1
|
Bîrcă AC, Minculescu MA, Niculescu AG, Hudiță A, Holban AM, Alberts A, Grumezescu AM. Nanoparticle-Enhanced Collagen Hydrogels for Chronic Wound Management. J Funct Biomater 2025; 16:91. [PMID: 40137370 PMCID: PMC11943201 DOI: 10.3390/jfb16030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic wound infections present a persistent medical challenge; however, advancements in wound dressings and antimicrobial nanomaterials offer promising solutions for improving healing outcomes. This study introduces a hydrothermal synthesis approach for producing zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, subsequently incorporated into PLGA microspheres and embedded within collagen hydrogels. The nanoparticles' physicochemical properties were characterized using X-ray diffraction (XRD) to confirm crystalline structure, scanning electron microscopy (SEM) for surface morphology, and Fourier-transform infrared spectroscopy (FT-IR) to verify functional groups and successful hydrogel integration. The hydrogels were tested for antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, which are key pathogens in chronic wounds. Biocompatibility was assessed using the human HaCat keratinocyte cell line. Both ZnO- and CuO-loaded hydrogels exhibited broad-spectrum antimicrobial efficacy. Cytocompatibility tests demonstrated that both ZnO- and CuO-loaded hydrogels sustain cell viability and proliferation, highlighting their biocompatibility and suitability for chronic wound healing applications, with superior biological performance of ZnO-loaded hydrogels. Furthermore, the distinct antimicrobial profiles of ZnO and CuO hydrogels suggest their tailored use based on wound microbial composition, with CuO hydrogels excelling in antibacterial applications and ZnO hydrogels showing potential for antifungal treatments. These results underscore the potential of nanoparticle-based collagen hydrogels as innovative therapeutic tools for managing chronic wounds.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (M.A.M.); (A.-G.N.); (A.M.G.)
| | - Mihai Alexandru Minculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (M.A.M.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (M.A.M.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.H.); (A.M.H.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.H.); (A.M.H.)
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.H.); (A.M.H.)
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (M.A.M.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.H.); (A.M.H.)
| |
Collapse
|
2
|
Shah KA, Razzaq A, You B, Dormocara A, Iqbal H, Cui JH. Unveiling the potential of pulmonary surfactant-based nanocarriers for protein inhalation therapy. Eur J Pharm Biopharm 2024; 205:114574. [PMID: 39521354 DOI: 10.1016/j.ejpb.2024.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The study investigates the effect of pulmonary surfactant (PS) coating on the performance of lysozyme-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The NPs were fabricated using a double emulsification technique and optimized using the Box-Behnken experimental design (BBED). The NPs were assessed for size, polydispersity index (PDI), zeta potential, drug loading (DL%), and encapsulation efficiency (EE%). In addition, the optimized PLGA NPs were modified with either a neutral dipalmitoylphosphatidylcholine DPPC or an anionic dipalmitoyl phosphatidylglycerol (DPPG) with different molar ratios of PS to PLGA (PS: PLGA = 1:2, 1:1 and 2:1). These NPs were assessed for biological activity, drug release, mucus adhesion, mucus penetration, cellular uptake, toxicity, and in vivo destiny after intratracheal (IT) instillation to mice. Results showed a bi-phasic drug release, with no significant effect of PS on the release and biological activities of PLGA NPs. The PS@PLGA NPs improved mucus adhesion, decreased mucus penetration, and increased cellular internalization of PLGA NPs. In addition, ex vivo experiments demonstrated that DPPC@PLGA NPs and DPPG@PLGA NPs could adhere to mucus. These NPs created a thicker layer at the interface of the airway compared to unmodified PLGA NPs. Moreover, interaction of PS@PLGA NPs with BALF suggested improved mucoadhesive characteristics. Finally, the in vivo studies confirmed the precise distribution of all NPs in the lungs after IT administration. The study presents empirical evidence and scientific guidance for developing a lung surfactant-modified nanocarrier system for lung drug delivery.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Bengang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Ducrocq M, Rinaldi A, Halgand B, Veziers J, Guihard P, Boury F, Debuigne A. Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers. Colloids Surf B Biointerfaces 2024; 245:114342. [PMID: 39486376 DOI: 10.1016/j.colsurfb.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.
Collapse
Affiliation(s)
- Maude Ducrocq
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium; Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France; Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Arianna Rinaldi
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France
| | - Boris Halgand
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Joëlle Veziers
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Pierre Guihard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France.
| | - Frank Boury
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium.
| |
Collapse
|
4
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Rinaldi A, Dumas F, Duskey JT, Imbriano C, Belluti S, Roy C, Ottonelli I, Vandelli MA, Ruozi B, Garcion E, Tosi G, Boury F. Polymer-lipid hybrid nanomedicines to deliver siRNA in and against glioblastoma cells. Int J Pharm 2024; 654:123994. [PMID: 38484859 DOI: 10.1016/j.ijpharm.2024.123994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Small interfering RNA (siRNA) holds great potential to treat many difficult-to-treat diseases, but its delivery remains the central challenge. This study aimed at investigating the suitability of polymer-lipid hybrid nanomedicines (HNMeds) as novel siRNA delivery platforms for locoregional therapy of glioblastoma. Two HNMed formulations were developed from poly(lactic-co-glycolic acid) polymer and a cationic lipid: 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol). After characterization of the HNMeds, a model siRNA was complexed onto their surface to form HNMed/siRNA complexes. The physicochemical properties and siRNA binding ability of complexes were assessed over a range of nitrogen-to-phosphate (N/P) ratios to optimize the formulations. At the optimal N/P ratio of 10, complexes effectively bound siRNA and improved its protection from enzymatic degradation. Using the NIH3T3 mouse fibroblast cell line, DOTAP-based HNMeds were shown to possess higher cytocompatibility in vitro over the DC-Chol-based ones. As proof-of-concept, uptake and bioefficacy of formulations were also assessed in vitro on U87MG human glioblastoma cell line expressing luciferase gene. Complexes were able to deliver anti-luciferase siRNA and induce a remarkable suppression of gene expression. Noteworthy, the effect of DOTAP-based formulation was not only about three-times higher than DC-Chol-based one, but also comparable to lipofectamine model transfection reagent. These findings set the basis to exploit this nanosystem for silencing relevant GB-related genes in further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Florence Dumas
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Charlotte Roy
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France.
| |
Collapse
|
6
|
Zikeli F, Jusic J, Palocci C, Mugnozza GS, Romagnoli M. Spray Coating of Wood with Nanoparticles from Lignin and Polylactic Glycolic Acid Loaded with Thyme Essential Oils. Polymers (Basel) 2024; 16:947. [PMID: 38611206 PMCID: PMC11013818 DOI: 10.3390/polym16070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Ensuring the longevity of wooden constructions depends heavily on the preservation process. However, several traditional preservation methods involving fossil-based compounds have become outdated because they pose a significant risk to the environment and to human health. Therefore, the use of bio-based and bioactive solutions, such as essential oils, has emerged as a more sustainable alternative in protecting wood from biotic attacks. The entrapment of essential oils in polymeric carrier matrices provides protection against oxidation and subsequent degradation or rapid evaporation, which implies the loss of their biocidal effect. In this work, lignin as well as PLGA nanoparticles containing the essential oils from two different thyme species (Thymus capitatus and T. vulgaris) were applied on beech wood samples using spray coating. The prepared coatings were investigated using FTIR imaging, SEM, as well as LSM analysis. Release experiments were conducted to investigate the release behavior of the essential oils from their respective lignin and PLGA carrier materials. The study found that lignin nanoparticles were more effective at trapping and retaining essential oils than PLGA nanoparticles, despite having larger average particle diameters and a more uneven particle size distribution. An analysis of the lignin coatings showed that they formed a uniform layer that covered most of the surface pores. PLGA nanoparticles formed a film-like layer on the cell walls, and after leaching, larger areas of native wood were evident on the wood samples treated with PLGA NPs compared to the ones coated with lignin NPs. The loading capacity and efficiency varied with the type of essential oil, while the release behaviors were similar between the two essential oil types applied in this study.
Collapse
Affiliation(s)
- Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Jasmina Jusic
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
- Fraunhofer, Via Alessandro Volta 13A, 39100 Bozen, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| |
Collapse
|
7
|
Khan MRH, Armstrong Z, Lenertz M, Saenz B, Kale N, Li Q, MacRae A, Yang Z, Quadir M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38490971 DOI: 10.1021/acsami.3c16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Briana Saenz
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
8
|
Fischer D. Sustainability in Drug and Nanoparticle Processing. Handb Exp Pharmacol 2024; 284:45-68. [PMID: 37306814 DOI: 10.1007/164_2023_659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formulation of drugs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles can be accomplished by various methods, with nanoprecipitation and nanoemulsion being among the most commonly used manufacturing techniques to provide access to high-quality nanomaterials with reproducible quality. Current trends turned to sustainability and green concepts leading to a re-thinking of these techniques, particularly as the conventional solvents for the dissolution of the polymer suffer from limitations like hazards for human health and natural environment. This chapter gives an overview about the different excipients used in classical nanoformulations with a special focus on the currently applied organic solvents. As alternatives, the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations will be highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics. New alternative solvents will be introduced for PLGA nanoparticle formation and compared regarding particle characteristics and biological effects as well as for in situ particle formation in a matrix consisting of nanocellulose. Conclusively, new alternative solvents are available that present a significant advancement toward the replacement of organic solvents in PLGA nanoparticle formulations.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
García-Briones GS, Laga R, Černochová Z, Arjona-Ruiz C, Janoušková O, Šlouf M, Pop-Georgievski O, Kubies D. Polyelectrolyte nanoparticles based on poly[N-(2-hydroxypropyl)methacrylamide-block-poly(N-(3-aminopropyl)methacrylamide] copolymers for delivery of heparin-binding proteins. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
10
|
SDF-1α-Releasing Microspheres Effectively Extend Stem Cell Homing after Myocardial Infarction. Biomedicines 2023; 11:biomedicines11020343. [PMID: 36830880 PMCID: PMC9953248 DOI: 10.3390/biomedicines11020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Ischemic heart disease (IHD) is one of the main focuses in today's healthcare due to its implications and complications, and it is predicted to be increasing in prevalence due to the ageing population. Although the conventional pharmacological and interventional methods for the treatment of IHD presents with success in the clinical setting, the long-term complications of cardiac insufficiency are on a continual incline as a result of post-infarction remodeling of the cardiac tissue. The migration and involvement of stem cells to the cardiac muscle, followed by differentiation into cardiac myocytes, has been proven to be the natural process, though at a slow rate. SDF-1α is a novel candidate to mobilize stem cells homing to the ischemic heart. Endogenous SDF-1α levels are elevated after myocardial infarction, but their presence gradually decreases after approximately seven days. Additional administration of SDF-1α-releasing microspheres could be a tool for the extension of the time the stem cells are in the cardiac tissue after myocardial infarction. This, in turn, could constitute a novel therapy for more efficient regeneration of the heart muscle after injury. Through this practical study, it has been shown that the controlled release of SDF-1α from biodegradable microspheres into the pericardial sac fourteen days after myocardial infarction increases the concentration of exogenous SDF-1α, which persists in the tissue much longer than the level of endogenous SDF-1α. In addition, administration of SDF-1α-releasing microspheres increased the expression of the factors potentially involved in the involvement and retention of myocardial stem cells, which constitutes vascular endothelial growth factor A (VEGFA), stem cell factor (SCF), and vascular cell adhesion molecules (VCAMs) at the site of damaged tissue. This exhibits the possibility of combating the basic limitations of cell therapy, including ineffective stem cell implantation and the ability to induce the migration of endogenous stem cells to the ischemic cardiac tissue and promote heart repair.
Collapse
|
11
|
Controlled Release of Encapsuled Stromal-Derived Factor 1α Improves Bone Marrow Mesenchymal Stromal Cells Migration. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120754. [PMID: 36550960 PMCID: PMC9774977 DOI: 10.3390/bioengineering9120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Stem cell treatment is a promising method of therapy for the group of patients whose conventional options for treatment have been limited or rejected. Stem cells have the potential to repair, replace, restore and regenerate cells. Moreover, their proliferation level is high. Owing to these features, they can be used in the treatment of numerous diseases, such as cancer, lung diseases or ischemic heart diseases. In recent years, stem cell therapy has greatly developed, shedding light on stromal-derived factor 1α (SDF-1α). SDF-1α is a mobilizing chemokine for application of endogenous stem cells to injury sites. Unfortunately, SDF-1α presented short-term results in stem cell treatment trials. Considering the tremendous benefits of this therapy, we developed biodegradable polymeric microspheres for the release of SDF-1α in a controlled and long-lasting manner. The microspheres were designed from poly(L-lactide/glycolide/trimethylene carbonate) (PLA/GA/TMC). The effect of controlled release of SDF-1α from microspheres was investigated on the migration level of bone marrow Mesenchymal Stromal Cells (bmMSCs) derived from a pig. The study showed that SDF-1α, released from the microspheres, is more efficient at attracting bmMSCs than SDF-1α alone. This may enable the controlled delivery of selected and labeled MSCs to the destination in the future.
Collapse
|
12
|
Sachi Das S, Singh SK, Verma PRP, Gahtori R, Sibuh BZ, Kesari KK, Jha NK, Dhanasekaran S, Thakur VK, Wong LS, Djearamane S, Gupta PK. Polyester nanomedicines targeting inflammatory signaling pathways for cancer therapy. Biomed Pharmacother 2022; 154:113654. [PMID: 36067568 DOI: 10.1016/j.biopha.2022.113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
The growth of cancerous cells and their responses towards substantial therapeutics are primarily controlled by inflammations (acute and chronic) and inflammation-associated products, which either endorse or repress tumor progression. Additionally, major signaling pathways, including NF-κB, STAT3, inflammation-causing factors (cytokines, TNF-α, chemokines), and growth-regulating factors (VEGF, TGF-β), are vital regulators responsible for the instigation and resolution of inflammations. Moreover, the conventional chemotherapeutics have exhibited diverse limitations, including poor pharmacokinetics, unfavorable chemical properties, poor targetability to the disease-specific disease leading to toxicity; thus, their applications are restricted in inflammation-mediated cancer therapy. Furthermore, nanotechnology has demonstrated potential benefits over conventional chemotherapeutics, such as it protected the incorporated drug/bioactive moiety from enzymatic degradation within the systemic circulation, improving the physicochemical properties of poorly aqueous soluble chemotherapeutic agents, and enhancing their targetability in specified carcinogenic cells rather than accumulating in the healthy cells, leading reduced cytotoxicity. Among diverse nanomaterials, polyester-based nanoparticulate delivery systems have been extensively used to target various inflammation-mediated cancers. This review summarizes the therapeutic potentials of various polyester nanomaterials (PLGA, PCL, PLA, PHA, and others)-based delivery systems targeting multiple signaling pathways related to inflammation-mediated cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India; School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India.
| | - P R P Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland; Department of Applied Physics, Aalto University, Espoo, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia.
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| |
Collapse
|
13
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
14
|
Messerschmidt VL, Chintapula U, Bonetesta F, Laboy-Segarra S, Naderi A, Nguyen KT, Cao H, Mager E, Lee J. In vivo Evaluation of Non-viral NICD Plasmid-Loaded PLGA Nanoparticles in Developing Zebrafish to Improve Cardiac Functions. Front Physiol 2022; 13:819767. [PMID: 35283767 PMCID: PMC8906778 DOI: 10.3389/fphys.2022.819767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic-co-glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects.
Collapse
Affiliation(s)
- Victoria L Messerschmidt
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fabrizio Bonetesta
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Samantha Laboy-Segarra
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amir Naderi
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Edward Mager
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Czapka A, Grune C, Schädel P, Bachmann V, Scheuer K, Dirauf M, Weber C, Skaltsounis AL, Jandt KD, Schubert US, Fischer D, Werz O. Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(D,L-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. J Nanobiotechnology 2022; 20:5. [PMID: 34983538 PMCID: PMC8725458 DOI: 10.1186/s12951-021-01179-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. RESULTS For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around - 15 to - 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen's egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. CONCLUSIONS Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.
Collapse
Affiliation(s)
- Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christian Grune
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vivien Bachmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Karl Scheuer
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
- Division of Pharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
16
|
Molina-Peña R, Haji Mansor M, Najberg M, Thomassin JM, Gueza B, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Nanoparticle-containing electrospun nanofibrous scaffolds for sustained release of SDF-1α. Int J Pharm 2021; 610:121205. [PMID: 34670119 DOI: 10.1016/j.ijpharm.2021.121205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Chemokines such as stromal cell-derived factor-1α (SDF-1α) regulate the migration of cancer cells that can spread from their primary tumor site by migrating up an SDF-1α concentration gradient, facilitating their local invasion and metastasis. Therefore, the implantation of SDF-1α-releasing scaffolds can be a useful strategy to trap cancer cells expressing the CXCR4 receptor. In this work, SDF-1α was encapsulated into poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles and subsequently electrospun with chitosan to produce nanofibrous scaffolds of average fiber diameter of 261 ± 45 nm, intended for trapping glioblastoma (GBM) cells. The encapsulated SDF-1α maintained its biological activity after the electrospinning process as assessed by its capacity to induce the migration of cancer cells. The scaffolds could also provide sustained release of SDF-1α for at least 5 weeks. Using NIH3T3 mouse fibroblasts, human Thp-1 macrophages, and rat primary astrocytes we showed that the scaffolds possessed high cytocompatibility in vitro. Furthermore, a 7-day follow-up of Fischer rats bearing implanted scaffolds demonstrated the absence of adverse effects in vivo. In addition, the nanofibrous structure of the scaffolds provided excellent anchoring sites to support the adhesion of human GBM cells by extension of their pseudopodia. The scaffolds also demonstrated slow degradation kinetics, which may be useful in maximizing the time window for trapping GBM cells. As surgical resection does not permit a complete removal of GBM tumors, our results support the future implantation of these scaffolds into the walls of the resection cavity to evaluate their capacity to attract and trap the residual GBM cells in the brain.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Muhammad Haji Mansor
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Mathie Najberg
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Baya Gueza
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emmanuel Garcion
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Frank Boury
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
17
|
Messerschmidt VL, Chintapula U, Kuriakose AE, Laboy S, Truong TTD, Kydd LA, Jaworski J, Pan Z, Sadek H, Nguyen KT, Lee J. Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules. Front Cardiovasc Med 2021; 8:707897. [PMID: 34651022 PMCID: PMC8507495 DOI: 10.3389/fcvm.2021.707897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.
Collapse
Affiliation(s)
- Victoria L Messerschmidt
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aneetta E Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samantha Laboy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thuy Thi Dang Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - LeNaiya A Kydd
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Hashem Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
18
|
Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2021; 22:951-967. [PMID: 34382530 DOI: 10.2174/1871520621666210811111152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is very imperative for lung cancer treatments. OBJECTIVE The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer. METHODS Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume and concentration were assessed on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction and geometric standard deviation using a two-level factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope. RESULTS FTIR, DSC, and XRD analysis confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio. CONCLUSION In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features are feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.
Collapse
Affiliation(s)
- Elham Ziaei
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Mahboubeh Rezazadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
19
|
Shakhatreh MAK, Al-Rawi OF, Swedan SF, Alzoubi KH, Khabour OF, Al-Fandi M. Biosynthesis of Silver Nanoparticles from Citrobacter freundii as Antibiofilm Agents with their Cytotoxic Effects on Human Cells. Curr Pharm Biotechnol 2021; 22:1254-1263. [PMID: 33081683 DOI: 10.2174/1389201021666201020162158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanomaterials have recently been identified for their potential benefits in the areas of medicine and pharmaceuticals. Among these nanomaterials, silver nanoparticles (Ag-NPs) have been widely utilized in the fields of diagnostics, antimicrobials, and catalysis. OBJECTIVE To investigate the potential utility of Citrobacter freundii in the synthesis of silver Nanoparticles (Ag-NPs), and to determine the antimicrobial activities of the Ag-NPs produced. METHODS Aqueous Ag+ ions were reduced when exposed to C. freundii extract and sunlight, leading to the formation of Ag-NPs. Qualitative microanalysis for the synthesized Ag-NPs was done using UVvis spectrometry, Energy Dispersive X-ray analysis (EDX), and scanning and transmission electron microscopy. The hydrodynamic size and stability of the particles were detected using Dynamic Light Scattering (DLS) analysis. The Ag-NPs' anti-planktonic and anti-biofilm activities against Staphylococcus aureus and Pseudomonas aeruginosa, which are two important skin and wound pathogens, were investigated. The cytotoxicity on human dermal fibroblast cell line was also determined. RESULTS Ag-NPs were spherical with a size range between 15 to 30 nm. Furthermore, Ag-NPs displayed potent bactericidal activities against both S. aureus and P. aeruginosa and showed noticeable anti-biofilm activity against S. aureus biofilms. Ag-NPs induced minor cytotoxic effects on human cells as indicated by a reduction in cell viability, a disruption of plasma membrane integrity, and apoptosis induction. CONCLUSION Ag-NPs generated in this study might be a future potential alternative to be used as antimicrobial agents in pharmaceutical applications for wound and skin related infections.
Collapse
Affiliation(s)
- Muhamad A K Shakhatreh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Al-Rawi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Samer F Swedan
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
20
|
Mihalik NE, Wen S, Driesschaert B, Eubank TD. Formulation and In Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech 2021; 22:191. [PMID: 34169366 DOI: 10.1208/s12249-021-02049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-β-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS "M1" controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.
Collapse
|
21
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
22
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
23
|
Mehdipour M, Daghigh Kia H, Martínez-Pastor F. Poloxamer 188 exerts a cryoprotective effect on rooster sperm and allows decreasing glycerol concentration in the freezing extender. Poult Sci 2020; 99:6212-6220. [PMID: 33142539 PMCID: PMC7647912 DOI: 10.1016/j.psj.2020.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Glycerol is the most widely used cryoprotectant for rooster sperm because it declines the mechanical damage to sperm during the freezing process. Despite its high molecular weight and viscosity, which may be cytotoxic, glycerol can cause damage to cells during the cryopreservation process, resulting in less fertility. Poloxamer 188 (P188) is an embryo cryopreservation supplement effective in many species and also for cell lines and plant cells. We tested the suitability of P188 in the cryopreservation of rooster sperm, considering post-thawing motility, abnormalities, membrane functionality (hypo-osmotic swelling test), mitochondrial activity, viability, apoptosis status, reactive oxygen species production, and ATP content after thawing and the fertility and hatchability after AI. We carried out a factorial experiment with glycerol concentrations of 2% glycerol (G2) and 8% glycerol (G8) and P188 concentrations of 0% (P0), 0.1% (P0.1), 0.5% (P0.5), and 1% (P1) as fixed effects, with replicate (seven) as a random effect. Interactions between glycerol and P188 were found, with G2P1 yielding higher quality and fertility. G8P0.5 yielded better in most parameters, however, not reaching G2P1. G2P1 showed significantly higher results for total and progressive motility, kinetic parameters (average path velocity, straight-line velocity, and linearity), membrane functionality, viability, mitochondrial activity, and ATP content and lower apoptosis, dead sperm, and reactive oxygen species production. G2P1 resulted in the highest percentages of fertilized and hatched eggs, with no effects in the hatched eggs ratio. Interestingly, G2 was less efficient in many parameters than G8 when combined with P0 and P0.1, being equivalent to G8 with P0.5 and superior to any G8 treatment as G2P1. In conclusion, P188 could improve rooster semen cryopreservation and allow reduction of glycerol in extenders, with a consequent impact in the poultry industry.
Collapse
Affiliation(s)
- Mahdieh Mehdipour
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghigh Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Felipe Martínez-Pastor
- Institute of Animal Health and Cattle Development (INDEGSAL) and Department of Molecular Biology (Cell Biology), University of León, León 24071, Spain
| |
Collapse
|
24
|
Nankali E, Shaabanzadeh M, Torbati MB. Fluorescent tamoxifen-encapsulated nanocapsules functionalized with folic acid for enhanced drug delivery toward breast cancer cell line MCF-7 and cancer cell imaging. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1211-1219. [PMID: 31980856 DOI: 10.1007/s00210-020-01825-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
Nanoscale drug delivery systems such as nanocapsules at the convergence of nanotechnology and biomedical sciences have been widely used. In the present study, with the aim of simultaneous imaging and therapy of cancer cells based on biodegradable/biocompatible polymers, we designed and synthesized tamoxifen-encapsulated nanocapsules to target the folate receptor positive breast cancer cells. Noteworthy, to monitor and link to the cancer cells, these nanocapsules were functionalized with fluorescein isothiocyanate and folic acid. The synthesized nanocapsules were characterized by FTIR, XRD, and PL spectroscopy, as well as FESEM and TEM techniques. Although the free tamoxifen has low solubility in physiological solutions, the synthesized tamoxifen-encapsulated nanocapsules have enough solubility, good stability, and more biocompatibility in these solutions. The encapsulation of tamoxifen into the nanocapsules, tamoxifen loading, and its subsequent release behavior were studied. In order to investigate the biological role of these nanocapsules, MTT assay and cell imaging analysis have also been examined. The cytotoxicity test exhibit that the mean IC50 values on the MCF-7 cell line were found to be 15.52 and 8.46 μg/ml in 24 h and 48 h respectively and the cytotoxicity increased by approximately 2.72-fold compared with free TAM against the MCF-7 cancer cell line. Also, cell imaging experiments showed that the synthesized nanocapsules have appropriate cellular uptake efficiency, good potential for monitoring of these particles in vitro. The experimental results suggest that the synthesized tamoxifen nanocapsules facilitate the proper targeting, drug encapsulation efficiency, and controlled release of tamoxifen in vitro.
Collapse
Affiliation(s)
- Ehsan Nankali
- Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Masoud Shaabanzadeh
- Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
O’Dwyer J, Cullen M, Fattah S, Murphy R, Stefanovic S, Kovarova L, Pravda M, Velebny V, Heise A, Duffy GP, Cryan SA. Development of a Sustained Release Nano-In-Gel Delivery System for the Chemotactic and Angiogenic Growth Factor Stromal-Derived Factor 1α. Pharmaceutics 2020; 12:E513. [PMID: 32512712 PMCID: PMC7355599 DOI: 10.3390/pharmaceutics12060513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Stromal-Derived Factor 1α (SDF) is an angiogenic, chemotactic protein with significant potential for applications in a range of clinical areas, including wound healing, myocardial infarction and orthopaedic regenerative approaches. The 26-min in vivo half-life of SDF, however, has limited its clinical translation to date. In this study, we investigate the use of star-shaped or linear poly(glutamic acid) (PGA) polypeptides to produce PGA-SDF nanoparticles, which can be incorporated into a tyramine-modified hyaluronic acid hydrogel (HA-TA) to facilitate sustained localised delivery of SDF. The physicochemical properties and biocompatibility of the PGA-SDF nanoparticle formulations were extensively characterised prior to incorporation into a HA-TA hydrogel. The biological activity of the SDF released from the nano-in-gel system was determined on Matrigel®, scratch and Transwell® migration assays. Both star-shaped and linear PGA facilitated SDF nanoparticle formation with particle sizes from 255-305 nm and almost complete SDF complexation. Star-PGA-SDF demonstrated superior biocompatibility and was incorporated into a HA-TA gel, which facilitated sustained SDF release for up to 35 days in vitro. Released SDF significantly improved gap closure on a scratch assay, produced a 2.8-fold increase in HUVEC Transwell® migration and a 1.5-fold increase in total tubule length on a Matrigel® assay at 12 h compared to untreated cells. Overall, we present a novel platform system for the sustained delivery of bioactive SDF from a nano-in-gel system which could be adapted for a range of biomedical applications.
Collapse
Affiliation(s)
- Joanne O’Dwyer
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
| | - Megan Cullen
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
| | - Sarinj Fattah
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
| | - Robert Murphy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
| | - Smiljana Stefanovic
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
| | - Lenka Kovarova
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
- Faculty of Chemistry, Institute of Physical Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic
| | - Martin Pravda
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
| | - Vladimir Velebny
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
| | - Andreas Heise
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
| | - Garry P. Duffy
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
- Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sally Ann Cryan
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
26
|
Gascon S, Giraldo Solano A, El Kheir W, Therriault H, Berthelin P, Cattier B, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Characterization and Mathematical Modeling of Alginate/Chitosan-Based Nanoparticles Releasing the Chemokine CXCL12 to Attract Glioblastoma Cells. Pharmaceutics 2020; 12:E356. [PMID: 32295255 PMCID: PMC7238026 DOI: 10.3390/pharmaceutics12040356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/23/2022] Open
Abstract
Chitosan (Chit) currently used to prepare nanoparticles (NPs) for brain application can be complexed with negatively charged polymers such as alginate (Alg) to better entrap positively charged molecules such as CXCL12. A sustained CXCL12 gradient created by a delivery system can be used, as a therapeutic approach, to control the migration of cancerous cells infiltrated in peri-tumoral tissues similar to those of glioblastoma multiforme (GBM). For this purpose, we prepared Alg/Chit NPs entrapping CXCL12 and characterized them. We demonstrated that Alg/Chit NPs, with an average size of ~250 nm, entrapped CXCL12 with ~98% efficiency for initial mass loadings varying from 0.372 to 1.490 µg/mg NPs. The release kinetic profiles of CXCL12 were dependent on the initial mass loading, and the released chemokine from NPs after seven days reached 12.6%, 32.3%, and 59.9% of cumulative release for initial contents of 0.372, 0.744, and 1.490 µg CXCL12/mg NPs, respectively. Mathematical modeling of released kinetics showed a predominant diffusive process with strong interactions between Alg and CXCL12. The CXCL12-NPs were not toxic and did not promote F98 GBM cell proliferation, while the released CXCL12 kept its chemotaxis effect. Thus, we developed an efficient and tunable CXCL12 delivery system as a promising therapeutic strategy that aims to be injected into a hydrogel used to fill the cavity after surgical tumor resection. This system will be used to attract infiltrated GBM cells prior to their elimination by conventional treatment without affecting a large zone of healthy brain tissue.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (P.B.); (N.F.)
| | - Angéla Giraldo Solano
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (A.G.S.); (H.T.)
| | - Wiam El Kheir
- Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (W.E.K.); (B.C.)
| | - Hélène Therriault
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (A.G.S.); (H.T.)
| | - Pierre Berthelin
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (P.B.); (N.F.)
| | - Bettina Cattier
- Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (W.E.K.); (B.C.)
| | - Bernard Marcos
- Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of chemical engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Benoit Paquette
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (P.B.); (N.F.)
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (W.E.K.); (B.C.)
- Research Center on Aging, 1036, rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
27
|
Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. J Control Release 2020; 322:439-456. [PMID: 32259545 DOI: 10.1016/j.jconrel.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
A taxis is the movement responding to a stimulus of an organism. This behavior helps organisms to migrate, to find food or to avoid dangers. By mimicking and using natural taxes, many bio-inspired and bio-hybrid drug delivery systems have been synthesized. Under the guidance of physical and chemical stimuli, drug-loaded carriers are led to a target, for example tumors, then locally release the drug, inducing a therapeutic effect without influencing other parts of the body. On the other hand, for moving targets, for example metastasis cancer cells or bacteria, taking advantage of their taxes behavior is a solution to capture and to eliminate them. For instance, several traps and ecological niches have been fabricated to attract cancer cells by releasing chemokines. Cancer cells are then eliminated by drug loaded inside the trap, by radiotherapy focusing on the trap location or by simply removing the trap. Further research is needed to deeply understand the taxis behavior of organisms, which is essential to ameliorate the performance of taxes-inspired drug delivery application.
Collapse
Affiliation(s)
- Hung V Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France
| | - Vincent Faivre
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
28
|
Najberg M, Haji Mansor M, Taillé T, Bouré C, Molina-Peña R, Boury F, Cenis JL, Garcion E, Alvarez-Lorenzo C. Aerogel sponges of silk fibroin, hyaluronic acid and heparin for soft tissue engineering: Composition-properties relationship. Carbohydr Polym 2020; 237:116107. [PMID: 32241442 DOI: 10.1016/j.carbpol.2020.116107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
This work aims to design biocompatible aerogel sponges that can host and control the release of stromal cell-derived factor-1α (SDF-1α or CXCL12), a key protein for applications ranging from regenerative medicine to cancer therapy (notably for neural tissues). Miscibility of silk fibroin (SF) and hyaluronic acid (HA) was investigated by means of fluorescence and scanning electron microscopy to identify processing conditions. Series of freeze-dried sponges were prepared by associating and cross-linking within the same 3D structure, HA, SF, poly-l-lysine (PLL) and heparin (hep). Aerogel sponges presented high swelling degree and porosity (∼90 %), adequate mean pore diameter (ca. 60 μm) and connectivity for welcoming cells, and a soft texture close to that of the brain (6-13 kPa Young's Modulus). Addition of SF yielded sponges with slower biodegradation. SF-HA and SF-HA-hep sponges retained 75 % and 93 % of the SDF-1α respectively after 7 days and were found to be cytocompatible in vitro.
Collapse
Affiliation(s)
- Mathie Najberg
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | | | - Théodore Taillé
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Céline Bouré
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | | | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - José Luis Cenis
- Biotechnology Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, La Alberca, Murcia, Spain
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults, associated with a high mortality rate and a survival of between 12 and 15 months after diagnosis. Due to current treatment limitations involving surgery, radiotherapy and chemotherapy with temozolamide, there is a high rate of treatment failure and recurrence. To try to overcome these limitations nanotechnology has emerged as a novel alternative. Lipid, polymeric, silica and magnetic nanoparticles, among others, are being developed to improve GBM treatment and diagnosis. These nanoformulations have many advantages, including lower toxicity, biocompatibility and the ability to be directed toward the tumor. This article reviews the progress that have been made and the large variety of nanoparticles currently under study for GBM.
Collapse
|
30
|
Najberg M, Haji Mansor M, Boury F, Alvarez-Lorenzo C, Garcion E. Reversing the Tumor Target: Establishment of a Tumor Trap. Front Pharmacol 2019; 10:887. [PMID: 31456685 PMCID: PMC6699082 DOI: 10.3389/fphar.2019.00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs). Recent advances pursue the trapping of these cancer cells within a confined area to facilitate their removal for therapeutic and diagnostic purposes. A good understanding of the mechanisms behind tumor cell migration may drive the design of traps that mimic natural tumor niches and guide the movement of the cancer cells. To bring this trapping idea into reality, strong efforts are being made to create structured materials that imitate myelinated fibers, blood vessels, or pre-metastatic niches and incorporate chemical cues such as chemoattractants or adhesive proteins. In this review, the different strategies used (or could be used) to trap tumor cells are described, and relevant examples of their performance are analyzed.
Collapse
Affiliation(s)
- Mathie Najberg
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Muhammad Haji Mansor
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Center for Education and Research on Macromolecules (CERM), Université de Liège, Liège, Belgium
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| |
Collapse
|
31
|
PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00442-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Biocompatibility and safety of insulin-loaded chitosan nanoparticles/ PLGA-PEG-PLGA hydrogel (ICNPH) delivered by subconjunctival injection in rats. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Ma K, Chen S, Li Z, Deng X, Huang D, Xiong L, Shao Z. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage 2019; 27:41-48. [PMID: 30243946 DOI: 10.1016/j.joca.2018.08.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 02/02/2023]
Abstract
Intervertebral disc (IVD) degeneration is frequently associated with Low back pain (LBP), which can severely reduce the quality of human life and cause enormous economic loss. However, there is a lack of long-lasting and effective therapies for IVD degeneration at present. Recently, stem cell based tissue engineering techniques have provided novel and promising treatment for the repair of degenerative IVDs. Numerous studies showed that stem/progenitor cells exist naturally in IVDs and could migrate from their niche to the IVD to maintain the quantity of nucleus pulposus (NP) cells. Unfortunately, these endogenous repair processes cannot prevent IVD degeneration as effectively as expected. Therefore, theoretical basis for regeneration of the NP in situ can be obtained from studying the mechanisms of endogenous repair failure during IVD degeneration. Although there have been few researches to study the mechanism of cell death and migration of stem/progenitor cells in IVD so far, studies demonstrated that the major inducing factors (compression and hypoxia) of IVD degeneration could decrease the number of NP cells by regulating apoptosis, autophagy, and necroptosis, and the particular chemokines and their receptors played a vital role in the migration of mesenchymal stem cells (MSCs). These studies provide a clue for revealing the mechanisms of endogenous repair failure during IVD degeneration. This article reviewed the current research situation and progress of the mechanisms through which IVD stem/progenitor cells failed to repair IVD tissues during IVD degeneration. Such studies provide an innovative research direction for endogenous repair and a new potential treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- K Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - D Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - L Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Small M, Faglie A, Craig AJ, Pieper M, Fernand Narcisse VE, Neuenschwander PF, Chou SF. Nanostructure-Enabled and Macromolecule-Grafted Surfaces for Biomedical Applications. MICROMACHINES 2018; 9:E243. [PMID: 30424176 PMCID: PMC6187347 DOI: 10.3390/mi9050243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
Advances in nanotechnology and nanomaterials have enabled the development of functional biomaterials with surface properties that reduce the rate of the device rejection in injectable and implantable biomaterials. In addition, the surface of biomaterials can be functionalized with macromolecules for stimuli-responsive purposes to improve the efficacy and effectiveness in drug release applications. Furthermore, macromolecule-grafted surfaces exhibit a hierarchical nanostructure that mimics nanotextured surfaces for the promotion of cellular responses in tissue engineering. Owing to these unique properties, this review focuses on the grafting of macromolecules on the surfaces of various biomaterials (e.g., films, fibers, hydrogels, and etc.) to create nanostructure-enabled and macromolecule-grafted surfaces for biomedical applications, such as thrombosis prevention and wound healing. The macromolecule-modified surfaces can be treated as a functional device that either passively inhibits adverse effects from injectable and implantable devices or actively delivers biological agents that are locally based on proper stimulation. In this review, several methods are discussed to enable the surface of biomaterials to be used for further grafting of macromolecules. In addition, we review surface-modified films (coatings) and fibers with respect to several biomedical applications. Our review provides a scientific update on the current achievements and future trends of nanostructure-enabled and macromolecule-grafted surfaces in biomedical applications.
Collapse
Affiliation(s)
- Madeline Small
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
| | - Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
| | - Alexandra J Craig
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
| | - Martha Pieper
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
| | - Vivian E Fernand Narcisse
- Department of Chemistry and Physics, School of Arts and Sciences, LeTourneau University, Longview, TX 75607, USA.
| | - Pierre F Neuenschwander
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
| |
Collapse
|