1
|
Zhang Y, Wu Y, Schöneich C. The role of histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: Mechanistic studies. J Pharm Sci 2025; 114:1205-1213. [PMID: 39826841 DOI: 10.1016/j.xphs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood. Here, we investigate the formation of radical intermediates using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a probe. Interestingly, over the time course of our experiments histidine (His) is the only buffer that promotes significant radical production during Fe(III)-catalyzed decomposition of H₂O₂, in contrast to other common pharmaceutical buffers such as citrate, succinate, adipate, and 2-(N-morpholino)ethanesulfonic acid (MES). The critical role of His in these degradation reactions is attributed to its unique, higher affinity for Fe(II) as compared to Fe(III), facilitating the reduction of Fe(III) to Fe(II) and subsequent Fenton and/or Fenton-like reactions with H₂O₂.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
2
|
Hipper E, Diederichs T, Kaiser W, Lehmann F, Buske J, Hinderberger D, Garidel P. Visible light triggers the formation of reactive oxygen species in monoclonal antibody formulations. Int J Pharm 2024; 661:124392. [PMID: 38942184 DOI: 10.1016/j.ijpharm.2024.124392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Most monoclonal antibody formulations require the presence of a surfactant, such as polysorbate, to ensure protein stability. The presence of high concentrations of polysorbate have been shown to enhance photooxidation of certain protein drug products when exposed to visible light. The current literature, however, suggest that photooxidation of polysorbate only occurs when exposed to visible light in combination with UVA light. This is probable as peroxides present in polysorbate solutions can be cleaved homolytically in the UVA region. In the visible region, photooxidation is not expected to occur as cleavage of peroxides is not expected at these wavelengths. This report presents findings suggesting that the presence of one or more photosensitiser(s) in polysorbate must be a cause and is required to catalyse the aerobic oxidation of polysorbate solutions upon exposure to visible light. Our investigation aimed to clarify the mechanism(s) of polysorbate photooxidation and explore the kinetics and the identity of the generated radicals and their impact on monoclonal antibody (mAb) degradation. Our study reveals that when polysorbate solutions are exposed to visible light between 400 - 800 nm in the absence of proteins, discolouration, radical formation, and oxygen depletion occur. We discuss the initial formation of reactive species, most likely occurring directly after reaction of molecular oxygen, with the presence of a triplet state photosensitiser, which is generated by intersystem crossing of the excited singlet state. When comparing the photooxidation of PS20 and PS80 in varying quality grades, we propose that singlet oxygen possesses potential for reacting with unsaturated fatty acids in PS80HP, however, PS20HP itself exhibited no measurable oxidation under the tested conditions. The study's final part delves into the photooxidation behaviour of different PS grades, examining its influence on the integrity of a mAb in the formulation. Finally, we examined the effect of photooxidation on the integrity of monoclonal antibodies. Our findings show that the exposure to visible light in polysorbate-containing mAb solutions at high PS concentrations of 4 mg·ml-1 results in increased monoclonal antibody degradation, highlighting the need for cautious evaluation of the correct PS concentration to stabilise protein therapeutics.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Florian Lehmann
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
3
|
Lou H, Zhang Y, Kuczera K, Hageman MJ, Schöneich C. Molecular Dynamics Simulation of an Iron(III) Binding Site on the Fc Domain of IgG1 Relevant for Visible Light-Induced Protein Fragmentation. Mol Pharm 2024; 21:501-512. [PMID: 38128475 DOI: 10.1021/acs.molpharmaceut.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Molecular dynamics simulations were employed to investigate the interaction between Fe(III) and an iron-binding site composed of THR259, ASP252, and GLU261 on the Fc domain of an IgG1. The goal was to provide microscopic mechanistic information for the photochemical, iron-dependent site-specific oxidative fragmentation of IgG1 at THR259 reported in our previous paper. The distance between Fe(III) and residues of interest as well as the binding pocket size was examined for both protonated and deprotonated THR259. The Fe(III) binding free energy (ΔG) was estimated by using an umbrella sampling approach. The pKa shift of the THR259 hydroxyl group caused by the presence of nearby Fe(III) was estimated based on a thermodynamic cycle. The simulation results show that Fe(III) resides inside the proposed binding pocket and profoundly changes the pocket configuration. The ΔG values indicate that the pocket possesses a strong binding affinity for Fe(III). Furthermore, Fe(III) profoundly lowers the pKa value of the THR259 hydroxyl group by 5.4 pKa units.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|