in dog pharmacokinetic studies. TAK-020/GA CC was the best drug form, which might lead to good pharmacological effects with regard to enhanced absorption and development by physicochemical characterization. Through the trials of solid-state optimization from early drug discovery to pharmaceutical drug development, the cocrystals can be an effective option for achieving solubilization applicable in the pharmaceutical industry.
Collapse
|
29
|
Witika BA, Smith VJ, Walker RB. A Comparative Study of the Effect of Different Stabilizers on the Critical Quality Attributes of Self-Assembling Nano Co-Crystals. Pharmaceutics 2020; 12:pharmaceutics12020182. [PMID: 32102162 PMCID: PMC7076485 DOI: 10.3390/pharmaceutics12020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/25/2023] Open
Abstract
Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < -30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Vincent J. Smith
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, 6140 South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
- Correspondence:
| |
Collapse
|
30
|
Uemoto Y, Kondo K, Niwa T. Cryo-milling with spherical crystalline cellulose beads: A contamination-free and safety conscious technology. Eur J Pharm Sci 2020; 143:105175. [PMID: 31809908 DOI: 10.1016/j.ejps.2019.105175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/16/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
Crystalline cellulose is a common inactive pharmaceutical additive. If this material can also be used to construct beads for the wet milling of pharmaceutical compounds, it could possibly address issues related to wear and contamination associated with zirconia and polyethylene beads. In this study, the model drug phenytoin was milled with spherical crystalline cellulose (SCC) in liquid nitrogen. The particle size of the milled product was found to be comparable to that obtained using zirconia beads, verifying the feasibility of using SCC beads for this purpose. Using a design of experiment approach, the bead amount, agitation speed, and milling time were all determined to have a significant effect on the milled particle size, giving a D50 value as low as 0.3 μm. No breakage of the SCC beads was observed during the milling process in durability tests under conditions that will degrade spherical D-mannitol beads, showing that this material exhibits sufficient durability. In addition, the variation in elastic modulus between beads was minimal. Because SCC is commercially available and easy to handle, the present wet milling technique is considered to have potential applications to the manufacture of pharmaceuticals on an industrial scale, as it shows sufficient milling capability and durability.
Collapse
Affiliation(s)
- Yoshifumi Uemoto
- Faculty of Pharmacy, Meijo University,150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan.
| | - Keita Kondo
- Faculty of Pharmacy, Meijo University,150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Toshiyuki Niwa
- Faculty of Pharmacy, Meijo University,150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| |
Collapse
|
31
|
Thakor P, Yadav B, Modani S, Shastri NR. Preparation and optimization of nano-sized cocrystals using a quality by design approach. CrystEngComm 2020. [DOI: 10.1039/c9ce01930h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nano-cocrystals were optimized using the L-18 Hunter design. Selection of solvent and antisolvent was made using the Damkohler number.
Collapse
Affiliation(s)
- Pradip Thakor
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad
- India
| | - Balvant Yadav
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad
- India
| | - Sheela Modani
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad
- India
| | - Nalini R. Shastri
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad
- India
| |
Collapse
|
32
|
Fujii H, Watano S. Development of Universal Formulation with Superior Re-dispersion Using Nanocrystal Approach with Simultaneous Identification of API Physicochemical Properties. Chem Pharm Bull (Tokyo) 2019; 67:1050-1060. [PMID: 31582625 DOI: 10.1248/cpb.c19-00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Universal nanocrystal formulation which can be applied to water-insoluble compounds was proposed and the criteria of its physicochemical properties as an active pharmaceutical ingredients (API) were investigated. Nanocrystal suspension was prepared by a wet-beads milling method. An acceptable Critical Quality Attributes (CQA) of nanocrystal suspension was defined by Z-average less than 500 nm and Polydispersity index (PDI) less than 0.3. Screening studies of dispersing and wetting agents were conducted using three model compounds in different pKa, melting points, etc., to find universal nanocrystal formulation. The effect of four structurally different polymer species (hydroxypropyl cellulose (HPC), hydoroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA)) and their different grades or five different surfactants (docusate sodium (DOSS), sodium lauryl sulfate (SLS), cetyl trimethyl ammonium bromide (CTAB), polysolbate80 (PS80), and polyoxyethylene castor oil (CO-35)) were studied on the re-dispersion stability. It was found that the combination of 4% (w/v) HPC-SSL and 0.2% (w/v) DOSS was the most robust nanocrystal formulation owing to Z-average less than 200 nm and good re-dispersion stability without aggregates at pH 1.2 and pH 6.8. API physicochemical properties were also identified using ten water-insoluble compounds. Consequently, it was found that solubility (water, pH 1.2 and pH 6.8), molecular weight, hydrogen bonding acceptor and the ratio of log D7.4 to C Log P were critical factors.
Collapse
Affiliation(s)
- Hiroyuki Fujii
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - Satoru Watano
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
33
|
Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 2019; 570:118642. [DOI: 10.1016/j.ijpharm.2019.118642] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/29/2023]
|
34
|
Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release 2019; 311-312:125-137. [PMID: 31476342 DOI: 10.1016/j.jconrel.2019.08.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Ovarian carcinoma (OC) is one of the leading causes of death among gynecologic malignancies all over the world. It is characterized by high mortality rate because of the lack of early diagnosis. The first-line chemotherapeutic regimen for late stage epithelial ovarian cancer is paclitaxel in combination to carboplatin. However, in most of cases, relapse occurs within six months despite the initial success of this chemotherapeutic combination. A lot of challenges have been encountered with the conventional delivery of paclitaxel in addition to the occurrence of severe off-target toxicity. One major problem is poor paclitaxel solubility which was improved by addition of Cremophor EL that unfortunately resulted in hypersensitivity side effects. Another obstacle is the multi drug resistance which is the main cause of OC recurrence. Accordingly, incorporation of paclitaxel, solely or in combination to other drugs, in nanocarrier systems has grabbed attention of many researchers to circumvent all these hurdles. The current review is the first article that provides a comprehensive overview on multi-faceted implementations of paclitaxel loaded nanoplatforms to solve delivery obstacles of paclitaxel in management of ovarian carcinoma. Moreover, challenges in physicochemical properties, biological activity and targeted delivery of PTX were depicted with corresponding solutions using nanotechnology. Different categories of nanocarriers employed were collected included lipid, protein, polymeric, solid nanoemulsion and hybrid systems. Future perspectives including imperative research considerations in ovarian cancer therapy were proposed as well.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Manal A Elsheikh
- Department of pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Amr M Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Yosra S R Elnaggar
- Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
35
|
Evaluation of Oleic Acid and Polyethylene Glycol Monomethyl Ether Conjugate (PEGylated Oleic Acid) as a Solubility Enhancer of Furosemide. Processes (Basel) 2019. [DOI: 10.3390/pr7080520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poor aqueous solubility limits the therapeutic efficacy of many marketed and investigational drugs. Synthesis of new drugs with improved solubility is challenging due to time constraint and expenses involved. Therefore, finding the solubility enhancers for existing drugs is an attractive and profitable strategy. In this study, PEGylated oleic acid (OA-mPEG5000), a conjugate of oleic acid and mPEG5000 was synthesized and evaluated as a solubilizer for furosemide. OA-mPEG5000 was evaluated as a nanocarrier for furosemide by formulating polymersomes. Solubility of furosemide in milli-Q water and aqueous OA-mPEG5000 solution was determined using shake flask method. At 37 °C, the solubility of furosemide in OA-mPEG5000 (1% w/w) and milli-Q water was 3404.7 ± 254.6 µg/mL and 1020.2 ± 40.9 µg/mL, respectively. Results showed there was a 3.34-fold increase in solubility of furosemide in OA-mPEG5000 compared to water at 37 °C. At 25 °C, there was a 3.31-fold increase in solubilization of furosemide in OA-mPEG5000 (1% w/w) (90.0 ± 1.45 µg/mL) compared to milli-Q water (27.2 ± 1.43 µg/mL). Size, polydispersity index and zeta potential of polymersomes ranged from 85–145.5 nm, 0.187–0.511 and −4.0–12.77 mV, respectively. In-vitro release study revealed a burst release (71%) within 1 h. Significant enhancement in solubility and formation of polymersomes suggested that OA-mPEG5000 could be a good solubilizer and nanocarrier for furosemide.
Collapse
|
36
|
Uemoto Y, Kondo K, Niwa T. Cryo-milling using a spherical sugar: Contamination-free media milling technology. Eur J Pharm Sci 2019; 136:104934. [PMID: 31125681 DOI: 10.1016/j.ejps.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
Milling beads experience wear upon repeated use. And milling beads made of material that is safe when ingested have not yet been developed. The present report describes the development and characteristics of spherical d-mannitol (SDM) beads, which would be safe when ingested. The model drug phenytoin was dispersed in liquid nitrogen along with SDM and the materials were agitated at high speed. The effects of the amount of beads, agitation speed, and milling time on phenytoin particle size, yield, and bead fractures were investigated using a central composite experimental design. The diameter of milled phenytoin particles decreased significantly as the amount of SDM beads and agitation speed increased. In contrast, no difference was found in the diameter with milling time. Although the fractured SDM ratio increased slightly at higher agitation speeds, the SDM was not broken and was durable enough for milling. This milling technique was applicable not only to phenytoin but also to other drug substances. Bead durability and applicability indicated that SDM can be used as wet milling beads that are considered safe for use if ingested.
Collapse
Affiliation(s)
- Yoshifumi Uemoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Keita Kondo
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Toshiyuki Niwa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
37
|
Synthesis, Crystal Structure, and Solubility Analysis of a Famotidine Cocrystal. CRYSTALS 2019. [DOI: 10.3390/cryst9070360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel cocrystal of the potent H2 receptor antagonist famotidine (FMT) was synthesized with malonic acid (MAL) to enhance its solubility. The cocrystal structure was characterized by X-ray single crystal diffraction, and the asymmetry unit contains one FMT and one MAL connected via intermolecular hydrogen bonds. The crystal structure is monoclinic with a P21/n space group and unit cell parameters a = 7.0748 (3) Å, b = 26.6502 (9) Å, c = 9.9823 (4) Å, α = 90, β = 104.2228 (12), γ = 90, V = 1824.42 (12) Å3, and Z = 4. The cocrystal had unique thermal, spectroscopic, and powder X-ray diffraction (PXRD) properties that differed from FMT. The solubility of the famotidine-malonic acid cocrystal (FMT-MAL) was 4.2-fold higher than FMT; the FAM-MAL had no change in FMT stability at high temperature, high humidity, or with illumination.
Collapse
|
38
|
Kojima T, Karashima M, Yamamoto K, Ikeda Y. Combination of NMR Methods To Reveal the Interfacial Structure of a Pharmaceutical Nanocrystal and Nanococrystal in the Suspended State. Mol Pharm 2018; 15:3901-3908. [DOI: 10.1021/acs.molpharmaceut.8b00360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taro Kojima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masatoshi Karashima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuhiko Yamamoto
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukihiro Ikeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
39
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
40
|
Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. ACTA ACUST UNITED AC 2018; 8:305-320. [PMID: 30397585 PMCID: PMC6209825 DOI: 10.15171/bi.2018.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
Abstract
![]()
Introduction: Oral drug delivery is the most favored route of drug administration. However, poor oral bioavailability is one of the leading reasons for insufficient clinical efficacy. Improving oral absorption of drugs with low water solubility and/or low intestinal membrane permeability is an active field of research. Cocrystallization of drugs with appropriate coformers is a promising approach for enhancing oral bioavailability.
Methods: In the present review, we have focused on recent advances that have been made in improving oral absorption through cocrystallization. The covered areas include supersaturation and its importance on oral absorption of cocrystals, permeability of cocrystals through membranes, drug-coformer pharmacokinetic (PK) interactions, conducting in vivo-in vitro correlations for cocrystals. Additionally, a discussion has been made on the integration of nanocrystal technology with supramolecular design. Marketed cocrystal products and PK studies in human subjects are also reported.
Results: Considering supersaturation and consequent precipitation properties is necessary when evaluating dissolution and bioavailability of cocrystals. Appropriate excipients should be included to control precipitation kinetics and to capture solubility advantage of cocrystals. Beside to solubility, cocrystals may modify membrane permeability of drugs. Therefore, cocrystals can find applications in improving oral bioavailability of poorly permeable drugs. It has been shown that cocrystals may interrupt cellular integrity of cellular monolayers which can raise toxicity concerns. Some of coformers may interact with intestinal absorption of drugs through changing intestinal blood flow, metabolism and inhibiting efflux pumps. Therefore, caution should be taken into account when conducting bioavailability studies. Nanosized cocrystals have shown a high potential towards improving absorption of poorly soluble drugs.
Conclusions: Cocrystals have found their way from the proof-of-principle stage to the clinic. Up to now, at least two cocrystal products have gained approval from regulatory bodies. However, there are remaining challenges on safety, predicting in vivo behavior and revealing real potential of cocrystals in the human.
Collapse
Affiliation(s)
- Shahram Emami
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Pi J, Wang S, Li W, Kebebe D, Zhang Y, Zhang B, Qi D, Guo P, Li N, Liu Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J Pharm Sci 2018; 14:154-164. [PMID: 32104447 PMCID: PMC7032205 DOI: 10.1016/j.ajps.2018.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/07/2018] [Accepted: 04/29/2018] [Indexed: 02/05/2023] Open
Abstract
Baicalein (BE) is one of the main active flavonoids representing the variety of pharmacological effects including anticancer, anti-inflammatory and cardiovascular protective activities, but it's very low solubility, dissolution rate and poor oral absorption limit the therapeutic applications. In this work, a nano-cocrystal strategy was successfully applied to improve the dissolution rate and bioavailability of BE. Baicalein-nicotinamide (BE-NCT) nano-cocrystals were prepared by high pressure homogenization and evaluated both in vitro and in vivo. Physical characterization results including scanning electron microscopy, dynamic light scattering, powder X-ray diffraction and differential scanning calorimetry demonstrated that BE-NCT nano-cocrystals were changed into amorphous state with mean particle size of 251.53 nm. In the dissolution test, the BE-NCT nano-cocrystals performed 2.17-fold and 2.54-fold enhancement than BE coarse powder in FaSSIF-V2 and FaSSGF. Upon oral administration, the integrated AUC0 − t of BE-NCT nano-cocrystals (6.02-fold) was significantly higher than BE coarse powder (1-fold), BE-NCT cocrystals (2.87-fold) and BE nanocrystals (3.32-fold). Compared with BE coarse powder, BE-NCT cocrystals and BE nanocrystals, BE-NCT nano-cocrystals possessed excellent performance both in vitro and in vivo evaluations. Thus, it can be seen that nano-cocrystal is an appropriate novel strategy for improving dissolution rate and bioavailability of poor soluble natural products such as BE.
Collapse
Affiliation(s)
- Jiaxin Pi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shuya Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wen Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Institute of health sciences, Jimma University, Jimma, Ethiopia
| | - Ying Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Dongli Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Pan Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Nan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
42
|
Emami S, Siahi-Shadbad M, Barzegar-Jalali M, Adibkia K. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Dev Ind Pharm 2018; 44:1034-1047. [PMID: 29347850 DOI: 10.1080/03639045.2018.1430821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. SIGNIFICANCE Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. METHODS The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. RESULTS ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. CONCLUSION ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Shahram Emami
- a Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Siahi-Shadbad
- c Department of Pharmaceutical and Food Control, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Barzegar-Jalali
- d Biotechnology Research Center, and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khosro Adibkia
- e Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy , Tabriz University of medical sciences , Tabriz , Iran
| |
Collapse
|
43
|
Cao J, Yang B, Wang Y, Wei C, Wang H, Li S. Polymer brush hexadecyltrimethylammonium bromide (CTAB) modified poly (propylene-g-styrene sulphonic acid) fiber (ZB-1): CTAB/ZB-1 as a promising strategy for improving the dissolution and physical stability of poorly water-soluble drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:282-295. [PMID: 28866166 DOI: 10.1016/j.msec.2017.05.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
Abstract
The feasibility of polymer brush as drug delivery vehicle was demonstrated with the goal of improving the dissolution and physical stability of poorly water-soluble drugs. Polymer brush CTAB/ZB-1 was synthesized by electrostatic interaction using a physical modification method with anionic poly (propylene-g-styrene sulphonic acid) fiber (ZB-1) as the substrate and cationic hexadecyltrimethylammonium bromide (CTAB) as the modifier. The polymer brush structure of CTAB/ZB-1 was validated by atomic force microscopy (AFM) and the channels of brush provided the drug loading sites. Flurbiprofen (FP), a BCS class II representative drug, was selected as the model poorly water-soluble drug to be loaded into this polymer brush. Then the drug loading and release were systematically investigated. Besides, the transformation from crystalline FP to amorphous state was observed by differential scanning calorimeter (DSC). In vitro dissolution in pure water and pH1.2 HCl media with/without 0.1% sodium dodecyl sulfate (SDS) was tested. Moreover, the optimal formulations (namely carrier/drug ratios) were determined. The results demonstrated prominent improvement of dissolution when FP was released from CTAB/ZB-1. After a long time storage, FP remained amorphous in CTAB/ZB-1 according to DSC determinations and performed an approximately equivalent dissolution compared with fresh samples, suggesting the advantage of CTAB/ZB-1 as carrier in enhancing the physical stability of drugs. The study introduced the versatile easily formulated polymer brush CTAB/ZB-1 and demonstrated the potential of polymer brush as an alternative approach for improving the dissolution and physical stability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Jinxu Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Baixue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Yumei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Chen Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Hongyu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
44
|
Zuo W, Qu W, Li N, Yu R, Hou Y, Liu Y, Gou G, Yang J. Fabrication of multicomponent amorphous bufadienolides nanosuspension with wet milling improves dissolution and stability. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1513-1522. [DOI: 10.1080/21691401.2017.1375938] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wenbao Zuo
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Wenjing Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Na Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Rui Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yanhui Hou
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Guojing Gou
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jianhong Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
45
|
Huang Y, Li JM, Lai ZH, Wu J, Lu TB, Chen JM. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement. Eur J Pharm Sci 2017; 109:581-586. [PMID: 28917964 DOI: 10.1016/j.ejps.2017.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in Cmax and oral bioavailability (AUC0-∞) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Mei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Hui Lai
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Wu
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Jia-Mei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
46
|
Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2017; 160:101-109. [PMID: 28917148 DOI: 10.1016/j.colsurfb.2017.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/25/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022]
Abstract
Despite various pharmacological effects, myricetin (Myr) shows low oral bioavailability (<10%) due to its poor solubility, which limits its applications. To address this problem, self-nanoemulsifying drug delivery systems (SNEDDS) were developed by investigating the solubility of Myr in various excipients, constructing pseudo-ternary phase diagrams, and optimizing based on droplet size and emulsification efficacy after drug loading. The obtained Myr-SNEDDS were F04 (Capryol 90/Cremophor RH 40/PEG 400 4:3:3), F08 (Capryol 90/CremophorRH40/1,2-propanediol 4:3:3), F13 (Capryol 90/Cremophor EL/Transcutol HP 4:3:3) and F15 (Capryol 90/Cremephor RH 40/Transcutol HP 2:7:1), with droplet sizes less than 200nm. Additional evaluations showed that these Myr-SNEDDS formulations had fast release properties (over 90% in 1min), low cytotoxicity, and improved permeability and solubility compared with the free drug. Consequently, the oral bioavailabilities of Myr were 5.13, 6.33, 4.69 and 2.53-fold for F04, F08, F13 and F15, respectively, relative to Myr alone. The present study demonstrated that SNEDDS is a viable platform for the oral delivery of insoluble drugs such as Myr.
Collapse
|
47
|
Lee HL, Vasoya JM, Cirqueira MDL, Yeh KL, Lee T, Serajuddin ATM. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder. Mol Pharm 2017; 14:1278-1291. [PMID: 28245127 DOI: 10.1021/acs.molpharmaceut.7b00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pHmax 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution crystallization and is amenable to continuous manufacturing and easy scale up.
Collapse
Affiliation(s)
- Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University , 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan R.O.C.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Jaydip M Vasoya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Marilia de Lima Cirqueira
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Kuan Lin Yeh
- Department of Chemical and Materials Engineering, National Central University , 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan R.O.C
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University , 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan R.O.C
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|