1
|
Brand BA, Boer AJ, de Boer JN, Bozaoglu K, Morris K, Rossell S, Sommer IEC. Genetic variants in COMT and ESR1 genes shape treatment response to raloxifene in schizophrenia-spectrum disorders. Psychoneuroendocrinology 2025; 172:107274. [PMID: 39799793 DOI: 10.1016/j.psyneuen.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/06/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND/OBJECTIVE Raloxifene, a selective estrogen receptor modulator (SERM), may improve symptoms and cognition in schizophrenia spectrum disorders (SSD). Studies have shown inconsistent efficacy, especially in men with SSD. We assessed whether single nucleotide polymorphisms (SNPs) on genes involved in the pharmacodynamics (ESR1 and COMT) and pharmacokinetics (UGT1A8) of raloxifene can explain the heterogeneous treatment response to raloxifene augmentation in patients with SSD. METHODS We used a subsample of the participants of a previously published randomized controlled trial (RCT) on the effects of 12-week raloxifene augmentation on symptom severity in SSD. The subsample consisted of 83 participants (28 % female), of which 40 were randomized to receive raloxifene 120 mg/day and 43 to placebo. Saliva samples for DNA-analysis were collected at baseline, symptom severity was measured with the Positive and Negative Syndrome Scale (PANSS). Participants were genotyped for two SNPs on ESR1, one on UGT1A8, and four on COMT using the Agena MassArray system. Linear mixed-effect models were used to assess the effect of treatment-by-genotype as the primary analysis and treatment-by-genotype-by-sex as a secondary analysis. RESULTS We found interactions of treatment-by-genotype for ESR1 rs2234693 (χ2 = 6.32, p < 0.05), and COMT rs4818 (χ2 = 4.08, p < 0.05), indicating that for these polymorphisms, the effect of raloxifene differed per genotype. Pairwise comparisons revealed a beneficial effect of raloxifene on general symptom severity in participants with ESR1 rs2234693 TT genotype but not CT and CC genotypes (LSM -3.19 [95 % CI -6.38-0.00]; p = 0.050). Furthermore, mean change in positive symptom severity was greater with raloxifene in participants with COMT rs4818 CG genotype but not CC genotype compared to placebo (LSM -2.18 [-3.93 to -0.43]; p = 0.016). Secondary sex-specific analysis indicated an interaction effect of treatment-by-genotype-by-sex for COMT rs737865 on total (χ2 = 10.90, p < 0.05) and negative symptom severity (χ2 = 11.99, p < 0.05). In men, genotype CT but not TT was associated with beneficial effects of raloxifene on total symptoms (LSM -5.46 [-10.43 to -0.48]; p = 0.032), whereas in women, genotype TT but not CT was associated with a beneficial effect of raloxifene on negative symptoms (LSM -7.80 [-12.70 to -2.89]; p = 0.005). CONCLUSION Our results suggest that treatment response to raloxifene may depend on ESR1 and COMT gene variants, while UGT1A8 SNP variation did not affect treatment response. These findings provide evidence that genetic variants may explain the heterogeneous response to raloxifene augmentation in SSD, suggesting that raloxifene may have beneficial effects in genetic subgroups of SSD patients. Our findings warrant further research on the pharmacogenetic effects of raloxifene in SSD.
Collapse
Affiliation(s)
- Bodyl A Brand
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry, University of Oxford, UK.
| | - Anne Jetske Boer
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Janna N de Boer
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands; Karakter Child and Adolescent psychiatry, Center Young Children, Nijmegen, the Netherlands
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kim Morris
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Susan Rossell
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Iris E C Sommer
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Nikolaus S, Beu M, Wittsack HJ, Müller-Lutz A, Antke C, Hautzel H, Mori Y, Mamlins E, Antoch G, Müller HW. GABAergic and glutamatergic effects on nigrostriatal and mesolimbic dopamine release in the rat. Rev Neurosci 2020; 31:569-588. [PMID: 32619197 DOI: 10.1515/revneuro-2019-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
In this review, a series of experiments is presented, in which γ-amino butyric acid (GABA)ergic and glutamatergic effects on dopamine function in the rat nigrostriatal and mesolimbic system was systematically assessed after pharmacological challenge with GABAA receptor (R) and and N-methyl d-aspartate (NMDA)R agonists and antagonists. In these studies, [123I]iodobenzamide binding to the D2/3R was mesured in nucleus accumbens (NAC), caudateputamen (CP), substantia nigra/ventral tegmental area (SN/VTA), frontal (FC), motor (MC) and parietal cortex (PC) as well as anterior (aHIPP) and posterior hippocampus (pHIPP) with small animal SPECT in baseline and after injection of either the GABAAR agonist muscimol (1 mg/kg), the GABAAR antagonist bicuculline (1 mg/kg), the NMDAR agonist d-cycloserine (20 mg/kg) or the NMDAR antagonist amantadine (40 mg/kg). Muscimol reduced D2/3R binding in NAC, CP, SN/VTA, THAL and pHIPP, while, after amantadine, decreases were confined to NAC, CP and THAL. In contrast, d-cycloserine elevated D2/3R binding in NAC, SN/VTA, THAL, frontal cortex, motor cortex, PC, aHIPP and pHIPP, while, after bicuculline, increases were confined to CP and THAL. Taken together, similar actions on regional dopamine levels were exterted by the GABAAR agonist and the NMDAR antagonist on the one side and by the GABAAR antagonist and the NMDAR agonist on the other, with agonistic action, however, affecting more brain regions. Thereby, network analysis suggests different roles of GABAARs and NMDARs in the mediation of nigrostriatal, nigrothalamocortical and mesolimbocortical dopamine function.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-40225, Essen, Germany
| | - Yuriko Mori
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
3
|
Huang M, Kwon S, Rajagopal L, He W, Meltzer HY. 5-HT 1A parital agonism and 5-HT 7 antagonism restore episodic memory in subchronic phencyclidine-treated mice: role of brain glutamate, dopamine, acetylcholine and GABA. Psychopharmacology (Berl) 2018; 235:2795-2808. [PMID: 30066135 DOI: 10.1007/s00213-018-4972-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
RATIONALE The effect of atypical antipsychotic drugs (AAPDs), e.g., lurasidone, to improve cognitive impairment associated with schizophrenia (CIAS), has been suggested to be due, in part, to enhancing release of dopamine (DA), acetylcholine (ACh), and glutamate (Glu) in cortex and hippocampus. RESULTS The present study found acute lurasidone reversed the cognitive deficit in novel object recognition (NOR) in subchronic (sc) phencyclidine (PCP)-treated mice, an animal model for CIAS. This effect of lurasidone was blocked by pretreatment with the 5-HT1AR antagonist, WAY-100635, or the 5-HT7R agonist, AS 19. Lurasidone significantly increased medial prefrontal cortex (mPFC) ACh, DA, and Glu efflux, all of which were blocked by WAY-100635, with similar effects in the dorsal striatum (dSTR), except for the absence of an effect on Glu increase. AS 19 inhibited Glu, but not DA efflux, in the dSTR. The selective 5-HT7R antagonist, SB-26970, increased mPFC DA, 5-HT, Glu, and, importantly, also GABA efflux and striatal DA, NE, 5-HT, and Glu efflux, indicating tonic inhibition of the release of these neurotransmitters by 5-HT7R stimulation. These results provide new evidence that GABA release in the mPFC is tonically inhibited by 5-HT7R stimulation and suggest that a selective 5-HT7R antagonist might be clinically useful to enhance cortical GABAergic release. All SB-269970 effects were blocked by AS 19 or WAY-100635, suggesting 5-HT1AR agonism is necessary for the release of these neurotransmitters by SB-269970. Lurasidone increased ACh, DA, and NE but not Glu efflux in mPFC and dSTR DA and Glu efflux in 5-HT7 KO mice. CONCLUSION We conclude that lurasidone-induced Glu efflux in mPFC requires 5-HT7R antagonism while its effects on cortical ACh and DA efflux are mainly due to 5-HT1AR stimulation.
Collapse
Affiliation(s)
- Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA
| | - Sunoh Kwon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA.,K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Klemann CJHM, Xicoy H, Poelmans G, Bloem BR, Martens GJM, Visser JE. Physical Exercise Modulates L-DOPA-Regulated Molecular Pathways in the MPTP Mouse Model of Parkinson's Disease. Mol Neurobiol 2018; 55:5639-5657. [PMID: 29019056 PMCID: PMC5994219 DOI: 10.1007/s12035-017-0775-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.
Collapse
Affiliation(s)
- Cornelius J H M Klemann
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Helena Xicoy
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jasper E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| |
Collapse
|
5
|
Nikolaus S, Wittsack HJ, Beu M, Antke C, De Souza Silva MA, Wickrath F, Müller-Lutz A, Huston JP, Antoch G, Müller HW, Hautzel H. GABAergic Control of Nigrostriatal and Mesolimbic Dopamine in the Rat Brain. Front Behav Neurosci 2018; 12:38. [PMID: 29593508 PMCID: PMC5862131 DOI: 10.3389/fnbeh.2018.00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose: The present study assessed the effects of the GABAA receptor (R) agonist muscimol (MUS), and the GABAAR antagonist bicuculline (BIC) on neocortical and subcortical radioligand binding to dopamine D2/3Rs in relation to motor and exploratory behaviors in the rat. Methods: D2/3R binding was measured with small animal SPECT in baseline and after challenge with either 1 mg/kg MUS or 1 mg/kg BIC, using [123I]IBZM as radioligand. Motor/exploratory behaviors were assessed for 30 min in an open field prior to radioligand administration. Anatomical information was gained with a dedicated small animal MRI tomograph. Based on the Paxinos rat brain atlas, regions of interest were defined on SPECT-MRI overlays. Estimations of the binding potentials in baseline and after challenges were obtained by computing ratios of the specifically bound compartments to the cerebellar reference region. Results: After MUS, D2/3R binding was significantly reduced in caudateputamen, nucleus accumbens, thalamus, substania nigra/ventral tegmental area, and posterior hippocampus relative to baseline (0.005 ≤ p ≤ 0.012). In all these areas, except for the thalamus, D2/3R binding was negatively correlated with grooming in the first half and positively correlated with various motor/exploratory behaviors in the second half of the testing session. After BIC, D2/3R binding was significantly elevated in caudateputamen (p = 0.022) and thalamus (p = 0.047) relative to baseline. D2/3R binding in caudateputamen and thalamus was correlated negatively with sitting duration and sitting frequency and positively with motor/exploratory behaviors in the first half of the testing time. Conclusions: Findings indicate direct GABAergic control over nigrostriatal and mesolimbic dopamine levels in relation to behavioral action. This may be of relevance for neuropsychiatric conditions such as anxiety disorder and schizophrenia, which are characterized by both dopaminergic and GABAergic dysfunction.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maria A De Souza Silva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Frijthof Wickrath
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Madularu D, Kumaragamage C, Mathieu AP, Kulkarni P, Rajah MN, Gratton AP, Near J. A chronic in situ coil system adapted for intracerebral stimulation during MRI in rats. J Neurosci Methods 2017; 284:85-95. [DOI: 10.1016/j.jneumeth.2017.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
7
|
Neurochemical arguments for the use of dopamine D 4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav 2017; 157:16-23. [DOI: 10.1016/j.pbb.2017.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
8
|
Bacher LF, Retz S, Lindon C, Bell MA. Intraindividual and Interindividual Differences in Spontaneous Eye Blinking: Relationships to Working Memory Performance and Frontal EEG Asymmetry. INFANCY 2017; 22:150-170. [PMID: 28286427 PMCID: PMC5343288 DOI: 10.1111/infa.12164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate and timing of spontaneous eye blinking (SB) may be used to explore mechanisms of cognitive activity in infancy. In particular, SB rate is believed to reflect some dimensions of dopamine function; therefore, we hypothesized that SB rate would relate to working memory performance and to frontal electroencephalogram (EEG) asymmetry. Forty, 10-mo-old infants completed an A-not-B task while SB and EEG were measured throughout. We found that SB rate varied across phases of the task, variability in SB rate was positively related to working memory performance, and frontal EEG asymmetry was related to individual differences in the rate of SB. Results provide indirect, but convergent support for the hypothesis that SB rate reflects dopamine function early in human development. As such, these results have implications for understanding the tonic and phasic effects of dopamine on cognitive activity early in human development.
Collapse
|
9
|
Nikolaus S, Beu M, de Souza Silva MA, Huston JP, Antke C, Müller HW, Hautzel H. GABAergic control of neostriatal dopamine D 2 receptor binding and behaviors in the rat. Pharmacol Biochem Behav 2016; 153:76-87. [PMID: 28012732 DOI: 10.1016/j.pbb.2016.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE The present study assessed the influence of the GABAA receptor agonist muscimol and the GABAA receptor antagonist bicuculline on neostriatal dopamine D2 receptor binding in relation to motor and exploratory behaviors in the rat. METHODS D2 receptor binding was measured in baseline and after challenge with either 1mg/kg muscimol or 1mg/kg bicuculline. In additional rats, D2 receptor binding was measured after injection of saline. After treatment with muscimol, bicuculline and saline, motor and exploratory behaviors were assessed for 30min in an open field prior to administration of [123I]S-3-iodo-N-(1-ethyl-2-pyrrolidinyl)methyl-2-hydroxy-6-methoxybenzamide ([123I]IBZM). For baseline and challenges, striatal equilibrium ratios (V3″) were computed as estimation of the binding potential. RESULTS Muscimol but not bicuculline reduced D2 receptor binding relative to baseline and to saline. Travelled distance, duration of rearing and frequency of rearing and of head-shoulder motility were lower after muscimol compared to saline. In contrast, duration of rearing and grooming and frequency of rearing, head-shoulder motility and grooming were elevated after bicuculline relative to saline. Moreover, bicuculline decreased duration of sitting and head-shoulder motility. CONCLUSIONS The muscimol-induced decrease of motor/exploratory behaviors can be related to an elevation of striatal dopamine levels. In contrast, bicuculline is likely to elicit a decline of synaptic dopamine, which, however, is compensated by the time of D2 receptor imaging studies. The results indicate direct GABAergic control over D2 receptor binding in the neostriatum in relation to behavioral action, and, thus, complement earlier pharmacological studies.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany.
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Maria Angelica de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Adolescent GBR12909 exposure induces oxidative stress, disrupts parvalbumin-positive interneurons, and leads to hyperactivity and impulsivity in adult mice. Neuroscience 2016; 345:166-175. [PMID: 27890827 DOI: 10.1016/j.neuroscience.2016.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 10/15/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
Abstract
The adolescent period in mammals is a critical period of brain maturation and thus represents a time of susceptibility to environmental insult, e.g. psychosocial stress and/or drugs of abuse, which may cause lasting impairments in brain function and behavior and even precipitate symptoms in at-risk individuals. One likely effect of these environmental insults is to increase oxidative stress in the developing adolescent brain. Indeed, there is increasing evidence that redox dysregulation plays an important role in the development of schizophrenia and other neuropsychiatric disorders and that GABA interneurons are particularly susceptible to alterations in oxidative stress. The current study sought to model this adolescent neurochemical "stress" by exposing mice to the dopamine transporter inhibitor GBR12909 (5mg/kg; IP) during adolescence (postnatal day 35-44) and measuring the resultant effect on locomotor behavior and probabilistic reversal learning as well as GABAergic interneurons and oxidative stress in adulthood. C57BL6/J mice exposed to GBR12909 showed increased activity in a novel environment and increased impulsivity as measured by premature responding in the probabilistic reversal learning task. Adolescent GBR12909-exposed mice also showed decreased parvalbumin (PV) immunoreactivity in the prefrontal cortex, which was accompanied by increased oxidative stress in PV+ neurons. These findings indicate that adolescent exposure to a dopamine transporter inhibitor results in loss of PV in GABAergic interneurons, elevations in markers of oxidative stress, and alterations in behavior in adulthood.
Collapse
|
11
|
Kitta T, Mitsui T, Kanno Y, Chiba H, Moriya K, Yoshioka M, Shinohara N. Differences in neurotransmitter systems of ventrolateral periaqueductal gray between the micturition reflex and nociceptive regulation: An in vivo microdialysis study. Int J Urol 2016; 23:593-8. [PMID: 27062256 DOI: 10.1111/iju.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/03/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To elucidate the possible involvement of glutamate and serotonin (5-hydroxytryptamine) neurons in the ventrolateral midbrain periaqueductal gray during noxious stimulation. METHODS The study was carried out by evoking a noxious stimulation by acetic acid in an animal model of cystitis. Changes in glutamate and 5-hydroxytryptamine in the periaqueductal gray during the micturition reflex and acetic acid-induced cystitis were determined using in vivo microdialysis combined with cystometry in rats. RESULTS Extracellular glutamate levels slightly, but significantly, increased during the micturition reflex induced by saline infusion into the bladder. Intravesical infusion of acetic acid facilitated the micturition reflex characterized by increases in voiding pressure and decreases in the intercontraction interval. Glutamate levels were markedly increased by acetic acid, and this enhancement was sustained for at least 3 h. 5-Hydroxytryptamine levels, which were not altered during the micturition reflex, were increased after intravesical infusion of acetic acid. CONCLUSION The results suggest that periaqueductal gray glutamate and 5-hydroxytryptamine neurons differentially participate in the modulation of both nociception and the micturition reflex. Furthermore, periaqueductal gray 5-hydroxytryptamine levels appear to reflect the nociceptive stimuli.
Collapse
Affiliation(s)
- Takeya Kitta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiko Mitsui
- Department of Urology, Yamanashi University, Yamanashi, Japan
| | - Yukiko Kanno
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Chiba
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
12
|
Chiba H, Mitsui T, Kitta T, Ohmura Y, Moriya K, Kanno Y, Yoshioka M, Shinohara N. The role of serotonergic mechanism in the rat prefrontal cortex for controlling the micturition reflex: An in vivo microdialysis study. Neurourol Urodyn 2015; 35:902-907. [DOI: 10.1002/nau.22843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/13/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Chiba
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Takahiko Mitsui
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Takeya Kitta
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Yu Ohmura
- Department of Neuropharmacology; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Yukiko Kanno
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| |
Collapse
|
13
|
Carli M, Invernizzi RW. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 2014; 8:58. [PMID: 24966814 PMCID: PMC4052821 DOI: 10.3389/fncir.2014.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023] Open
Abstract
Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mirjana Carli
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| | - Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| |
Collapse
|
14
|
Pezze M, McGarrity S, Mason R, Fone KC, Bast T. Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 2014; 34:7931-46. [PMID: 24899715 PMCID: PMC4044251 DOI: 10.1523/jneurosci.3450-13.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022] Open
Abstract
Attentional deficits are core symptoms of schizophrenia, contributing strongly to disability. Prefrontal dysfunction has emerged as a candidate mechanism, with clinical evidence for prefrontal hypoactivation and disinhibition (reduced GABAergic inhibition), possibly reflecting different patient subpopulations. Here, we tested in rats whether imbalanced prefrontal neural activity impairs attention. To induce prefrontal hypoactivation or disinhibition, we microinfused the GABA-A receptor agonist muscimol (C4H6N2O2; 62.5, 125, 250 ng/side) or antagonist picrotoxin (C30H34O13; 75, 150, 300 ng/side), respectively, into the medial prefrontal cortex. Using the five-choice serial reaction time (5CSRT) test, we showed that both muscimol and picrotoxin impaired attention (reduced accuracy, increased omissions). Muscimol also impaired response control (increased premature responses). In addition, muscimol dose dependently reduced open-field locomotor activity, whereas 300 ng of picrotoxin caused locomotor hyperactivity; sensorimotor gating (startle prepulse inhibition) was unaffected. Therefore, infusion effects on the 5CSRT test can be dissociated from sensorimotor effects. Combining microinfusions with in vivo electrophysiology, we showed that muscimol inhibited prefrontal firing, whereas picrotoxin increased firing, mainly within bursts. Muscimol reduced and picrotoxin enhanced bursting and both drugs changed the temporal pattern of bursting. Picrotoxin also markedly enhanced prefrontal LFP power. Therefore, prefrontal hypoactivation and disinhibition both cause attentional deficits. Considering the electrophysiological findings, this suggests that attention requires appropriately tuned prefrontal activity. Apart from attentional deficits, prefrontal disinhibition caused additional neurobehavioral changes that may be relevant to schizophrenia pathophysiology, including enhanced prefrontal bursting and locomotor hyperactivity, which have been linked to psychosis-related dopamine hyperfunction.
Collapse
Affiliation(s)
- Marie Pezze
- School of Psychology, Neuroscience@Nottingham, and
| | | | - Rob Mason
- Neuroscience@Nottingham, and School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kevin C Fone
- Neuroscience@Nottingham, and School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Tobias Bast
- School of Psychology, Neuroscience@Nottingham, and
| |
Collapse
|
15
|
Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW. Brain γ-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 2014; 39:1921-32. [DOI: 10.1111/ejn.12485] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Dave J. Hayes
- Toronto Western Research Institute; Toronto Western Hospital and Division of Neurosurgery; University of Toronto; Toronto ON Canada
- Mind, Brain Imaging and Neuroethics; Institute of Mental Health Research; University of Ottawa; Ottawa ON Canada
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Bianca Jupp
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Steve J. Sawiak
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Wolfson Brain Imaging Centre; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
| | - Emiliano Merlo
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | | | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychiatry; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| |
Collapse
|
16
|
Agnoli L, Mainolfi P, Invernizzi RW, Carli M. Dopamine D1-like and D2-like receptors in the dorsal striatum control different aspects of attentional performance in the five-choice serial reaction time task under a condition of increased activity of corticostriatal inputs. Neuropsychopharmacology 2013; 38:701-14. [PMID: 23232445 PMCID: PMC3671986 DOI: 10.1038/npp.2012.236] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the interaction between the corticostriatal glutamatergic afferents and dopamine D1-like and D2-like receptors in the dorsomedial striatum (dm-STR) in attention and executive response control in the five-choice serial reaction time (5-CSRT) task. The competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) injected in the mPFC impaired accuracy and increased premature and perseverative responding, raising GLU, DA, and GABA release in the dm-STR. The D1-like antagonist SCH23390 injected in the dm-STR reversed the CPP-induced accuracy deficit but did not affect the increase in perseverative responding. In contrast, the D2-like antagonist haloperidol injected in the dm-STR reduced the CPP-induced increase in perseverative responding but not the accuracy deficit. The different roles of dorsal striatal D1-like and D2-like receptor were further supported by the finding that activation of D1-like receptor in the dm-STR by SKF38393 impaired accuracy but not perseverative responding while the D2-like agonist quinpirole injected in the dm-STR increased perseverative responding but did not affect accuracy. These findings suggest that integration of cortical information by D1-like receptors in the dm-STR is a key mechanism of the input selection process of attention while the integration of corticostriatal signals by D2-like receptors preserves the ability to switch from one act/response to the next in a complex motor sequence, thus providing for behavioral flexibility.
Collapse
Affiliation(s)
- Laura Agnoli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Pierangela Mainolfi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Roberto W Invernizzi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Mirjana Carli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy,Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano 20156, Italy. Tel: +39 0239014466, Fax: +39 023546277, E-mail:
| |
Collapse
|
17
|
Murphy ER, Fernando ABP, Urcelay GP, Robinson ESJ, Mar AC, Theobald DEH, Dalley JW, Robbins TW. Impulsive behaviour induced by both NMDA receptor antagonism and GABAA receptor activation in rat ventromedial prefrontal cortex. Psychopharmacology (Berl) 2012; 219:401-10. [PMID: 22101355 PMCID: PMC3249210 DOI: 10.1007/s00213-011-2572-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/03/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE Previous work has demonstrated a profound effect of N-methyl-D: -aspartic acid receptor (NMDAR) antagonism in the infralimbic cortex (IL) to selectively elevate impulsive responding in a rodent reaction time paradigm. However, the mechanism underlying this effect is unclear. OBJECTIVES This series of experiments investigated the pharmacological basis of this effect in terms of excitatory and inhibitory neurotransmission. We tested several pharmacological mechanisms that might produce the effect of NMDAR antagonism via disruption or dampening of IL output. METHODS Drugs known to affect brain GABA or glutamate function were tested in rats pre-trained on a five-choice serial reaction time task (5-CSRTT) following either their systemic administration or direct administration into the IL. RESULTS Systemic lamotrigine administration (15 mg/kg), which attenuates excess glutamate release, did not counteract the ability of the intra-IL NMDAR antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-L: -phosphonic acid ((R)-CPP) to increase premature responding on the 5-CSRTT. Putative elevation of local extracellular glutamate via intra-IL infusions of the selective glutamate reuptake inhibitor DL: -threo-β-benzyloxyaspartate as well as local α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonism also had no effect on this task. However, intra-IL infusions of the GABA(A) receptor agonist muscimol produced qualitatively but not quantitatively comparable increases in impulsive responding to those elicited by (R)-CPP. Moreover, the GABA(A) receptor antagonist bicuculline blocked the increase in impulsivity produced by (R)-CPP when infused in the IL. CONCLUSIONS These findings implicate glutamatergic and GABAergic mechanisms in the IL in the expression of impulsivity and suggest that excessive glutamate release may not underlie increased impulsivity induced by local NMDA receptor antagonism.
Collapse
Affiliation(s)
- Emily R. Murphy
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Anushka B. P. Fernando
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Gonzalo P. Urcelay
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Emma S. J. Robinson
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Adam C. Mar
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - David E. H. Theobald
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ UK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| |
Collapse
|
18
|
Enomoto T, Tse MT, Floresco SB. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 2011; 69:432-41. [PMID: 21146155 DOI: 10.1016/j.biopsych.2010.09.038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. METHODS We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. RESULTS Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. CONCLUSIONS These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia.
Collapse
Affiliation(s)
- Takeshi Enomoto
- Department of Psychology and Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|
19
|
Yoo JH, Lee HK, Kim HC, Lee SY, Jang CG. GABAAreceptors mediate the attenuating effects of a 5-HT3receptor antagonist on methamphetamine-induced behavioral sensitization in mice. Synapse 2010; 64:274-9. [DOI: 10.1002/syn.20726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Kitta T, Matsumoto M, Tanaka H, Mitsui T, Yoshioka M, Nonomura K. GABAergic mechanism mediated via D1receptors in the rat periaqueductal gray participates in the micturition reflex: anin vivomicrodialysis study. Eur J Neurosci 2008; 27:3216-25. [DOI: 10.1111/j.1460-9568.2008.06276.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 2008; 90:226-35. [PMID: 18508116 DOI: 10.1016/j.pbb.2008.04.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
Previous experimental studies have shown that the prefrontal cortex (PFC) regulates the activity of the nucleus accumbens (NAc), and in particular the release of dopamine in this area of the brain. In the present report we review recent microinjections/microdialysis studies from our laboratory on the effects of stimulation/blockade of dopamine and glutamate receptors in the PFC that modulate dopamine, and also acetylcholine release in the NAc. Stimulation of prefrontal D2 dopamine receptors, but not group I mGlu glutamate receptors, reduces the release of dopamine and acetylcholine in the NAc and spontaneous motor activity. This inhibitory role of prefrontal D2 receptors is not changed by acute systemic injections of the NMDA antagonist phencyclidine. On the other hand, the blockade of NMDA receptors in the PFC increases the release of dopamine and acetylcholine in the NAc as well as motor activity which suggests that the hypofunction of prefrontal NMDA receptors is able to produce the neurochemical and behavioural changes associated with a dysfunction of the corticolimbic circuit. We suggest here that dopamine and glutamate receptors are, in part, segregated in specific cellular circuits in the PFC. Thus, the stimulation/blockade of these receptors would have a different net impact on PFC output projections to regulate dopamine and acetylcholine release in the NAc and in guided behaviour. Finally, it is speculated that environmental enrichment might produce plastic changes that modify the functional interaction between the PFC and the NAc in both physiological and pathological conditions.
Collapse
|
22
|
Chen YI, Ren J, Wang FN, Xu H, Mandeville JB, Kim Y, Rosen BR, Jenkins BG, Hui KKS, Kwong KK. Inhibition of stimulated dopamine release and hemodynamic response in the brain through electrical stimulation of rat forepaw. Neurosci Lett 2008; 431:231-5. [PMID: 18178315 PMCID: PMC2254524 DOI: 10.1016/j.neulet.2007.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/20/2007] [Accepted: 11/24/2007] [Indexed: 01/24/2023]
Abstract
The subcortical response to peripheral somatosensory stimulation is not well studied. Prior literature suggests that somatosensory stimulation can affect dopaminergic tone. We studied the effects of electrical stimulation near the median nerve on the response to an amphetamine-induced increase in synaptic dopamine. We applied the electrical stimulation close to the median nerve 20 min after administration of 3mg/kg amphetamine. We used fMRI and microdialysis to measure markers of dopamine (DA) release, together with the release of associated neurotransmitters of striatal glutamate (Glu) and gamma-aminobutyric acid (GABA). Changes in cerebral blood volume (CBV), a marker used in fMRI, indicate that electrical stimulation significantly attenuated increased DA release (due to AMPH) in the striatum, thalamus, medial prefrontal and cingulate cortices. Microdialysis showed that electrical stimulation increased Glu and GABA release and attenuated the AMPH-enhanced DA release. The striatal DA dynamics correlated with the CBV response. These results demonstrate that electrical stimulation near the median nerve activates Glu/GABA release, which subsequently attenuate excess striatal DA release. These data provide evidence for physiologic modulation caused by electroacupuncture at points near the median nerve.
Collapse
Affiliation(s)
- Y Iris Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Adrenarche, the prepubertal onset of adrenal production of dehydroepiandrosterone sulfate (DHEAS), is a distinctive aspect of the human life course. Yet its evolutionary origins remain unexplained. Production of DHEAS is associated with the development of the zona reticularis, a novel histological layer within the adrenal gland, derived from the fetal adrenal gland, and associated with primates more generally. Evidence that DHEAS is a neurosteroid, together with the fact that increases in DHEAS parallel patterns of cortical maturation from approximately age 6 years to the mid-20s, suggests that DHEAS may play an important role in extended brain maturation among humans. DHEAS has demonstrated effects on mood in humans, and acts at neuron receptor sites. I suggest three ways in which DHEAS may play a role in human brain maturation: 1) increasing activity of the amgydala; 2) increasing activity of the hippocampus; and 3) promoting synaptogenesis within the cortex. I propose that associated changes in fearfulness and anxiety, and memory, could act to increase social interaction with nonfamiliar individuals and shape cognitive development. Comparison with the African apes suggests that the timing of adrenarche in chimpanzees may be similar to that in humans, though the full course of age-related changes in DHEAS and their relationship to reproductive and brain maturation are not clear. The role of DHEAS as a physiological mechanism supporting increased brain development, extended life span, and decreased sexual dimorphism is most compatible with Kaplan et al.'s (2000) theory of the evolution of human life history and intergenerational transfers.
Collapse
Affiliation(s)
- Benjamin Campbell
- Department of Anthropology, Boston University, Boston, Massachusetts 02215, USA.
| |
Collapse
|
24
|
Schechter LE, Ring RH, Beyer CE, Hughes ZA, Khawaja X, Malberg JE, Rosenzweig-Lipson S. Innovative approaches for the development of antidepressant drugs: current and future strategies. NeuroRx 2006; 2:590-611. [PMID: 16489368 PMCID: PMC1201318 DOI: 10.1602/neurorx.2.4.590] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Depression is a highly debilitating disorder that has been estimated to affect up to 21% of the world population. Despite the advances in the treatment of depression with selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), there continue to be many unmet clinical needs with respect to both efficacy and side effects. These needs range from efficacy in treatment resistant patients, to improved onset, to reductions in side effects such as emesis or sexual dysfunction. To address these needs, there are numerous combination therapies and novel targets that have been identified that may demonstrate improvements in one or more areas. There is tremendous diversity in the types of targets and approaches being taken. At one end of a spectrum is combination therapies that maintain the benefits associated with SSRIs but attempt to either improve efficacy or reduce side effects by adding additional mechanisms (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2C, alpha-2A). At the other end of the spectrum are more novel targets, such as neurotrophins (BDNF, IGF), based on recent findings that antidepressants induce neurogenesis. In between, there are many approaches that range from directly targeting serotonin receptors (5-HT2C, 5-HT6) to targeting the multiplicity of potential mechanisms associated with excitatory (glutamate, NMDA, mGluR2, mGluR5) or inhibitory amino acid systems (GABA) or peptidergic systems (neurokinin 1, corticotropin-releasing factor 1, melanin-concentrating hormone 1, V1b). The present review addresses the most exciting approaches and reviews the localization, neurochemical and behavioral data that provide the supporting rationale for each of these targets or target combinations.
Collapse
Affiliation(s)
- Lee E Schechter
- Discovery Neuroscience, Wyeth Research, CN 8000, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee BY, Ban JY, Seong YH. Chronic stimulation of GABAA receptor with muscimol reduces amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical cells. Neurosci Res 2005; 52:347-56. [PMID: 15896866 DOI: 10.1016/j.neures.2005.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 03/28/2005] [Accepted: 04/15/2005] [Indexed: 12/20/2022]
Abstract
The present study was performed to examine how the stimulation of gamma-aminobutyric acid (GABA) receptor affects amyloid beta protein (25-35) (Abeta (25-35)), a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. Abeta (25-35) produced a concentration-dependent reduction of cell viability, which was significantly reduced by (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801), an N-methyl-d-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca(2+) channel blocker, and N(G)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor. Pretreatment with muscimol, a GABAA receptor agonist, over a concentration range of 0.1-10microM 24h before the treatment with 10microM Abeta (25-35) showed concentration-dependent inhibition on the Abeta (25-35)-induced neuronal apoptotic death. However, baclofen (1 and 10microM), a GABAB receptor agonist, failed to inhibit the Abeta (25-35)-induced neuronal death. In addition, pretreatment with muscimol (1microM) for 24h inhibited the Abeta (25-35) (10microM)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)]c) and glutamate release, generation of reactive oxygen species (ROS), and caspase-3 activity in cultured neurons. These neuroprotective effects of muscimol (1microM) were completely blocked by the simultaneous treatment with 10microM bicuculline, a GABAA receptor antagonist, indicating that the protective effects of muscimol were due to GABAA receptor stimulation. When, however, treated just 15min before the treatment with Abeta (25-35), muscimol (1microM) did not show any protective effect against Abeta (25-35) (10microM)-induced neurotoxicity in cultured neurons. These results suggest that the chronic activation of GABAA receptor may ameliorate Abeta-induced neurotoxicity by interfering with the increase of [Ca(2+)]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.
Collapse
Affiliation(s)
- Bo Young Lee
- College of Veterinary Medicine and Research Institute of Herbal Medicine, Chungbuk National University, 12 Gaesin-dong, Heungduk-Gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | |
Collapse
|
26
|
Matsumoto M, Togashi H, Kaku A, Kanno M, Tahara K, Yoshioka M. Cortical GABAergic regulation of dopaminergic responses to psychological stress in the rat dorsolateral striatum. Synapse 2005; 56:117-21. [PMID: 15729738 DOI: 10.1002/syn.20131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was undertaken to examine the possible involvement of cortical gamma-aminobutyric acid (GABA) neuronal mechanisms in the regional differences of dopamine (DA) response to psychological stress: contextual fear conditioning (CFC) in the rat prefrontal cortex (PFC) and dorsolateral striatum (DLS). Rats that received five footshocks (shock intensity, 0.5 mA; shock duration, 2 sec) were subjected to CFC and dynamic changes in DA and GABA in both PFC and DLS were examined using dual-probe microdialysis. Extracellular levels of DA in the PFC were enhanced during exposure to CFC, whereas the levels in the DLS were not affected by this stimulus. Extracellular levels of GABA in the PFC, but not in the DLS, were markedly enhanced by CFC. Freezing behavior observed during exposure to CFC was attenuated by the GABA(A) receptor antagonist bicuculline (10(-3) M), which was perfused into the PFC. Intracortical application of bicuculline (10(-3) M) furthermore caused sustained increases in DA levels in the DLS by CFC. These data suggest that cortical GABA(A) receptors contribute to modulation of DA release in the DLS in response to CFC. Thus, the GABAergic neuronal system in the PFC appears to play a key role in the regional differences of the DAergic response to psychological stress.
Collapse
Affiliation(s)
- Machiko Matsumoto
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Fuchs RA, Evans KA, Parker MP, See RE. Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J Neurosci 2005; 24:6600-10. [PMID: 15269272 PMCID: PMC6729870 DOI: 10.1523/jneurosci.1924-04.2004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Orbitofrontal cortex (OFC) damage elicits impulsivity and perseveration, and impairments in OFC function may underlie compulsive drug seeking in cocaine users. To test this hypothesis, we assessed the effects of fiber-sparing lesions or functional inactivation of OFC subregions on cocaine seeking in rats. Rats were trained to lever press for intravenous cocaine (0.20 mg/infusion) paired with the presentations of light plus tone stimuli. Responding was then allowed to extinguish. Rats received bilateral NMDA (0.1 M) or sham lesions of the lateral OFC (lOFC) or medial OFC (mOFC) before self-administration training (experiment 1) or muscimol plus baclofen (0.1 and 1.0 mM) or vehicle infusions into the lOFC or mOFC before reinstatement testing (experiment 2). The effects of these manipulations on reinstatement of cocaine seeking (i.e., responding on the previously cocaine-paired lever) were assessed in the presence of the light plus tone stimuli or after a cocaine priming injection (10 mg/kg, i.p.). Post-training lOFC inactivation impaired conditioned cue-induced reinstatement, whereas other manipulations failed to alter this behavior. This suggests that the lOFC plays a critical role in assessing the current motivational significance of cocaine-conditioned stimuli or in using this information to guide cocaine-seeking behavior if stimulus-reward learning takes place before lOFC damage. OFC inactivation failed to alter cocaine-primed reinstatement. However, lOFC lesions augmented cocaine-primed reinstatement in a perseverative manner, whereas mOFC lesions attenuated cocaine-primed reinstatement, suggesting that prolonged cell loss in OFC subregions may modulate the propensity for cocaine seeking in a subregion-specific manner.
Collapse
Affiliation(s)
- Rita A Fuchs
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|