1
|
Ma X, Yang Z, Luo Y, Jin Z, Zou J, Wang Y, Zhao X. A novel fluorescent probe with Aggregation-Induced emission characteristics for PTP1B activity sensing and inhibitor screening. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125394. [PMID: 39520822 DOI: 10.1016/j.saa.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/21/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an attractive target for the treatment of metabolic diseases such as type 2 diabetes and obesity. In this study, a novel fluorescent probe with aggregation-induced emission (AIE) characteristics was designed and synthesized. Within the fluorescent probe, a tetraphenylethene core is connected to a peptide sequence that can be specifically recognized and hydrolysed by PTP1B. Due to the dephosphorylation of PTP1B, the fluorescent probe exhibited AIE in a turn-on manner, indicating PTP1B activity. This probe was successfully used to detect PTP1B activity in HepG2 cell lysates. Then, a probe-based method was applied to screen for potential PTP1B inhibitors from a natural product library, and three novel PTP1B inhibitors were discovered. These findings indicated that the proposed approach offered a new avenue for discovering potential PTP1B inhibitors.
Collapse
Affiliation(s)
- Xiangwei Ma
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhenzhong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanlin Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zehua Jin
- State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingtao Zou
- Tonghua Huaxia Pharmaceutical Company, Tonghua 134000, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoping Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Abdelwahab AB, El-Sawy ER, Hanna AG, Bagrel D, Kirsch G. A Comprehensive Overview of the Developments of Cdc25 Phosphatase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082389. [PMID: 35458583 PMCID: PMC9031484 DOI: 10.3390/molecules27082389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Cdc25 phosphatases have been considered promising targets for anticancer development due to the correlation of their overexpression with a wide variety of cancers. In the last two decades, the interest in this subject has considerably increased and many publications have been launched concerning this issue. An overview is constructed based on data analysis of the results of the previous publications covering the years from 1992 to 2021. Thus, the main objective of the current review is to report the chemical structures of Cdc25s inhibitors and answer the question, how to design an inhibitor with better efficacy and lower toxicity?
Collapse
Affiliation(s)
| | - Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt; (E.R.E.-S.); (A.G.H.)
| | - Atef G. Hanna
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt; (E.R.E.-S.); (A.G.H.)
| | - Denyse Bagrel
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57050 Metz, France;
| | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57078 Metz, France
- Correspondence: ; Tel.: +33-03-72-74-92-00; Fax: +33-03-72-74-91-87
| |
Collapse
|
3
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
4
|
Soares AG, Muscara MN, Costa SKP. Molecular mechanism and health effects of 1,2-Naphtoquinone. EXCLI JOURNAL 2020; 19:707-717. [PMID: 32636724 PMCID: PMC7332801 DOI: 10.17179/excli2020-1210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Extensive literature regarding the health side effects of ambient pollutants (AP) are available, such as diesel exhaust particles (DEPs), but limited studies are available on their electrophilic contaminant 1,2-Naphthoquinone (1,2-NQ), enzymatically derived from naphthalene. This review summarizes relevant toxicologic and biological properties of 1,2-NQ as an environmental pollutant or to a lesser degree as a backbone in drug development to treat infectious diseases. It presents evidence of 1,2-NQ-mediated genotoxicity, neurogenic inflammation, and cytotoxicity due to several mechanistic properties, including the production of reactive oxygen species (ROS), that promote cell damage, carcinogenesis, and cell death. Many signal transduction pathways act as a vulnerable target for 1,2-NQ, including kappaB kinase b (IKKbeta) and protein tyrosine phosphatase 1B (PTP1B). Antioxidant molecules act in defense against ROS/RNS-mediated 1,2-NQ responses to injury. Nonetheless, its inhibitory effects at PTP1B, altering the insulin signaling pathway, represents a new therapeutic target to treat diabetes type 2. Questions exist whether exposure to 1,2-NQ may promote arylation of the Keap1 factor, a negative regulator of Nrf2, as well as acting on the sepiapterin reductase activity, an NADPH-dependent enzyme which catalyzes the formation of critical cofactors in aromatic amino acid metabolism and nitric oxide biosynthesis. Exposure to 1,2-NQ is linked to neurologic, behavioral, and developmental disturbances as well as increased susceptibility to asthma. Limited new knowledge exists on molecular modeling of quinones molecules as antitumoral and anti-microorganism agents. Altogether, these studies suggest that 1,2-NQ and its intermediate compounds can initiate a number of pathological pathways as AP in living organisms but it can be used to better understand molecular pathways.
Collapse
Affiliation(s)
- Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, USA. 7703 Floyd Curl Dr. San Antonio, TX, USA 78229.,Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| | - Marcelo N Muscara
- Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| | - Soraia K P Costa
- Laboratory of Biochemical Pharmacology of Free Radicals, Inflammation and Pain, Departamento de Farmacologia, Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo, Brazil. Av. Prof Lineu Prestes, 1524 Cidade Universitaria, Sao Paulo, SP CEP 05508-000, Brazil
| |
Collapse
|
5
|
Chockalingam S, Thada R, Dhandapani RK, Panchamoorthy R. Biogenesis, characterization, and the effect of vicenin-gold nanoparticles on glucose utilization in 3T3-L1 adipocytes: A bioinformatic approach to illuminate its interaction with PTP 1B and AMPK. Biotechnol Prog 2015; 31:1096-106. [DOI: 10.1002/btpr.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Shivashri Chockalingam
- Department of Biotechnology; Rajalakshmi Engineering College; Thandalam, Chennai Tamil Nadu 602 105 India
| | - Rajarajeshwari Thada
- Department of Biotechnology; Rajalakshmi Engineering College; Thandalam, Chennai Tamil Nadu 602 105 India
| | - Ramesh Kumar Dhandapani
- Department of Biotechnology; Rajalakshmi Engineering College; Thandalam, Chennai Tamil Nadu 602 105 India
| | - Rajasekar Panchamoorthy
- Department of Biotechnology; Rajalakshmi Engineering College; Thandalam, Chennai Tamil Nadu 602 105 India
| |
Collapse
|
6
|
Tamrakar AK, Maurya CK, Rai AK. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 - 2014). Expert Opin Ther Pat 2014; 24:1101-15. [PMID: 25120222 DOI: 10.1517/13543776.2014.947268] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin signal transduction pathway and has emerged as novel therapeutic strategy for the treatment of type 2 diabetes. PTP1B inhibitors enhance the sensibility of insulin receptor (IR) and have favorable curing effect for insulin resistance-related diseases. A large number of PTP1B inhibitors, either synthetic or isolated as bioactive agents from natural products, have developed and investigated for their ability to stimulate insulin signaling. AREAS COVERED This review includes an updated summary (2011 - 2014) of PTP1B inhibitors that have been published in patent applications, with an emphasis on their chemical structure, mode of action and therapeutic outcomes. The usefulness of PTP1B inhibitors as pharmaceutical agents for the treatment of type 2 diabetes is also discussed. EXPERT OPINION PTP1B inhibitors show beneficial effects to enhance sensibility of IR by restricting the activity of enzyme and have favorable curing effects. However, structural homologies in the catalytic domain of PTP1B with other protein tyrosine phosphatases (PTPs) like leukocyte common antigen-related, CD45, SHP-2 and T-cell-PTP present a challenging task of achieving selectivity. Thus, for therapeutic application of PTP1B inhibitors, highly selective molecules exhibiting desired effects without side effects are expected to find clinical application.
Collapse
Affiliation(s)
- Akhilesh Kumar Tamrakar
- CSIR-Central Drug Research Institute, Division of Biochemistry , Sector-10, Jankipuram Extension, Sitapur Road, Lucknow-226001 , India +91 0522 2772550 Ext. 4635 ; +91 0522 2771941 ; CSIR-CDRI communication number: 8743
| | | | | |
Collapse
|
7
|
Rajarajeshwari T, Shivashri C, Rajasekar P. Synthesis and characterization of biocompatible gymnemic acid–gold nanoparticles: a study on glucose uptake stimulatory effect in 3T3-L1 adipocytes. RSC Adv 2014. [DOI: 10.1039/c4ra07087a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An enhancedin vitroglucose utilization action of the biosynthesized GA–AuNPs.
Collapse
Affiliation(s)
- T. Rajarajeshwari
- Department of Biotechnology
- Rajalakshmi Engineering College
- Chennai-602 105, India
| | - C. Shivashri
- Department of Biotechnology
- Rajalakshmi Engineering College
- Chennai-602 105, India
| | - P. Rajasekar
- Department of Biotechnology
- Rajalakshmi Engineering College
- Chennai-602 105, India
| |
Collapse
|
8
|
Design, synthesis and molecular modelling studies of novel 3-acetamido-4-methyl benzoic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Eur J Med Chem 2013; 70:469-76. [DOI: 10.1016/j.ejmech.2013.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
|
9
|
Deora GS, Karthikeyan C, Moorthy NSHN, Rathore V, Rawat AK, Tamrakar AK, Srivastava AK, Trivedi P. Design, synthesis and biological evaluation of novel arylidine-malononitrile derivatives as non-carboxylic inhibitors of protein tyrosine phosphatase 1B. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0528-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Baskaran SK, Goswami N, Selvaraj S, Muthusamy VS, Lakshmi BS. Molecular Dynamics Approach to Probe the Allosteric Inhibition of PTP1B by Chlorogenic and Cichoric Acid. J Chem Inf Model 2012; 52:2004-12. [DOI: 10.1021/ci200581g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Teng BS, Wang CD, Yang HJ, Wu JS, Zhang D, Zheng M, Fan ZH, Pan D, Zhou P. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6492-500. [PMID: 21585203 DOI: 10.1021/jf200527y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inhibition of protein tyrosine phosphatase 1B (PTP1B) activity has been considered to be a promising therapy approach to treat type 2 diabetes. In this work, a novel PTP1B activity inhibitor, named FYGL (Fudan-Yueyang-G. lucidum), was screened from the fruiting bodies of Ganoderma lucidum and showed an efficient PTP1B inhibitory potency with IC₅₀ = 5.12 ± 0.05 μg/mL. FYGL is a water-soluble macromolecular proteoglycan with a protein to polysaccharide ratio of 17:77 and a viscosity-average molecular weight (M(η)) of 2.6 × 10⁵. The type 2 diabetic mice treated orally by FYGL showed an obvious decrease in plasma glucose level compared with the diabetic controls without drug treatment, comparable with that of diabetic mice treated with metformin, a clinical drug. The toxicity of FYGL is very low. The results indicate that FYGL may serve as a drug candidate or a health-care food for diabetic therapy or protection.
Collapse
Affiliation(s)
- Bao-Song Teng
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein Tyrosine Phosphatase 1B Inhibitors: A Molecular Level Legitimate Approach for the Management of Diabetes Mellitus. Med Res Rev 2010; 32:459-517. [DOI: 10.1002/med.20219] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Suresh Thareja
- University Institute of Pharmaceutical Sciences; Panjab University; 160 014; Chandigarh; India
| | - Saurabh Aggarwal
- University Institute of Pharmaceutical Sciences; Panjab University; 160 014; Chandigarh; India
| | | | - Manoj Kumar
- University Institute of Pharmaceutical Sciences; Panjab University; 160 014; Chandigarh; India
| |
Collapse
|
13
|
Fukuda S, Ohta T, Sakata S, Morinaga H, Ito M, Nakagawa Y, Tanaka M, Matsushita M. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551. Diabetes Obes Metab 2010; 12:299-306. [PMID: 20380650 DOI: 10.1111/j.1463-1326.2009.01162.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signalling, is a novel therapeutic target for type 2 diabetes mellitus. We evaluated in vitro and in vivo the pharmacological profiles of a new PTP1B inhibitor, JTT-551: monosodium ({[5-(1,1-dimethylethyl)thiazol-2-yl]methyl} {[(4-{4-[4-(1-propylbutyl)phenoxy]methyl}phenyl)thiazol-2-yl]methyl}amino)acetate. METHODS PTP1B inhibitory activity and the inhibition mode were assayed with p-nitrophenyl phosphate as a substrate, and the selectivity of JTT-551 against other PTPs, including T-cell protein tyrosine phosphatase (TCPTP), CD45 protein tyrosine phosphatase (CD45) and leucocyte common antigen-related protein tyrosine phosphatase (LAR), was evaluated. Glucose uptake with JTT-551 treatment was evaluated in L6 rat skeletal myoblasts (L6 cells). In the in vivo study, we investigated the effects on insulin receptor (IR) phosphorylation and blood chemical parameters with JTT-551 administration in ob/ob mice and db/db mice. RESULTS JTT-551 showed an inhibitory effect on PTP1B with a Ki value of 0.22 microM, and a mixed-type inhibition mode. Ki values of TCPTP, CD45 and LAR were 9.3, 30 or higher and 30 or higher microM, respectively, and JTT-551 exhibited clear selectivity against the other PTPs. Moreover, JTT-551 increased the insulin-stimulated glucose uptake in L6 cells. A single administration of JTT-551 in ob/ob mice enhanced the IR phosphorylation of liver and reduced the glucose level. In db/db mice, chronic administration showed a hypoglycaemic effect without an acceleration of body weight gain. CONCLUSIONS JTT-551, a newly developed PTP1B inhibitor, improves glucose metabolism by enhancement of insulin signalling and could be useful in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- S Fukuda
- Japan Tobacco, Inc., Central Pharmaceutical Research Institute, 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation. Acta Pharmacol Sin 2009; 30:1359-68. [PMID: 19730430 DOI: 10.1038/aps.2009.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. METHODS Cell growth inhibition was detected by MTT assay, the cell cycle was analyzed by flow cytometry, and protein expression and phosphorylation was examined by Western blot analysis. RESULTS LGH00031 inhibited CDC25B irreversibly in vitro in a dose-dependent manner, and impaired the proliferation of tumor cell lines. In synchronized HeLa cells, LGH00031 delayed the cell cycle progression at the G(2)/M phase. LGH00031 increased cyclin-dependent kinase 1 (CDK1) tyrosine 15 phosphorylation and cyclin B1 protein level. The activity of LGH00031 against CDC25B in vitro relied on the existence of 1,4-dithiothreitol (DTT) or dihydrolipoic acid and oxygen. The oxygen free radical scavenger catalase and superoxide dismutase reduced the inactivation of CDC25 by LGH00031, confirming that reactive oxygen species (ROS) mediate the inactivation process in vitro. LGH00031 accelerated cellular ROS production in a dose-dependent manner, and N-acetyl cysteine (NAC) markedly decreased the ROS production induced by LGH00031. Correspondingly, the LGH00031-induced decrease in cell viability and cell cycle arrest, cyclin B1 protein level, and phosphorylation of CDK1 tyrosine 15 were also rescued by NAC that decreased ROS production. CONCLUSION The activity of LGH00031 at the molecular and cellular level is mediated by ROS.
Collapse
|
15
|
Bustanji Y, Taha MO, Al-Masri IM, Mohammad MK. Docking simulations and in vitro assay unveil potent inhibitory action of papaverine against protein tyrosine phosphatase 1B. Biol Pharm Bull 2009; 32:640-645. [PMID: 19336898 DOI: 10.1248/bpb.32.640] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The structural similarity between papaverine and berberine, a known inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B), prompted us to investigate the potential of papaverine as h-PTP 1B inhibitor. The investigation included simulated docking experiments to fit papaverine into the binding pocket of h-PTP 1B. Papaverine was found to readily dock within the binding pocket of h-PTP 1B in a low energy orientation via an optimal set of attractive interactions. Experimentally, papaverine illustrated potent in vitro inhibitory effect against recombinant h-PTP 1B (IC(50)=1.20 microM). In vivo, papaverine significantly decreased fasting blood glucose level of Balb/c mice. Our findings should encourage screening of other natural alkaloids for possible anti-h-PTP 1B activities.
Collapse
|
16
|
Zhang Y, Li Y, Guo YW, Jiang HL, Shen X. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases. Acta Pharmacol Sin 2009; 30:333-45. [PMID: 19262557 PMCID: PMC4002405 DOI: 10.1038/aps.2009.5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 01/07/2009] [Indexed: 12/19/2022]
Abstract
AIM The sesquiterpene hydroquinones/quinones belong to one class of marine sponge metabolites, and they have received considerable attention due to their varied biological activities, including anti-tumor, anti-HIV, and anti-inflammatory action. In order to probe the potential anti-diabetic effect of the sesquiterpene hydroquinones/quinones, the effect of dysidine on the insulin pathway was studied. METHODS The promotion of glucose uptake by dysidine was studied in differentiated 3T3-L1 cells. The increase in membrane-located GLUT4 by dysidine was studied in CHO-K1/GLUT4 and 3T3-L1 cells by immuno-staining. The activation of the insulin signaling pathway by dysidine was probed by Western blotting. The inhibition of PTPases by dysidine was detected in vitro. RESULTS Dysidine, found in the Hainan sponge Dysidea villosa in the Chinese South Sea, effectively activated the insulin signaling pathway, greatly promoted glucose uptake in 3T3-L1 cells, and showed strong insulin-sensitizing activities. The potential targets of action for dysidine were probed, and the results indicated that dysidine exhibited its cellular effects through activation of the insulin pathway, possibly through the inhibition of protein tyrosine phosphatases, with more specific inhibition against protein tyrosine phosphatase 1B (PTP1B). CONCLUSION Our findings are expected to expand understanding of the biological activities of sesquiterpene hydroquinones/quinones, and they show that dysidine could be a potential lead compound in the development of an alternative adjuvant in insulin therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 210203, China
| | - Yan Li
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 210203, China
| | - Yue-wei Guo
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 210203, China
| | - Hua-liang Jiang
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 210203, China
| | - Xu Shen
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 210203, China
| |
Collapse
|
17
|
Brezak MC, Valette A, Quaranta M, Contour-Galcera MO, Jullien D, Lavergne O, Frongia C, Bigg D, Kasprzyk PG, Prevost GP, Ducommun B. IRC-083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells. Int J Cancer 2009; 124:1449-56. [PMID: 19065668 DOI: 10.1002/ijc.24080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CDC25 phosphatases are key actors in cyclin-dependent kinases activation whose role is essential at various stages of the cell cycle. CDC25 expression is upregulated in a number of human cancers. CDC25 phosphatases are therefore thought to represent promising novel targets in cancer therapy. Here, we report the identification and the characterization of IRC-083864, an original bis-quinone moiety that is a potent and selective inhibitor of CDC25 phosphatases in the low nanomolar range. IRC-083864 inhibits cell proliferation of a number of cell lines, regardless of their resistance to other drugs. It irreversibly inhibits cell proliferation and cell cycle progression and prevents entry into mitosis. In addition, it inhibits the growth of HCT-116 tumor spheroids with induction of p21 and apoptosis. Finally, IRC-083864 reduced tumor growth in mice with established human prostatic and pancreatic tumor xenografts. This study describes a novel compound, which merits further study as a potential anticancer agent.
Collapse
|
18
|
Feng X, Wang LN, Zhou YY, Yu HP, Shen Q, Zang Y, Zhou YB, Li JY, Zhang HX, Li J. Discovery and characterization of a novel inhibitor of CDC25B, LGH00045. Acta Pharmacol Sin 2008; 29:1268-74. [PMID: 18817634 DOI: 10.1111/j.1745-7254.2008.00841.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Cell division cycle 25 (CDC25) phosphatases have recently been considered as potential targets for the development of new cancer therapeutic agents. We aimed to discover novel CDC25B inhibitors in the present study. METHODS A molecular level high-throughput screening (HTS) assay was set up to screen a set of 48000 pure compounds. RESULTS HTS, whose average Z' factor is 0.55, was finished and LGH00045, a mixed-type CDC25B inhibitor with a novel structure and relative selectivity for protein tyrosine phosphatases, was identified. Furthermore, LGH00045 impaired the proliferation of tumor cells and increased cyclin-dependent kinase 1 inhibitory tyrosine phosphorylation. In synchronized HeLa cells, LGH00045 delayed cell cycle progression at the G2-M transition. CONCLUSION LGH00045, a novel CDC25B inhibitor identified through HTS, showed good inhibition on the proliferation of tumor cells and affected the cell cycle progression, which makes it a good hit for further structure modification.
Collapse
Affiliation(s)
- Xu Feng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin Z, Zhang Y, Zhang Y, Shen H, Hu L, Jiang H, Shen X. Oleanolic acid derivative NPLC441 potently stimulates glucose transport in 3T3-L1 adipocytes via a multi-target mechanism. Biochem Pharmacol 2008; 76:1251-62. [PMID: 18778688 DOI: 10.1016/j.bcp.2008.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 01/11/2023]
Abstract
The natural product oleanolic acid (OA) has been discovered to exhibit varied pharmacological functions including anti-inflammation, anti-tumor and anti-diabetes, while appropriate synthetic oleanolic acid derivatives seem to possess more potent activities. Here we identified a new oleanolic acid derivative, 3-beta-(2-carboxybenzoyloxy)-oleanolic acid (NPLC441), which functioned as a competitive PTP1B inhibitor and enhanced insulin-stimulated phosphorylation of IR and AKT in HepG2 cells. As an RXRalpha antagonist, it could selectively activate LXRalpha:RXRalpha heterodimer and increase the promoter activities of ABCA1 and ABCG1 genes in transient transfection assays. Quantitative RT-PCR and Western blot analyses suggested that NPLC441 could up-regulate GLUT4 expression in 3T3-L1 adipocytes, and such effect was further proved to be dependent on LXRalpha:RXRalpha activation. Moreover, 2-deoxyglucose uptake technology-based characterization demonstrated that this compound could stimulate glucose uptake in 3T3-L1 adipocytes. Finally, NPLC441 was observed to be able to suppress 11beta-HSD(1) expression in HepG2 cells, following the discovery that activation of LXRalpha:RXRalpha could repress the expression of 11beta-HSD(1). Compared with NPLC441, OA showed no effects on the transactivation of either LXRalpha:RXRalpha heterodimer or RXRalpha-LBD. Our work is thus expected to provide a new insight into the anti-diabetic application for oleanolic acid derivatives via multi-target mechanism, and NPLC441 could be used as a potential lead compound for further research.
Collapse
Affiliation(s)
- Zhonghui Lin
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Pu Dong, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Albarracin CA, Fuqua BC, Evans JL, Goldfine ID. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab Res Rev 2008; 24:41-51. [PMID: 17506119 DOI: 10.1002/dmrr.755] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chromium and biotin play essential roles in regulating carbohydrate metabolism. This randomized, double-blind, placebo-controlled study evaluated the efficacy and safety of the combination of chromium picolinate and biotin on glycaemic control. METHODS Four hundred and forty-seven subjects with poorly controlled type 2 diabetes (HbA(1c) > or = 7.0%) were enrolled and received either chromium picolinate (600 microg Cr(+3)) with biotin (2 mg), or matching placebo, for 90 days in combination with stable oral anti-diabetic agents (OADs). Major endpoints were reductions in HbA(1c), fasting glucose, and lipids. Safety and tolerability were assessed. RESULTS Change in HbA(1c) was significantly different between treatment groups (p = 0.03). HbA(1c) in the chromium picolinate/biotin group decreased 0.54%. The decrease in HbA(1c) was most pronounced in chromium picolinate/biotin subjects whose baseline HbA(1c) > or = 10%, and highly significant when compared with placebo (-1.76% vs - 0.68%; p = 0.005). Fasting glucose levels were reduced in the entire chromium picolinate/biotin group versus placebo (-9.8 mg/dL vs 0.7 mg/dL; p = 0.02). Reductions in fasting glucose were also most marked in those subjects whose baseline HbA(1c) > or = 10.0%, and significant when compared to placebo (-35.8 mg/dL vs. 16.2 mg/dL; p = 0.01). Treatment was well tolerated with no adverse effects dissimilar from placebo. CONCLUSIONS These results suggest that the chromium picolinate/biotin combination, administered as an adjuvant to current prescription anti-diabetic medication, can improve glycaemic control in overweight to obese individuals with type 2 diabetes; especially those patients with poor glycaemic control on oral therapy.
Collapse
Affiliation(s)
- Cesar A Albarracin
- Alpha Therapy Center, 4626 Weber Road, Suite 100, Corpus Christi, TX 78411, USA
| | | | | | | |
Collapse
|
21
|
Lee S, Wang Q. Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Med Res Rev 2007; 27:553-73. [PMID: 17039461 DOI: 10.1002/med.20079] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphatases (PTPs), a large family of signaling enzymes, play essential roles in intracellular signal transduction by regulating the cellular level of tyrosine phosphorylation to control cell growth and differentiation, metabolism, cell migration, gene transcription, ion-channel activity, immune response, cell apoptosis, and bone development. Among all PTPs, protein tyrosine phosphatase 1B (PTP1B) plays a seminal role in cellular signaling and in many human diseases, including cancer, diabetes, and obesity. Therefore, small molecular inhibitors of PTP1B can be promising drug candidates. Because of the structural homologies in many families of PTPs, it is a challenging task to find inhibitors specific to each PTP. Recent studies suggested that secondary binding pockets or peripheral binding sites around the conserved active site should be exploited to design novel potent and selective PTP1B inhibitors. In this review, we discuss the structural and biological features of small molecular PTP1B-specific inhibitors, with particular emphasis on small molecular inhibitors targeting PTP1B over the other PTPs that have been synthesized in the past 4 years.
Collapse
Affiliation(s)
- Seokjoon Lee
- Department of Basic Science, Kwandong University College of Medicine, Gangneung 210-701, South Korea
| | | |
Collapse
|
22
|
Abstract
Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
23
|
Contour-Galcera MO, Sidhu A, Prévost G, Bigg D, Ducommun B. What's new on CDC25 phosphatase inhibitors. Pharmacol Ther 2007; 115:1-12. [PMID: 17531323 DOI: 10.1016/j.pharmthera.2007.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/26/2007] [Indexed: 11/30/2022]
Abstract
The CDC25 phosphatases are key regulators of cell cycle progression and play a central role in the checkpoint response to DNA damage. Their inhibition may therefore represent a promising therapeutic approach in oncology, and small molecule design strategies are currently leading to the identification of various classes of CDC25 inhibitors. Most structures developed so far are quinonoid-based compounds, but also phosphate surrogates or electrophilic entities. Considering the characteristics of the highly conserved active sites of the enzymes, many mechanisms of action have been proposed for these inhibitors. Quinonoid compounds may oxidize the catalytic site cysteine, but can also be considered as Michaël acceptors capable of reacting with the activated thiolate or other electrophilic entities. Phosphate surrogates are thought to interfere with the arginine residue, leading to reversible enzyme inhibition. But some inhibitors can combine in the same molecule several of these mechanisms, thus by fitting into the active site of the enzyme through one part of the molecule and bringing the reactive moiety in close proximity to the catalytic cysteine. This review summarizes novel classes of inhibitors that show specificity for the CDC25s over other phosphatases, cause cell proliferation inhibition and cell cycle arrest in vitro but also, for several of them, inhibition of xenografted tumoral cell growth in vivo. These promising results confirm the interest of the inhibition of CDC25 phosphatases as an anticancer therapeutic strategy.
Collapse
|
24
|
Lavecchia A, Cosconati S, Limongelli V, Novellino E. Modeling of Cdc25B dual specifity protein phosphatase inhibitors: docking of ligands and enzymatic inhibition mechanism. ChemMedChem 2006; 1:540-50. [PMID: 16892390 DOI: 10.1002/cmdc.200500092] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Cdc25 dual specificity phosphatases have central roles in coordinating cellular signalling processes and cell proliferation. It has been reported that an improper amplification or activation of these enzymes is a distinctive feature of a number of human cancers, including breast cancers. Thus, the inhibition of Cdc25 phosphatases might provide a novel approach for the discovery of new and selective antitumor agents. By using the crystal structure of the catalytic domain of Cdc25B, structural models for the interaction of various Cdc25B inhibitors (1-13) with the enzyme were generated by computational docking. The parallel use of two efficient and predictive docking programs, AutoDock and GOLD, allowed mutual validation of the predicted binding poses. To evaluate their quality, the models were validated with known structure-activity relationships and site-directed mutagenesis data. The results provide an improved basis for structure-based ligand design and suggest a possible explanation for the inhibition mechanism of the examined Cdc25B ligands. We suggest that the recurring motif of a tight interaction between the inhibitor and the two arginine residues, 482 and 544, is of prime importance for reversible enzyme inhibition. In contrast, the irreversible inhibition mechanism of 1-4 seems to be associated with the close vicinity of the quinone ring and the Cys473 catalytic thiolate. We believe that this extensive study might provide useful hints to guide the development of new potent Cdc25B inhibitors as novel anticancer drugs.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
25
|
Abstract
The prevalence of obesity is increasing rapidly in most parts of the world and effective therapeutic drugs are urgently needed. The discovery of leptin in 1994 initiated a new understanding of adipose tissue function, and adipose tissue is now known to not only store and release fatty acids, but also to produce a wealth of factors that have an impact on the regulation of body weight and blood glucose homeostasis. Also, adipocytes express proteins that engage signalling pathways playing important roles in fuel substrate and energy metabolism. These proteins constitute a diverse array of adipose target candidates for the development of drugs to treat obesity. Some of these potential targets have been validated and are now in drug development stages, providing hope that the current obesity epidemic can be addressed by effective drug treatments in the near future.
Collapse
|
26
|
Suzuki reaction of cyclopenta[d][1,2]oxazine in aqueous solvent with water-soluble phosphine ligand. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.05.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Bustanji Y, Taha MO, Yousef AM, Al-Bakri AG. Berberine potently inhibits protein tyrosine phosphatase 1B: investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 2006; 21:163-171. [PMID: 16789430 DOI: 10.1080/14756360500533026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Berberine was investigated as an inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B) in an attempt to explain its anti-hyperglycemic activitiy. The investigation included simulated docking experiments to fit berberine within the binding pocket of h-PTP 1B. Berberine was found to readily fit within the binding pocket of h-PTP 1B in a low energy orientation characterized with optimal electrostatic attractive interactions bridging the isoquinolinium positively charged nitrogen atom of berberine and the negatively charged acidic residue of ASP 48 of h-PTP 1B. Experimentally, berberine was found to potently competitively inhibit recombinant h-PTP 1B in vitro (Ki value = 91.3 nM). Our findings strongly suggest that h-PTP 1B inhibition is at least one of the reasons for the reported anti-hyperglycemic activities of berberine.
Collapse
Affiliation(s)
- Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | | | | | | |
Collapse
|
28
|
Cho SY, Baek JY, Han SS, Kang SK, Ha JD, Ahn JH, Lee JD, Kim KR, Cheon HG, Rhee SD, Yang SD, Yon GH, Pak CS, Choi JK. PTP-1B inhibitors: Cyclopenta[d][1,2]-oxazine derivatives. Bioorg Med Chem Lett 2006; 16:499-502. [PMID: 16289879 DOI: 10.1016/j.bmcl.2005.10.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/07/2005] [Accepted: 10/19/2005] [Indexed: 11/24/2022]
Abstract
A series of novel cyclopenta[d][1,2]-oxazine derivatives was prepared and evaluated for their inhibitory activity toward protein tyrosine phosphatase 1B (PTP-1B). Compound 6s was found to be an inhibitor of PTP-1B with nanomolar IC(50) value and high level of selectivity over other recombinant phosphatases.
Collapse
Affiliation(s)
- Sung Yun Cho
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Hooft van Huijsduijnen R, Sauer WHB, Bombrun A, Swinnen D. Prospects for Inhibitors of Protein Tyrosine Phosphatase 1B as Antidiabetic Drugs. J Med Chem 2004; 47:4142-6. [PMID: 15293983 DOI: 10.1021/jm030629n] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rob Hooft van Huijsduijnen
- Serono Pharmaceutical Research Institute, Chemin des Aulx 14, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | | | | | | |
Collapse
|