1
|
Noddeland HK, Canbay V, Lind M, Savickas S, Jensen LB, Petersson K, Malmsten M, Koch J, Auf dem Keller U, Heinz A. Matrix metalloproteinase landscape in the imiquimod-induced skin inflammation mouse model. Biochimie 2024; 226:99-106. [PMID: 38513823 DOI: 10.1016/j.biochi.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Vahap Canbay
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Simonas Savickas
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100, Lund, Sweden
| | - Janne Koch
- Translational Sciences, Research and Early Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark; ETH Zürich, Department of Biology, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Pareek A, Kumari L, Pareek A, Chaudhary S, Ratan Y, Janmeda P, Chuturgoon S, Chuturgoon A. Unraveling Atopic Dermatitis: Insights into Pathophysiology, Therapeutic Advances, and Future Perspectives. Cells 2024; 13:425. [PMID: 38474389 PMCID: PMC10931328 DOI: 10.3390/cells13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin condition that frequently develops before the onset of allergic rhinitis or asthma. More than 10% of children are affected by this serious skin condition, which is painful for the sufferers. Recent research has connected the environment, genetics, the skin barrier, drugs, psychological factors, and the immune system to the onset and severity of AD. The causes and consequences of AD and its cellular and molecular origins are reviewed in this paper. The exploration of interleukins and their influence on the immunological pathway in AD has been facilitated by using relevant biomarkers in clinical trials. This approach enables the identification of novel therapeutic modalities, fostering the potential for targeted translational research within the realm of personalized medicine. This review focuses on AD's pathophysiology and the ever-changing therapeutic landscape. Beyond the plethora of biologic medications in various stages of approval or development, a range of non-biologic targeted therapies, specifically small molecules, have emerged. These include Janus kinase (JAK) inhibitors like Baricitinib, Upadacitinib, and Abrocitinib, thus expanding the spectrum of therapeutic options. This review also addresses the latest clinical efficacy data and elucidates the scientific rationale behind each targeted treatment for atopic dermatitis.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Lipika Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Simran Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Sanam Chuturgoon
- Northdale Hospital, Department of Health, Pietermaritzburg 3200, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
3
|
Haroon B, Sohail M, Minhas MU, Mahmood A, Hussain Z, Ahmed Shah S, Khan S, Abbasi M, Kashif MUR. Nano-residronate loaded κ-carrageenan-based injectable hydrogels for bone tissue regeneration. Int J Biol Macromol 2023; 251:126380. [PMID: 37595715 DOI: 10.1016/j.ijbiomac.2023.126380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue possesses intrinsic regenerative capabilities to address deformities; however, its ability to repair defects caused by severe fractures, tumor resections, osteoporosis, joint arthroplasties, and surgical reconsiderations can be hindered. To address this limitation, bone tissue engineering has emerged as a promising approach for bone repair and regeneration, particularly for large-scale bone defects. In this study, an injectable hydrogel based on kappa-carrageenan-co-N-isopropyl acrylamide (κC-co-NIPAAM) was synthesized using free radical polymerization and the antisolvent evaporation technique. The κC-co-NIPAAM hydrogel's cross-linked structure was confirmed using Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance (1H NMR). The hydrogel's thermal stability and morphological behavior were assessed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Swelling and in vitro drug release studies were conducted at varying pH and temperatures, with minimal swelling and release observed at low pH (1.2) and 25 °C, while maximum swelling and release occurred at pH 7.4 and 37oC. Cytocompatibility analysis revealed that the κC-co-NIPAAM hydrogels were biocompatible, and hematoxylin and eosin (H&E) staining demonstrated their potential for tissue regeneration and enhanced bone repair compared to other experimental groups. Notably, digital x-ray examination using an in vivo bone defect model showed that the κC-co-NIPAAM hydrogel significantly improved bone regeneration, making it a promising candidate for bone defects.
Collapse
Affiliation(s)
- Bilal Haroon
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, North Cyprus.
| | | | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Syed Ahmed Shah
- Department of Biosystems and Soft Matters, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland; Faculty of Pharmacy, Superior University, Lahore, Pakistan
| | - Shahzeb Khan
- Center of Pharmaceutical Engineering Science (CPES), School of Pharmacy and Biomedical Science, University of Bradford, BD7,1DP, United Kingdom
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | | |
Collapse
|
4
|
Karnam S, Jindal AB, Agnihotri C, Singh BP, Paul AT. Topical Nanotherapeutics for Treating MRSA-Associated Skin and Soft Tissue Infection (SSTIs). AAPS PharmSciTech 2023; 24:108. [PMID: 37100956 DOI: 10.1208/s12249-023-02563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) imposes a major challenge for the treatment of infectious diseases with existing antibiotics. MRSA associated with superficial skin and soft tissue infections (SSTIs) is one of them, affecting the skin's superficial layers, and it includes impetigo, folliculitis, cellulitis, furuncles, abscesses, surgical site infections, etc. The efficient care of superficial SSTIs caused by MRSA necessitates local administration of antibiotics, because oral antibiotics does not produce the required concentration at the local site. The topical administration of nanocarriers has been emerging in the area of drug delivery due to its advantages over conventional topical formulation. It enhances the solubility and permeation of the antibiotics into deeper layer of the skin. Apart from this, antibiotic resistance is something that needs to be combated on multiple fronts, and antibiotics encapsulated in nanocarriers help to do so by increasing the therapeutic efficacy in a number of different ways. The current review provides an overview of the resistance mechanism in S. aureus as well as various nanocarriers reported for the effective management of MRSA-associated superficial SSTIs.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Charu Agnihotri
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India.
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
5
|
Rapidly Dissolving Microneedles for the Delivery of Steroid-Loaded Nanoparticles Intended for the Treatment of Inflammatory Skin Diseases. Pharmaceutics 2023; 15:pharmaceutics15020526. [PMID: 36839849 PMCID: PMC9967926 DOI: 10.3390/pharmaceutics15020526] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Drug delivery through the skin has immense advantages compared to other routes of administration and offers an optimal way to treat inflammatory skin diseases, where corticosteroids are the cornerstone of topical therapy. Still, their therapeutic efficiency is limited due to inadequate skin permeability, potential side effects, and reduced patient compliance. To overcome these drawbacks, we propose a drug delivery system consisting of dexamethasone (DEX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) incorporated in sodium alginate (SA) microneedles (MNs) as a minimally invasive dosage form for controlled drug release. Drug-loaded PLGA NPs were prepared by a nanoprecipitation method with a high encapsulation yield. They exhibited a controlled release pattern over 120 h. A modified vacuum-deposition micromolding method was used to load the obtained DEX-NPs into the tips of dissolving MNs. The NP-MNs showed improved insertion capabilities into the skin-simulant parafilm model and enhanced mechanical strength when tested against different static forces compared to their counterparts (SA-MNs). The results of an MN dissolution study following application to ex vivo chicken skin and agarose gel indicate that the NP-loaded segments of MNs dissolve within 15 s, in which the NPs are released into the skin. Taken together, the incorporation of DEX-NPs into SA-MNs could be a promising approach to bypass the limitations of conventional topical treatment of skin diseases, allowing for self-administration, increased patient compliance, and controlled drug release.
Collapse
|
6
|
Sandhu SS, Rouz SK, Kumar S, Swamy N, Deshmukh L, Hussain A, Haque S, Tuli HS. Ursolic acid: a pentacyclic triterpenoid that exhibits anticancer therapeutic potential by modulating multiple oncogenic targets. Biotechnol Genet Eng Rev 2023:1-31. [PMID: 36600517 DOI: 10.1080/02648725.2022.2162257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
The world is currently facing a global challenge against neoplastic diseases. Chemotherapy, hormonal therapy, surgery, and radiation therapy are some approaches used to treat cancer. However, these treatments are frequently causing side effects in patients, such as multidrug resistance, fever, weakness, and allergy, among others side effects. As a result, current research has focused on phytochemical compounds isolated from plants to treat deadly cancers. Plants are excellent resources of bioactive molecules, and many natural molecules have exceptional anticancer properties. They produce diverse anticancer derivatives such as alkaloids, terpenoids, flavonoids, pigments, and tannins, which have powerful anticancer activities against various cancer cell lines and animal models. Because of their safety, eco-friendly, and cost-effective nature, research communities have recently focused on various phytochemical bioactive molecules. Ursolic acid (UA) and its derivative compounds have anti-inflammatory, anticancer, apoptosis induction, anti-carcinogenic, and anti-breast cancer proliferation properties. Ursolic acid (UA) can improve the clinical management of human cancer because it inhibits cancer cell viability and proliferation, preventing tumour angiogenesis and metastatic activity. Therefore, the present article focuses on numerous bioactivities of Ursolic acid (UA), which can inhibit cancer cell production, mechanism of action, and modulation of anticancer properties via regulating various cellular processes.
Collapse
Affiliation(s)
| | - Sharareh Khorami Rouz
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory Department of Biological Sciences, Rani Durgavati University, Jabalpur, India
| | - Loknath Deshmukh
- School of Life and Allied Science, ITM University, Raipur, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Arabia and Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
7
|
Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022; 8:gels8090537. [PMID: 36135249 PMCID: PMC9498398 DOI: 10.3390/gels8090537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Chitosan-gelatin-based thermosensitive hydrogel containing 5FU-alginate nanoparticles was formulated for the effective and sustained delivery of 5FU to the skin. (2) Methods: Alginate, a polysaccharide was used for the formulation of nanoparticles using a spray drying technique. Size, zeta potential, and surface morphology were investigated using a zetasizer and scanning electron microscope. The hydrogel was fabricated using chitosan and gelatin. Several important analyses were used to characterize these prepared topical hydrogels. The pH, visual transparency, rheological behavior, and swelling index of the prepared hydrogels were evaluated. The in vitro release studies were performed at different pH (5.5 and 7.4) and temperature (32 and 37 °C) conditions using a Franz diffusion cell. Ex vivo permeation and in vivo studies were performed using Sprague Dawley rats. (3) Results: Results show that spherical nanoparticles were produced at sizes of 202−254 nm and with zeta potentials of −43 to −38 mV. The prepared nanoparticles were successfully incorporated into chitosan-gelatin-based hydrogels using a glycerol 2-phosphate disodium salt hydrates crosslinker. Drug polymers and excipients compatibility and formulation of hydrogels was confirmed by ATR-FTIR results. The pH of the prepared hydrogels was in accordance with the skin pH. The viscosity of prepared hydrogel increased with temperature increase and phase transition (sol-gel transition) occurred at 34 °C. The release of drug was sustained in case of nanoparticles incorporated hydrogels (5FU-Alg-Np-HG) as compared to nanoparticles (5FU-Alg-Np) and simple hydrogels (5FU-HG) (ANOVA; p < 0.05). The premature and initial burst release of 5FU was prevented using 5FU-Alg-Np-HG. The release mechanism of 5FU from the 5FU-Alg-Np-HG diffusion was followed by swelling and erosion, as suggested by Korsmeyer-Peppas model. The prepared hydrogel proved to be non-irritant. Ex vivo permeation study across rat’s skin suggests that permeability of nanoparticles (5FU-Alg-Np) was higher than the 5FU-Alg-Np-HG (ANOVA; p < 0.05). However, skin-related drug retention of 5FU-Alg-Np-HG was significantly higher than the 5FU solution, 5FU-Alg-Np, and 5FU-HG (ANOVA; p < 0.05). This was due to swelling of hydrogels in the lower layers of skin where the temperature is 37 °C. The higher concentration of 5FU in the skin is helpful for treatment of local skin cancer, such as melanoma, and actinic keratosis. In vivo results also confirmed maximum AUC, t1/2, and skin-related drug retention of 5FU-Alg-Np-HG. (4) Conclusions: Chitosan-gelatin-based hydrogels containing 5FU-Alg-Np possess exceptional properties, and can be used for the sustained delivery of 5FU for the treatment of local skin cancers.
Collapse
|
8
|
Utilization of fermented and enzymatically hydrolyzed soy press cake as ingredient for meat analogues. Lebensm Wiss Technol 2022; 165:113736. [PMID: 35938059 PMCID: PMC9340857 DOI: 10.1016/j.lwt.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to improve the properties of soy press cake to be utilized as an ingredient of meat analogues. Soy press cakes were fermented with lactobacillus strains, and separately hydrolyzed by cellulase/xylanase mixture and α-amylase. Meat analogues were produced with 10% fermented or hydrolyzed soy press cakes. The effect of applied processes on protein oxidation, physical and functional properties of soy press cakes were analyzed, as well as sensory and textural properties of meat analogues. The results indicated that soy press cake was a suitable source of fibre and energy with low content of saturated fatty acids, and provided plant-based proteins and essential amino acids. The study demonstrated the potential of lactic acid fermentation, and enzymatic hydrolysis to improve water- and oil-holding capacity and reduce protein oxidation in soy press cakes. L. acidophilus 336 and cellulase/xylanase mixture were recommended for fermentation and hydrolysis of soy press cakes, respectively, regarding reduction of protein oxidation. Fermentation of soy press cakes with L. plantarum P1 improved the texture of meat analogues. Press cakes fermentation reduced bitterness, increased juiciness, and balanced the taste of meat analogues. Fermented soy press cake was recommended for the production of meat analogues. This research was the 1st application of fermented soy press cake in meat analogue. Fermentation and hydrolysis improved the functional properties of soy press cakes. Protein oxidation in soy press cakes was reduced after fermentation and hydrolysis. Fermented soy press cakes improved sensory quality of the meat analogues. L. plantarum P1 is recommended for the fermentation of soy press cakes.
Collapse
|
9
|
Chitosan/guar gum-based thermoreversible hydrogels loaded with pullulan nanoparticles for enhanced nose-to-brain drug delivery. Int J Biol Macromol 2022; 215:579-595. [PMID: 35779651 DOI: 10.1016/j.ijbiomac.2022.06.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
The biopolymers-based two-fold system could provide a sustained release platform for drug delivery to the brain resisting the mucociliary clearance, enzymatic degradation, bypassing the first-pass hepatic metabolism, and BBB thus providing superior bioavailability through intranasal administration. In this study, poloxamers PF-127/PF-68 grafted chitosan HCl-co-guar gum-based thermoresponsive hydrogel loaded with eletriptan hydrobromide laden pullulan nanoparticles was synthesized and subjected to dynamic light scattering, Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction, scanning electron microscopy, stability studies, mucoadhesive strength and time, gel strength, cloud point assessment, rheological assessment, ex-vivo permeation, cell viability assay, histology studies, and in-vivo Pharmacokinetics studies, etc. It is quite evident that CSG-EH-NPs T-Hgel has an enhanced sustained release drug profile where approximately 86 % and 84 % of drug released in phosphate buffer saline and simulated nasal fluid respectively throughout 48 h compared to EH-NPs where 99.44 % and 97.53 % of the drug was released in PBS and SNF for 8 h. In-vivo PKa parameters i.e., mean residence time (MRT) of 11.9 ± 0.83 compared to EH-NPs MRT of 10.2 ± 0.92 and area under the curve (AUCtot) of 42,540.5 ± 5314.14 comparing to AUCtot of EH-NPs 38,026 ± 6343.1 also establish the superiority of CSG-EH-NPs T-Hgel.
Collapse
|
10
|
Cláudia Paiva-Santos A, Gama M, Peixoto D, Sousa-Oliveira I, Ferreira-Faria I, Zeinali M, Abbaspour-Ravasjani S, Mascarenhas-Melo F, Hamishehkar H, Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int J Pharm 2022; 618:121656. [DOI: 10.1016/j.ijpharm.2022.121656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/23/2023]
|
11
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
12
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
13
|
Nanocarriers Mediated Cutaneous Drug Delivery. Eur J Pharm Sci 2021; 158:105638. [DOI: 10.1016/j.ejps.2020.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
|
14
|
Jabeen M, Boisgard AS, Danoy A, El Kholti N, Salvi JP, Boulieu R, Fromy B, Verrier B, Lamrayah M. Advanced Characterization of Imiquimod-Induced Psoriasis-Like Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12090789. [PMID: 32825447 PMCID: PMC7558091 DOI: 10.3390/pharmaceutics12090789] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Many autoimmune disorders such as psoriasis lead to the alteration of skin components which generally manifests as unwanted topical symptoms. One of the most widely approved psoriasis-like animal models is the imiquimod (IMQ)-induced mouse model. This representation mimics various aspects of the complex cutaneous pathology and could be appropriate for testing topical treatment options. We perform a thorough characterization of this model by assessing some parameters that are not fully described in the literature, namely a precise description of skin disruption. It was evaluated by transepidermal water loss measurements and analyses of epidermis swelling as a consequence of keratinocyte hyperproliferation. The extent of neo-angiogenesis and hypervascularity in dermis were highlighted by immunostaining. Moreover, we investigated systemic inflammation through cytokines levels, spleen swelling and germinal centers appearance in draining lymph nodes. The severity of all parameters was correlated to IMQ concentration in skin samples. This study outlines new parameters of interest useful to assess this model. We highlight the skin barrier disruption and report a systemic inflammatory reaction occurring at distance both in spleen and lymph nodes. These newly identified biological endpoints could be exploited to investigate the efficacy of therapeutic candidates for psoriasis and more extensively for several other skin inflammatory diseases.
Collapse
Affiliation(s)
- Mehwish Jabeen
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Anne-Sophie Boisgard
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Alix Danoy
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Naima El Kholti
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Jean-Paul Salvi
- UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Université de Lyon, Université Lyon 1, 69373 Lyon CEDEX 08, France; (J.-P.S.); (R.B.)
| | - Roselyne Boulieu
- UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Université de Lyon, Université Lyon 1, 69373 Lyon CEDEX 08, France; (J.-P.S.); (R.B.)
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, 69002 Lyon, France
| | - Bérengère Fromy
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Bernard Verrier
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Myriam Lamrayah
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
- Correspondence:
| |
Collapse
|
15
|
Ahsan A, Farooq MA, Parveen A. Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS OMEGA 2020; 5:20450-20460. [PMID: 32832798 PMCID: PMC7439394 DOI: 10.1021/acsomega.0c02548] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 05/31/2023]
Abstract
A thermosensitive, physically cross-linked injectable hydrogel was formulated for the effective and sustained delivery of disulfiram (DSF) to the cancer cells as there is no hydrogel formulation available until now for the delivery of DSF. As we know, hydrogels have an advantage over other drug delivery systems because of their unique properties, so we proposed to formulate an injectable hydrogel system for the sustained delivery of an anticancer drug (DSF) to cancer cells. To investigate the surface morphology, a scanning electron microscope study was carried out, and for thermal stability of hydrogels, TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry) were performed. The rheological behavior of hydrogels was evaluated with the increasing temperature and time. These developed hydrogels possessing excellent biocompatibility could be injected at room temperature following rapid gel formation at body temperature. The swelling index and in vitro drug release studies were performed at different pH (6.8 and 7.4) and temperatures (25 and 37 °C). The cell viability of the blank hydrogel, free DSF solution, and Ch/DSF (chitosan/DSF)-loaded hydrogel was studied by MTT assay on SMMC-7721 cells for 24 and 48 h, which exhibited higher cytotoxicity in a dose-dependent manner in contrast to the free DSF solution. Moreover, the cellular uptake of DSF-loaded hydrogels was observed stronger as compared with free DSF. Hence, chitosan-based hydrogels loaded with DSF possessing exceptional properties can be used as a novel injectable anticancer drug for the sustained delivery of DSF for long-term cancer therapy.
Collapse
Affiliation(s)
- Anam Ahsan
- College
of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Muhammad Asim Farooq
- Department
of Pharmaceutics, School of Pharmacy, China
Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Amna Parveen
- College
of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic
of Korea
| |
Collapse
|
16
|
Sunoqrot S, Mahmoud NN, Ibrahim LH, Al-Dabash S, Raschke H, Hergenröder R. Tuning the Surface Chemistry of Melanin-Mimetic Polydopamine Nanoparticles Drastically Enhances Their Accumulation into Excised Human Skin. ACS Biomater Sci Eng 2020; 6:4424-4432. [PMID: 33455180 DOI: 10.1021/acsbiomaterials.0c00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melanin-mimetic polydopamine nanoparticles (PDA NPs) are emerging as promising candidates for topical and transdermal drug delivery because they mimic melanin, a naturally occurring skin pigment. However, our knowledge of their interactions with human skin remains limited. Hence, we set out to investigate the role of PDA NP surface chemistry in modulating their skin deposition. PDA NPs were synthesized by base-catalyzed oxidative self-polymerization of dopamine and functionalized with poly(ethylene glycol) (PEG) bearing different termini to obtain neutral, anionic, cationic, and hydrophobic PEGylated NPs. NPs were characterized by dynamic light scattering, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray photoelectron spectroscopy. The NPs were then labeled with rhodamine B, and their skin interactions were investigated both in vitro, using a Strat-M membrane, and ex vivo, using excised whole thickness human skin. In vitro diffusion studies revealed that the NPs did not permeate transdermally, rather the NPs accumulated in the Strat-M membrane after 24 h of incubation. Membrane deposition of the NPs showed a strong dependence on surface chemistry, with anionic (unmodified and carboxyl-terminated PEGylated) NPs achieving the highest accumulation, followed by neutral and cationic NPs, whereas hydrophobic NPs achieved the lowest degree of accumulation. In ex vivo permeation studies, we observed that surface modification of PDA NPs with PEG serving as an antifouling coating is essential to maintaining colloidal stability upon skin contact. Moreover, anionic PEGylated NPs were able to achieve 78% skin accumulation, which was significantly higher than neutral and cationic NPs (51 and 34% accumulation, respectively). Our findings provide important insights into the role of surface chemistry in enhancing the skin accumulation of melanin-mimetic PDA NPs as potential sunscreens and carriers for skin-targeted treatments.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nouf N Mahmoud
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lina Hassan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Saba'a Al-Dabash
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Hannes Raschke
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| |
Collapse
|
17
|
Abstract
Topical drug delivery has inherent advantages over other administration routes. However, the existence of stratum corneum limits the diffusion to small and lipophilic drugs. Fortunately, the advancement of nanotechnology brings along opportunities to address this challenge. Taking the unique features in size and surface chemistry, nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, and framework nucleic acids have been used to bring drugs across the skin barrier to epidermis and dermis layers. This article reviews the development of these formulations and focuses on their applications in the treatment of skin disorders such as acne, skin inflammation, skin infection, and wound healing. Existing hurdles and further developments are also discussed.
Collapse
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457.,National Dental Centre of Singapore, 5 Second Hospital Avenue, Singapore 168938.,Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
18
|
Aggarwal V, Tuli HS, Kaur J, Aggarwal D, Parashar G, Chaturvedi Parashar N, Kulkarni S, Kaur G, Sak K, Kumar M, Ahn KS. Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells. Biomedicines 2020; 8:103. [PMID: 32365899 PMCID: PMC7277375 DOI: 10.3390/biomedicines8050103] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit anti-cancer properties. Several in vitro and in vivo studies have illustrated the potential therapeutic efficiency of garcinol in management of different malignancies. It mainly acts as an inhibitor of cellular processes via regulation of transcription factors NF-κB and JAK/STAT3 in tumor cells and have been demonstrated to effectively inhibit growth of malignant cell population. Numerous studies have highlighted the anti-neoplastic potential of garcinol in different oncological transformations including colon cancer, breast cancer, prostate cancer, head and neck cancer, hepatocellular carcinoma, etc. However, use of garcinol is still in its pre-clinical stage and this is mainly attributed to the limitations of conclusive evaluation of pharmacological parameters. This necessitates evaluation of garcinol pharmacokinetics to precisely identify an appropriate dose and route of administration, tolerability, and potency under physiological conditions along with characterization of a therapeutic index. Hence, the research is presently ongoing in the dimension of exploring the precise metabolic mechanism of garcinol. Despite various lacunae, garcinol has presented with promising anti-cancer effects. Hence, this review is motivated by the constantly emerging and promising positive anti-cancerous effects of garcinol. This review is the first effort to summarize the mechanism of action of garcinol in modulation of anti-cancer effect via regulation of different cellular processes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Samruddhi Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai 400056, India; (S.K.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai 400056, India; (S.K.); (G.K.)
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 133001, India;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
19
|
Lamrayah M, Charriaud F, Hu S, Megy S, Terreux R, Verrier B. Molecular modelling of TLR agonist Pam 3CSK 4 entrapment in PLA nanoparticles as a tool to explain loading efficiency and functionality. Int J Pharm 2019; 568:118569. [PMID: 31352045 DOI: 10.1016/j.ijpharm.2019.118569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Designing potent and safe-of-use therapies against cancers and infections remains challenging despite the emergence of novel molecule classes like checkpoint inhibitors or Toll-Like-Receptor ligands. The latest therapeutic perspectives under development for immune modulator administration exploits vectorization, and biodegradable delivery systems are one of the most promising vehicles. Nanoparticles based on Poly (D,L) Lactic Acid (PLA) as polymer for formulation are widely investigated due to its bioresorbable, biocompatible and low immunogen properties. We propose a PLA-based nanoparticle delivery system to vectorize Pam3CSK4, a lipopeptide TLR1/2 ligand and a potent activator of the proinflammatory transcription factor NF-κB that shows a self-assembling behavior from 30 µg/mL onwards. We demonstrate successful encapsulation of Pam3CSK4 in PLA nanoparticles by nanoprecipitation in a 40-180 µg/mL concentration range, with 99% of entrapment efficiency. By molecular modelling, we characterize drug/carrier interactions and conclude that Pam3CSK4 forms clusters onto the nanoparticle and is not encapsulated into the hydrophobic core. In silico predictions provide nanoprecipitation optimization and the mechanistic understanding of the particle dynamics. The loaded-Pam3CSK4 maintains bioactivity on TLR2, confirmed by in vitro experiments using reporter cell line HEK-Blue hTLR2. Our presented data and results are convincing evidence that Pam3CSK4-loaded in PLA nanoparticles represent a promising immune modulating system.
Collapse
Affiliation(s)
- Myriam Lamrayah
- Colloidal Vectors and Tissue Transport, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Fanny Charriaud
- Colloidal Vectors and Tissue Transport, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Shangnong Hu
- Colloidal Vectors and Tissue Transport, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; Pôle Rhône-Alpes de Bioinformatique - Lyon Gerland, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Simon Megy
- Colloidal Vectors and Tissue Transport, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; Pôle Rhône-Alpes de Bioinformatique - Lyon Gerland, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Raphael Terreux
- Colloidal Vectors and Tissue Transport, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; Pôle Rhône-Alpes de Bioinformatique - Lyon Gerland, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Bernard Verrier
- Colloidal Vectors and Tissue Transport, UMR5305, LBTI, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
20
|
Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. Int J Biol Macromol 2019; 129:233-245. [DOI: 10.1016/j.ijbiomac.2019.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
|
21
|
Lalloz A, Bolzinger MA, Briançon S, Faivre J, Rabanel JM, Garcia Ac A, Hildgen P, Banquy X. Subtle and unexpected role of PEG in tuning the penetration mechanisms of PLA-based nano-formulations into intact and impaired skin. Int J Pharm 2019; 563:79-90. [PMID: 30825557 DOI: 10.1016/j.ijpharm.2019.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/23/2023]
Abstract
We present a systematic study of the role of poly(ethylene glycol) (PEG) content in NPs on drug skin absorption. Cholecalciferol-loaded NPs of 100 nm of diameter were prepared by flash nanoprecipitation from PLA-b-PEG copolymers of various PEG lengths. As PEG content increased in the polymer, we observed a transition from a frozen solid particle structure to a more dynamic particle structure. Skin absorption studies showed that polymer composition influenced drug penetration depending on skin condition (intact or impaired). In intact skin, highly PEGylated NPs achieved the best skin absorption, even if the penetration differences between the NPs were low. In impaired skin, on the contrary, non-PEGylated NPs (PLA NPs) promoted a strong drug deposition. Further investigations revealed that the strong drug accumulation from PLA NPs in impaired skin was mediated by aggregation and sedimentation of NPs due to the release of charged species from the skin. In contrast, the dynamic structure of highly PEGylated NPs promoted wetting of the surface and interactions with skin lipids, improving drug absorption in intact skin. Since NPs structure and surface properties determine the drug penetration mechanisms at the NP-skin interface, this work highlights the importance of properly tuning NPs composition according to skin physiopathology.
Collapse
Affiliation(s)
- Augustine Lalloz
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Marie-Alexandrine Bolzinger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jimmy Faivre
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Araceli Garcia Ac
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Patrice Hildgen
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
22
|
Raghuwanshi N, Yadav TC, Srivastava AK, Raj U, Varadwaj P, Pruthi V. Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:57-71. [DOI: 10.1016/j.msec.2018.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 07/12/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
|
23
|
Zabihi F, Graff P, Schumacher F, Kleuser B, Hedtrich S, Haag R. Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery. NANOSCALE 2018; 10:16848-16856. [PMID: 30168550 DOI: 10.1039/c8nr05536j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to the low cutaneous bioavailability of tacrolimus (TAC), penetration enhancers are used to improve its penetration into the skin. However, poor loading capacity, non-biodegradability, toxicity, and in some cases inefficient skin penetration are challenging issues that hamper their applications for the dermal TAC delivery. Here we present poly(lactide-co-glycerol) (PLG) as a water soluble, biodegradable, and biocompatible TAC-carrier with high loading capacity (14.5% w/w for TAC) and high drug delivery efficiencies into the skin. PLG was synthesized by cationic ring-opening copolymerization of a mixture of glycidol and lactide and showed 35 nm and 300 nm average sizes in aqueous solutions before and after loading of TAC, respectively. Delivery experiments on human skin, quantified by fluorescence microscopy and LC-MS/MS, showed a high ability for PLG to deposit Nile red and TAC into the stratum corneum and viable epidermis of skin in comparison with Protopic® (0.03% w/w, TAC ointment). The cutaneous distribution profile of delivered TAC proved that 80%, 16%, and 4% of the cutaneous drug level was deposited in the stratum corneum, viable epidermis, and upper dermis, respectively. TAC delivered by PLG was able to efficiently decrease the IL-2 and TSLP expressions in human skin models. Taking advantage of the excellent physicochemical and biological properties of PLG, it can be used for efficient dermal TAC delivery and potential treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. Int J Pharm 2018; 548:385-399. [PMID: 29953928 DOI: 10.1016/j.ijpharm.2018.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/16/2023]
Abstract
Skin has been increasingly recognized as an important drug administration route with topical formulations, offering a targeted approach for the treatment of several dermatological disorders. The effectiveness of this route is hampered by its natural barrier, the stratum corneum (SC), and hence, different strategies have been investigated to improve percutaneous drug transport. The design of nanodelivery systems, aiming at solving skin delivery issues, have been largely explored, due to their potential to revolutionize dermal therapies, improving therapeutic effectiveness and reducing side effects. Apart from nanosystem benefits, the fulfilment of the reproducibility requirements and quality standards still limit their industrial production. The optimization of nanosystem formulation and manufacturing process is complex, usually involving a large number of variables. Therefore, a science- and risk-oriented approach, such as Quality by Design (QbD) will provide a comprehensive and noteworthy knowledge, yielding high quality drug products without extensive regulatory burden. This review aims to set up the basis for QbD development approach, encompassing preliminary and systematic risk assessments, with critical process parameters (CPPs) and critical material attributes (CMAs) identification, of different nanosystems potentially used in dermal therapies.
Collapse
|
25
|
Naolou T, Rühl E, Lendlein A. Nanocarriers: Architecture, transport, and topical application of drugs for therapeutic use. Eur J Pharm Biopharm 2017; 116:1-3. [DOI: 10.1016/j.ejpb.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci Rep 2017; 7:530. [PMID: 28373669 PMCID: PMC5428804 DOI: 10.1038/s41598-017-00696-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/08/2017] [Indexed: 01/04/2023] Open
Abstract
Garcinol (GAR) is a naturally occurring polyisoprenylated phenolic compound. It has been recently investigated for its biological activities such as antioxidant, anti-inflammatory, anti ulcer, and antiproliferative effect on a wide range of human cancer cell lines. Though the outcomes are very promising, its extreme insolubility in water remains the main obstacle for its clinical application. Herein we report the formulation of GAR entrapped PLGA nanoparticles by nanoprecipitation method using vitamin E TPGS as an emulsifier. The nanoparticles were characterized for size, surface morphology, surface charge, encapsulation efficiency and in vitro drug release kinetics. The MTT assay depicted a high amount of cytotoxicity of GAR-NPs in B16F10, HepG2 and KB cells. A considerable amount of cell apoptosis was observed in B16f10 and KB cell lines. In vivo cellular uptake of fluorescent NPs on B16F10 cells was also investigated. Finally the GAR loaded NPs were radiolabeled with technetium-99m with >95% labeling efficiency and administered to B16F10 melanoma tumor bearing mice to investigate the in vivo deposition at the tumor site by biodistribution and scintigraphic imaging study. In vitro cellular uptake studies and biological evaluation confirm the efficacy of the formulation for cancer treatment.
Collapse
|