1
|
Kanp T, Dhuri A, Aalhate M, Manoharan B, Rode K, Munagalasetty S, Sarma AVS, Kshirsagar P, Shankaraiah N, Bhandari V, Sharma B, Singh PK. Investigation of a Palbociclib and Naringin Co-Amorphous System to Ameliorate Anticancer Potential: Insights on In Silico Modeling, Physicochemical Characterization, Ex Vivo Permeation, and In Vitro Efficacy. Mol Pharm 2025; 22:2446-2465. [PMID: 40162519 DOI: 10.1021/acs.molpharmaceut.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Palbociclib (PCB), categorized as a BCS class II drug, is characterized by low aqueous solubility. The drug's limited aqueous solubility and poor dissolution rate pose significant challenges, potentially affecting its absorption and overall therapeutic efficacy. Co-amorphous (CAM) systems have been extensively investigated as a potential solution to overcome the issue of poor water solubility in numerous active pharmaceutical ingredients. This research study hypothesized that the coamorphization process involving the compounds PCB and naringin (NG) would lead to an increase in the aqueous solubility of PCB. Additionally, it was proposed that this process would also enhance the anticancer impact of PCB since NG is recognized for its pharmacological impact on breast cancer cells. In silico studies, it was revealed that PCB could interact with NG via hydrogen bonding. Furthermore, the prepared CAM (PCB-NG-CAM) system using PCB and NG was characterized by PXRD, DSC, FTIR, Raman spectroscopy, solid-state 13C nuclear magnetic resonance, and SEM. PCB-NG-CAM exhibited a significant increase in solubility, dissolution rate, and intestinal permeation compared to crystalline PCB. Furthermore, PCB-NG-CAM exhibited excellent physical stability at 40 °C/75% RH for up to 3 months. In addition, PCB-NG-CAM showed superior in vitro efficacy on MDA-MB-231 triple-negative breast cancer cell lines. PCB-NG-CAM resulted in a 2.24 times higher apoptosis rate and a 1.6 times greater ROS production than free PCB. Additionally, the inhibitory effect on cell migration and alterations in MMP was more pronounced in cells treated with PCB-NG-CAM. Therefore, this study indicated that PCB-NG-CAM has the potential to significantly improve the oral administration, solubility, and therapeutic efficacy of PCB.
Collapse
Affiliation(s)
- Tanmoy Kanp
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Bharath Manoharan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Khushi Rode
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sharon Munagalasetty
- Department of Pharmacoinformatic, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akella V S Sarma
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prasad Kshirsagar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vasundhara Bhandari
- Department of Pharmacoinformatic, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan 302017, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
2
|
Chakraborty S, Bansal AK. Application of atomic force microscopy in the development of amorphous solid dispersion. J Pharm Sci 2025; 114:70-81. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
3
|
Shen L, Liu X, Wu W, Zhou L, Liang G, Wang Y, Wu W. "Aging" in co-amorphous systems: Dissolution decrease and non-negligible dissolution increase during storage without recrystallization. Int J Pharm 2024; 667:124943. [PMID: 39537040 DOI: 10.1016/j.ijpharm.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Developing co-amorphous systems is a promising strategy to improve the water solubility of poorly water-soluble drugs. Most of the studies focused on the initial dissolution rate of the fresh co-amorphous systems, and only physical stability was investigated after storage. However, the maintenance of the enhanced dissolution rate of co-amorphous systems after storage is necessary for further product development. The maintenance of amorphous forms after storage does not always mean the maintenance of the dissolution rate. In this study, indomethacin, arginine, tryptophan, and phenylalanine were used as the model drug and the co-formers to prepare co-amorphous systems and then stored under dry condition and RH 60 ± 5 % condition. No recrystallization was observed after the storage for 40 d and 80 d. Interestingly, both intrinsic dissolution rate (IDR) decrease and unexpected increase after storage were confirmed. The further mixing of IND and the co-former at a molecular level and the moisture changes of the co-amorphous systems during storage were supposed to play important roles in the aging. This study reminds us that the possible dissolution changes (both dissolution decrease and increase) of co-amorphous systems during storage should be carefully considered, though these samples maintained amorphous forms.
Collapse
Affiliation(s)
- Luyan Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Xianzhi Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Wencheng Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Lin Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
4
|
Kanp T, Dhuri A, Aalhate M, Mahajan S, Munagalasetty S, Kumar Sah S, Kaity S, Sharma B, Bhandari V, Kumar Singh P. Manifesting the Dasatinib-gallic acid co-amorphous system to augment anticancer potential: Physicochemical characterization, in silico molecular simulation, ex vivo permeability, and in vitro efficacy. Int J Pharm 2024; 665:124672. [PMID: 39245084 DOI: 10.1016/j.ijpharm.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Dasatinib (DAB) has been explored for repurposing in the treatment of breast cancer (BC) due to its known effectiveness in treating leukemia, in addition to its role as a tyrosine kinase inhibitor. Gallic acid (GA) was chosen as a co-former due to its anticancer potential in BC, as demonstrated in several previous studies. DAB is a low-solubility drug, which is a significant hurdle for its oral bioavailability. To address this limitation, a DAB and GA co-amorphous (DAB-GA-CA) system was developed using liquid-assisted grinding and ball mill technology to enhance solubility, bioavailability, and anti-tumor efficacy. Physical characterization investigation revealed that the emergence of the halo diffractogram in PXRD, single glass transition temperature (Tg) value at 111.7 °C in DSC thermogram, and irregularly shaped blocks with loose, porous surfaces in SEM analysis indicated the formation of the DAB-GA-CA system at 1:1 M ratio. Furthermore, FTIR, Raman spectroscopy, in-silico molecular docking, and molecular dynamic studies confirmed the intermolecular hydrogen connections between DAB and GA. Moreover, the outcomes of the ligands (DAB and GA) and receptors (BCL-2, mTOR, estrogen receptor, and HER-2) docking studies demonstrated that both DAB and GA could interact with those receptors, leading to preventive action on BC cells. Additionally, the solubility and dissolution rate significantly improved at pH 6.8, and the permeability study indicated that DAB-GA-CA showed 1.9 times higher apparent permeability compared to crystalline DAB. Furthermore, in vitro cytotoxicity assessments of the DAB-GA-CA system revealed 3.42 times lower IC50 than free DAB. The mitochondrial membrane depolarization, apoptotic index, and reactive oxygen species formation in MCF-7 cells were also notably higher in the DAB-GA-CA system than in free DAB. Hence, this research suggests that the DAB-GA-CA system could substantially enhance oral delivery, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
- Tanmoy Kanp
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sharon Munagalasetty
- Department of Pharmacoinformatic, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sunil Kumar Sah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatic, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
5
|
Chen X, Qin Y, Wang L, Zhu Y, Zhang H, Liu W, Zeng M, Dai Q. Co-amorphous systems of sulfasalazine with matrine-type alkaloids: Enhanced solubility behaviors and synergistic therapeutic potential. Eur J Pharm Biopharm 2024; 203:114475. [PMID: 39216557 DOI: 10.1016/j.ejpb.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue. These newly obtained co-amorphous forms of SULF were comprehensively characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We also investigated their dissolution behavior, including powder dissolution, in vitro release, and intrinsic dissolution rate. Both co-amorphous systems exhibited superior dissolution performance compared to crystalline SULF. The underlying mechanism responsible for the enhanced dissolution behaviors in co-amorphous systems were also elucidated. These mechanisms include the inhibition of nucleation, complexation, increased hydrophilicity, and robust intermolecular interactions in aqueous solutions. Importantly, these co-amorphous systems demonstrated satisfactory physical stability under various storage conditions. Network pharmacological analysis was utilized to investigate the potential therapeutic targets of both co-amorphous systems against RA, revealing similar yet distinct multi-target synergistic therapeutic mechanisms in the treatment of this condition. Our study suggests these drug-drug co-amorphous systems hold promise for optimizing SULF dosage in the future and providing a potential drug combination strategy.
Collapse
Affiliation(s)
- Xin Chen
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Yirui Qin
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Lijun Wang
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yujing Zhu
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China; Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Mei Zeng
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qian Dai
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| |
Collapse
|
6
|
Shelke R, Velagacherla V, Nayak UY. Recent advances in dual-drug co-amorphous systems. Drug Discov Today 2024; 29:103863. [PMID: 38141778 DOI: 10.1016/j.drudis.2023.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Poor solubility of drugs and therapeutic candidates poses a significant challenge in drug research and development. Biopharmaceutical class II drugs exhibit limited absorption because of their weak solubility and high permeability. Co-amorphous systems (CAMs) have been studied widely as a way to improve the solubility of drugs. This review summarizes recent advancements in dual-drug CAMs, including improvements in formulation, manufacturing, and solid-state characterization, and highlights the importance of enhancing solubility and stability. It emphasizes the potential synergistic effects of two drugs in CAMs and explores formulation strategies and challenges related to maintaining the amorphous state. Case studies demonstrate the successful application of CAMs in combination therapies that offer improved therapeutic efficacy.
Collapse
Affiliation(s)
- Rutuja Shelke
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
7
|
Di R, Rades T, Grohganz H. Destabilization of Indomethacin-Paracetamol Co-Amorphous Systems by Mechanical Stress. Pharmaceutics 2023; 16:67. [PMID: 38258078 PMCID: PMC10818836 DOI: 10.3390/pharmaceutics16010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Using co-amorphous systems (CAMS) has shown promise in addressing the challenges associated with poorly water-soluble drugs. Quench-cooling is a commonly used CAMS preparation method, often followed by grinding or milling to achieve a fine powder that is suitable for subsequent characterization or further down-stream manufacturing. However, the impact of mechanical stress applied to CAMS has received little attention. In this study, the influence of mechanical stress on indomethacin-paracetamol CAMS was investigated. The investigation involved thermal analysis and solid-state characterization across various CAMS mixing ratios and levels of mechanical stress. The study revealed a negative effect of mechanical stress on stability, particularly on the excess components in CAMS. Higher levels of mechanical stress were observed to induce phase separation or recrystallization. Notably, samples at the optimal mixing ratio demonstrated greater resistance to the destabilization caused by mechanical stress. These results showed the significance of careful consideration of processing methods during formulation and the significance of optimizing mixing ratios in CAMS.
Collapse
Affiliation(s)
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, 2200 Copenhagen, Denmark; (R.D.); (H.G.)
| | | |
Collapse
|
8
|
Ding F, Cao W, Wang R, Wang N, Li A, Wei Y, Qian S, Zhang J, Gao Y, Pang Z. Mechanistic Study on Transformation of Coamorphous Baicalein-Nicotinamide to Its Cocrystal Form. J Pharm Sci 2023; 112:513-524. [PMID: 36150469 DOI: 10.1016/j.xphs.2022.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Recently, coamorphization and cocrystal technologies are of particular interest in the pharmaceutical industry due to their ability to improve the solubility/dissolution and bioavailability of poorly water-soluble drugs, while the coamorphous system often tends to convert into the stable crystalline form usually crystalline physical mixture of each component during formulation preparation or storage. In this paper, BCS II drug baicalein (BAI) along with nicotinamide (NIC) were prepared into a single homogeneous coamorphous system with a single transition temperature at 42.5 °C. Interestingly, instead of the physical mixture of crystalline BAI and NIC, coamorphous BAI-NIC would transform to its cocrystal form under stress of temperature and humidity. The transformation rate under isothermal condition was temperature-dependent, since the crystallinity of the cocrystal enhanced as the temperature increased. Further mechanic studies showed the activation energy for the transformation under non-isothermal condition was calculated to be 184.52 kJ/mol. Additionally, water vapor sorption tests with further solid characterizations indicated the transformation was faster under higher humidity condition due to the faster nucleation process of cocrystal BAI-NIC. This research not only discovered the mechanism of transformation from coamorphous BAI-NIC to cocrystal form, but also provided an unusual method for cocrystal preparation from its coamorphous form.
Collapse
Affiliation(s)
- Fei Ding
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Yangtze River Pharmaceutical Group Nanjing Hailing Pharmaceutical Co., Ltd., Nanjing, 210049, PR China
| | - Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ningning Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Anran Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
9
|
Fang X, Hu Y, Yang G, Shi W, Lu S, Cao Y. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems. Eur J Pharm Biopharm 2022; 181:22-35. [PMID: 36283631 DOI: 10.1016/j.ejpb.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
The formation of co-amorphous by combining low molecular weight compounds with drugs is a relatively new technology in the pharmaceutical field, which can significantly improve the solubility, dissolution, and stability of poorly water-soluble drugs. However, in our previous studies, the binary co-amorphous system of andrographolide-oxymatrine (AP-OMT) was found to have obvious recrystallization and poor dissolution behavior. Therefore, in this study, we designed three stable ternary co-amorphous systems to improve the physicochemical properties of the binary co-amorphous system of AP-OMT. The ternary co-amorphous systems were prepared with AP, OMT, and trans-cinnamic acid (CA), p-hydroxycinnamic acid (pHCA), or ferulic acid (FA). Intermolecular hydrogen bonds were confirmed by spectroscopy and molecular dynamics simulation. Solubility studies showed that the solubility of the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA was significantly increased compared with that of crystalline AP. Dissolution experiments suggested that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA exhibited better dissolution behavior without significant recrystallization compared to the binary co-amorphous AP-OMT. The stability study confirmed that the ternary co-amorphous system of AP-OMT-CA/pHCA/FA maintained good physical stability in the long term for 18 months. In addition, pharmacological experiments revealed that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA have an excellent safety profile and its anti-Alzheimer's disease effects are significantly improved compared to that of the binary co-amorphous systems of AP-OMT. Moreover, this study also found that reducing the pKa value of low molecular weight co-formers would affect the intermolecular interactions and improve the solubility of drugs in the ternary co-amorphous systems. In conclusion, we have successfully prepared ternary co-amorphous systems of AP-OMT-CA/pHCA/FA by amorphization technique, which improves the physicochemical properties of the binary co-amorphous systems of AP-OMT and anti-Alzheimer's disease activity in the Caenorhabditis elegans model. The mechanism for the influence of the pKa value of the co-formers on the physicochemical properties of the ternary co-amorphous system was preliminarily explored, providing theoretical guidance for the development of the ternary co-amorphous system.
Collapse
Affiliation(s)
- Xiaoping Fang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangyi Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Shenzhen Bao'an Traditional Chinese Medical Hospital, Shenzhen 518000, China
| | - Wenfeng Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
10
|
Shi Q, Wang Y, Moinuddin SM, Feng X, Ahsan F. Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance. AAPS PharmSciTech 2022; 23:259. [PMID: 36123515 DOI: 10.1208/s12249-022-02421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, co-amorphous solids have been used as a promising approach for delivering poorly water-soluble drugs. Co-amorphous solids, comprising pharmacologically relevant drug substances or excipients, improve physical stability, solubility, dissolution, and bioavailability compared with single amorphous ingredients. In this review, we have summarized recent advances in physical stability and in vitro and in vivo performances of co-amorphous solids. We have highlighted the role of molar ratio, molecular interaction, and mobility that affects the physical stability of co-amorphous solids. This review delves deep as to how co-amorphous solids affect the physicochemical properties in vitro and in vivo. We also described the challenges to the formulation of co-amorphous solids. A better understanding of the mechanisms of the physical stability, in vitro and in vivo performance of co-amorphous solids, and proper selection of the co-former is likely to expedite the development of robust co-amorphous-based pharmaceutical formulations and can address the challenges associated with the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Sakib M Moinuddin
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA.,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA
| | - Xiaodong Feng
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA
| | - Fakhrul Ahsan
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA. .,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA.
| |
Collapse
|
11
|
Kilpeläinen T, Ervasti T, Uurasjärvi E, Koistinen A, Ketolainen J, Korhonen O, Pajula K. Detecting different amorphous - amorphous phase separation patterns in co-amorphous mixtures with high resolution imaging FTIR spectroscopy. Eur J Pharm Biopharm 2022; 180:161-169. [PMID: 36122786 DOI: 10.1016/j.ejpb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
Abstract
Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form. In co-amorphous mixtures, phase separation needs to occur before there can be crystallization. The aim of this study was to devise a method to study amorphous-amorphous phase separation with high resolution imaging Fourier transform infrared (FTIR) spectroscopy with seven 1:1 molar ratio API-API binary mixtures being examined. The binary mixtures were amorphized by melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermodynamic properties (crystallization tendency, melting point (Tm) and Tg) of these mixtures were measured with differential scanning calorimetry (DSC) to verify the amorphization method and to assess the optimal storage temperature. The phase separation was examined with FTIR imaging in the transmission mode. Furthermore, measurements with two pure APIs were performed to ensure that the alterations occurring in the spectra were caused by phase separation not storage stress. In addition, the reproducibility of the imaging FTIR spectrometer was verified. The spectra were analyzed with principal component analysis (PCA) and a characteristic peak comparison method. Scatter-plots were produced from the amount of phase separated pixels in the measurement area as a way of visualizing the progress of phase separation. The results indicated that imaging with FTIR spectroscopy can produce reproducible results and the progress of phase separation can be detected as either a sigmoidal or as a start-to-finish linear pattern depending on the substances.
Collapse
Affiliation(s)
- Tuomas Kilpeläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Tuomas Ervasti
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Emilia Uurasjärvi
- SIB Labs, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Ketolainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Katja Pajula
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
12
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|
13
|
Recent Technologies for Amorphization of Poorly Water-Soluble Drugs. Pharmaceutics 2021; 13:pharmaceutics13081318. [PMID: 34452279 PMCID: PMC8399234 DOI: 10.3390/pharmaceutics13081318] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Amorphization technology has been the subject of continuous attention in the pharmaceutical industry, as a means to enhance the solubility of poorly water-soluble drugs. Being in a high energy state, amorphous formulations generally display significantly increased apparent solubility as compared to their crystalline counterparts, which may allow them to generate a supersaturated state in the gastrointestinal tract and in turn, improve the bioavailability. Conventionally, hydrophilic polymers have been used as carriers, in which the amorphous drugs were dispersed and stabilized to form polymeric amorphous solid dispersions. However, the technique had its limitations, some of which include the need for a large number of carriers, the tendency to recrystallize during storage, and the possibility of thermal decomposition of the drug during preparation. Therefore, emerging amorphization technologies have focused on the investigation of novel amorphous-stabilizing carriers and preparation methods that can improve the drug loading and the degree of amorphization. This review highlights the recent pharmaceutical approaches utilizing drug amorphization, such as co-amorphous systems, mesoporous particle-based techniques, and in situ amorphization. Recent updates on these technologies in the last five years are discussed with a focus on their characteristics and commercial potential.
Collapse
|
14
|
Valkama E, Haluska O, Lehto VP, Korhonen O, Pajula K. Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO. Int J Pharm 2021; 606:120902. [PMID: 34293468 DOI: 10.1016/j.ijpharm.2021.120902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023]
Abstract
Freeze drying is known to be able to produce an amorphous product, but this approach has been mostly used with water-based media. With APIs which are virtually water insoluble, a more appropriate freeze-drying medium would be an organic solvent. Little is known about this approach in terms of forming a stable freeze-dried amorphous product stabilized by small molecule excipient out of organic solvents. In the present study, freeze-drying of APIs from DMSO solutions was used to produce stable solid dispersions from binary mixtures of APIs containing at least one poorly water soluble or practically water-insoluble API. The developed freeze-drying method produced amorphous binary solid dispersions which remained amorphous for at least two days while the 13 best binary dispersions remained stable at room temperature for the entire study period of 127 days. Average residual DMSO levels in dried dispersions were 3.5% ± 1.6%. The developed method proved feasible in producing relatively stable amorphous solid dispersions from practically water insoluble drug compounds which could subsequently be used in further research purposes.
Collapse
Affiliation(s)
- Eetu Valkama
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ondřej Haluska
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Katja Pajula
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
15
|
Chen X, Li D, Zhang H, Duan Y, Huang Y. Co-amorphous systems of sinomenine with nonsteroidal anti-inflammatory drugs: A strategy for solubility improvement, sustained release, and drug combination therapy against rheumatoid arthritis. Int J Pharm 2021; 606:120894. [PMID: 34280485 DOI: 10.1016/j.ijpharm.2021.120894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune joint disorder that affects about 1% of the world population and may lead to severe disability and comorbidity. Despite breakthroughs in past decades to understand its pathogenesis and the development of transforming disease-modifying antirheumatic drugs, the symptoms of many patients are not substantially improved. Sinomenine (SIN), a natural alkaloid with poor solubility, has been used to treat RA in China for years because of its unique immunoregulative activity. However, its commercial hydrochloride form has a short half-time, which may cause huge fluctuations of blood drug concentration leading to severe adverse reactions. In this study, co-amorphous systems of SIN with three nonsteroidal anti-inflammatory drugs (NSAIDs), including indomethacin, naproxen, and sulindac, were prepared for the combination therapy, as well as the improvement of its aqueous solubility and controlled release. Each co-amorphous sample was characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), and Fourier transform infrared spectroscopy (FTIR). The CO2- and N+H stretching vibration in the three co-amorphous samples appears in FTIR spectra, suggesting the formation of salts between SIN and NSAIDs. SIN also exhibits sustained release rates in all three co-amorphous samples. These co-amorphous systems show excellent physicochemical stability because no recrystallization was observed at 25 °C and 75% relative humidity (RH) after four months. Our study suggests that SIN-NSAIDs co-amorphous systems represent an affordable and promising treatment against RA.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China; Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences Guangdong (Foshan) Branch, Foshan 528200, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China.
| |
Collapse
|
16
|
Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, In Vitro and In Vivo Performance, and New Formulation Strategies. Pharmaceutics 2021; 13:pharmaceutics13030389. [PMID: 33804159 PMCID: PMC7999207 DOI: 10.3390/pharmaceutics13030389] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Co-amorphous drug delivery systems (CAMS) are characterized by the combination of two or more (initially crystalline) low molecular weight components that form a homogeneous single-phase amorphous system. Over the past decades, CAMS have been widely investigated as a promising approach to address the challenge of low water solubility of many active pharmaceutical ingredients. Most of the studies on CAMS were performed on a case-by-case basis, and only a few systematic studies are available. A quantitative analysis of the literature on CAMS under certain aspects highlights not only which aspects have been of great interest, but also which future developments are necessary to expand this research field. This review provides a comprehensive updated overview on the current published work on CAMS using a quantitative approach, focusing on three critical quality attributes of CAMS, i.e., co-formability, physical stability, and dissolution performance. Specifically, co-formability, molar ratio of drug and co-former, preparation methods, physical stability, and in vitro and in vivo performance were covered. For each aspect, a quantitative assessment on the current status was performed, allowing both recent advances and remaining research gaps to be identified. Furthermore, novel research aspects such as the design of ternary CAMS are discussed.
Collapse
|
17
|
Raman imaging of amorphous-amorphous phase separation in small molecule co-amorphous systems. Eur J Pharm Biopharm 2020; 155:49-54. [PMID: 32795500 DOI: 10.1016/j.ejpb.2020.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/01/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022]
Abstract
Many new active pharmaceutical ingredients (API) undergoing development have low permeabilities or low aqueous solubilities. However, the amorphous state is usually more soluble than its crystalline counterpart. The amorphous state has a higher Gibb's free energy, which can improve the apparent solubility but decrease the stability since the amorphous state tends to transform to the more stable crystalline form. Before recrystallization, a co-amorphous binary mixture's ingredients have to undergo a phase separation. The aim of this study was to obtain a better understanding of the amorphous-amorphous phase separation in co-amorphous binary mixtures and test the suitability of imaging Raman spectroscopy for detecting this phenomenon. To study the phase separation, we prepared three different 50:50 mass ratio binary mixtures of APIs: paracetamol-terfenadine, (PAR-TRF), paracetamol-indomethacin (PAR-IMC) and terfenadine-indomethacin (TRF-IMC). The binary mixtures were amorphized with melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermal degradation was determined with a high performance liquid chromatography (HPLC) method to ensure that melt-quenching did not cause any thermal degradation of the molecules. Thermodynamic attributes (crystallization tendency, melting point (Tm) and Tg) were measured with differential scanning calorimetry (DSC) to ensure that the co-amorphous systems transformed to the amorphous state and remained amorphous after cooling and reheating. Phase separation was studied from the surface and cross-section (CS) with Raman imaging to examine if it occurred more on the surface than in the bulk. The Raman spectra were analyzed with principal component analysis (PCA) and Contour plots were produced from the PCA-score values to visualize concentration differences in the mixtures. The results showed that API vs API concentrations increased as a function of time in both surface and CS images before crystallization. This suggests that Raman imaging is a suitable technique to detect the phase separation phenomena in small molecule co-amorphous binary mixtures.
Collapse
|