1
|
Fernández-Pereira C, Agís-Balboa RC. The Insulin-like Growth Factor Family as a Potential Peripheral Biomarker in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2025; 26:2561. [PMID: 40141202 PMCID: PMC11942524 DOI: 10.3390/ijms26062561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Psychiatric disorders (PDs), including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BD), autism spectrum disorder (ASD), among other disorders, represent a significant global health burden. Despite advancements in understanding their biological mechanisms, there is still no reliable objective and reliable biomarker; therefore, diagnosis remains largely reliant on subjective clinical assessments. Peripheral biomarkers in plasma or serum are interesting due to their accessibility, low cost, and potential to reflect central nervous system processes. Among these, the insulin-like growth factor (IGF) family, IGF-1, IGF-2, and IGF-binding proteins (IGFBPs), has gained attention for its roles in neuroplasticity, cognition, and neuroprotection, as well as for their capability to cross the blood-brain barrier. This review evaluates the evidence for IGF family alterations in PDs, with special focus on SZ, MDD, and BD, while also addressing other PDs covering almost 40 years of history. In SZ patients, IGF-1 alterations have been linked to metabolic dysregulation, treatment response, and hypothalamic-pituitary-adrenal axis dysfunction. In MDD patients, IGF-1 appears to compensate for impaired neurogenesis, although findings are inconsistent. Emerging studies on IGF-2 and IGFBPs suggest potential roles across PDs. While promising, heterogeneity among studies and methodological limitations highlights the need for further research to validate IGFs as reliable psychiatric biomarkers.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Ali M, Timsina J, Western D, Liu M, Beric A, Budde J, Do A, Heo G, Wang L, Gentsch J, Schindler SE, Morris JC, Holtzman DM, Ruiz A, Alvarez I, Aguilar M, Pastor P, Rutledge J, Oh H, Wilson EN, Guen YL, Khalid RR, Robins C, Pulford DJ, Tarawneh R, Ibanez L, Wyss-Coray T, Sung YJ, Cruchaga C. Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures across the Alzheimer disease continuum. Neuron 2025:S0896-6273(25)00132-1. [PMID: 40088886 DOI: 10.1016/j.neuron.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Changes in β-amyloid (Aβ) and hyperphosphorylated tau (T) in brain and cerebrospinal fluid (CSF) precede Alzheimer's disease (AD) symptoms, making the CSF proteome a potential avenue to understand disease pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 analytes (2,029 unique proteins) dysregulated in AD. Of these, 865 (43%) were previously reported, and 1,164 (57%) are novel. The identified proteins cluster in four different pseudo-trajectories groups spanning the AD continuum and were enriched in pathways including neuronal death, apoptosis, and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfunction (mid stages), brain plasticity and longevity (mid stages), and microglia-neuron crosstalk (late stages). Using machine learning, we created and validated highly accurate and replicable (area under the curve [AUC] > 0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daniel Western
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John Budde
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anh Do
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gyujin Heo
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Agustin Ruiz
- ACE Alzheimer Center Barcelona, Barcelona, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Miquel Aguilar
- Fundació Docència i Recerca Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Pau Pastor
- Fundació Docència i Recerca Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jarod Rutledge
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward N Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yann Le Guen
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Chloe Robins
- Genomic Sciences, GSK Pharma R&D, 1250 S Collegeville Rd., Collegeville, PA 19426, USA
| | - David J Pulford
- Genomic Sciences, GSK Pharma R&D, 1250 S Collegeville Rd., Collegeville, PA 19426, USA
| | - Rawan Tarawneh
- The University of New Mexico, Albuquerque, NM 87131, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
4
|
Horvath A, Quinlan P, Eckerström C, Åberg ND, Wallin A, Svensson J. The Associations Between Serum Insulin-like Growth Factor-I, Brain White Matter Volumes, and Cognition in Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 2024; 99:609-622. [PMID: 38701139 PMCID: PMC11191442 DOI: 10.3233/jad-231026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/05/2024]
Abstract
Background Insulin-like growth factor-I (IGF-I) regulates myelin, but little is known whether IGF-I associates with white matter functions in subjective and objective mild cognitive impairment (SCI/MCI) or Alzheimer's disease (AD). Objective To explore whether serum IGF-I is associated with magnetic resonance imaging - estimated brain white matter volumes or cognitive functions. Methods In a prospective study of SCI/MCI (n = 106) and AD (n = 59), we evaluated the volumes of the total white matter, corpus callosum (CC), and white matter hyperintensities (WMHs) as well as Mini-Mental State Examination (MMSE), Trail Making Test A and B (TMT-A/B), and Stroop tests I-III at baseline, and after 2 years. Results IGF-I was comparable in SCI/MCI and AD (113 versus 118 ng/mL, p = 0.44). In SCI/MCI patients, the correlations between higher baseline IGF-I and greater baseline and 2-year volumes of the total white matter and total CC lost statistical significance after adjustment for intracranial volume and other covariates. However, after adjustment for covariates, higher baseline IGF-I correlated with better baseline scores of MMSE and Stroop test II in SCI/MCI and with better baseline results of TMT-B and Stroop test I in AD. IGF-I did not correlate with WMH volumes or changes in any of the variables. Conclusions Both in SCI/MCI and AD, higher IGF-I was associated with better attention/executive functions at baseline after adjustment for covariates. Furthermore, the baseline associations between IGF-I and neuropsychological test results in AD may argue against significant IGF-I resistance in the AD brain.
Collapse
Affiliation(s)
- Alexandra Horvath
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrick Quinlan
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N. David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine, Skaraborg Central Hospital, Skövde, Sweden
| |
Collapse
|
5
|
Zegarra-Valdivia JA, Pignatelli J, Nuñez A, Torres Aleman I. The Role of Insulin-like Growth Factor I in Mechanisms of Resilience and Vulnerability to Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:16440. [PMID: 38003628 PMCID: PMC10671249 DOI: 10.3390/ijms242216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.
Collapse
Affiliation(s)
- Jonathan A. Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- School of Medicine, Universidad Señor de Sipán, Chiclayo 14000, Peru
| | - Jaime Pignatelli
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Cajal Institute (CSIC), 28002 Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
7
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Wee AS, Nhu TD, Khaw KY, San Tang K, Yeong KY. Linking Diabetes to Alzheimer's Disease: Potential Roles of Glucose Metabolism and Alpha-Glucosidase. Curr Neuropharmacol 2023; 21:2036-2048. [PMID: 36372924 PMCID: PMC10556372 DOI: 10.2174/1570159x21999221111102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are more prevalent with ageing and cause a substantial global socio-economic burden. The biology of these two conditions is well elaborated, but whether AD and type 2 DM arise from coincidental roots in ageing or are linked by pathophysiological mechanisms remains unclear. Research findings involving animal models have identified mechanisms shared by both AD and type 2 DM. Deposition of β-amyloid peptides and formation of intracellular neurofibrillary tangles are pathological hallmarks of AD. Type 2 DM, on the other hand, is a metabolic disorder characterised by hyperglycaemia and insulin resistance. Several studies show that improving type 2 DM can delay or prevent the development of AD, and hence, prevention and control of type 2 DM may reduce the risk of AD later in life. Alpha-glucosidase is an enzyme that is commonly associated with hyperglycaemia in type 2 DM. However, it is uncertain if this enzyme may play a role in the progression of AD. This review explores the experimental evidence that depicts the relationship between dysregulation of glucose metabolism and AD. We also delineate the links between alpha-glucosidase and AD and the potential role of alpha-glucosidase inhibitors in treating AD.
Collapse
Affiliation(s)
- Ai Sze Wee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
- Faculty of Medicine, SEGi University, Kota Damansara, 47810 Selangor, Malaysia
| | - Thao Dinh Nhu
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 , Selangor, Malaysia
- Tropical Medicine and Biology (TMB) Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500 Selangor, Malaysia
| |
Collapse
|
9
|
Shi X, Zheng J, Ma J, Wang Z, Sun W, Li M, Huang S, Hu S. Insulin-like growth factor in Parkinson's disease is related to nonmotor symptoms and the volume of specific brain areas. Neurosci Lett 2022; 783:136735. [PMID: 35709879 DOI: 10.1016/j.neulet.2022.136735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/05/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) plays a protective role in Parkinson's disease (PD). To date, studies on the relationship between plasma IGF-1 levels and nonmotor symptoms and brain gray matter volume in PD patients have been rare. METHODS A Siemens automatic chemical analyzer was used to determine plasma IGF-1 levels in 55 healthy controls and 119 PD patients, including those at the early (n = 67) and middle-late (n = 52) stages of the disease. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Image acquisition in 65 PD patients was performed using a Siemens MAGNETOM Prisma 3 T magnetic resonance imaging (MRI) scanner. RESULTS Plasma IGF-1 levels in early-stage PD patients were higher than those in healthy controls, and plasma IGF-1 levels in early-stage PD patients were higher than those in middle-late-stage PD patients. Plasma IGF-1 levels were significantly negatively correlated with anxiety, depression and cognitive dysfunction. Receiver operating characteristic (ROC) curve assessment confirmed that plasma IGF-1 levels had good predictive accuracy for PD with anxiety, depression and cognitive dysfunction. Furthermore, plasma IGF-1 levels were significantly positively correlated with volumes in the insula, caudate and anterior cingulate. CONCLUSIONS This study shows that plasma IGF-1 levels were correlated with the nonmotor symptoms of anxiety, depression and cognitive dysfunction and the volume in specific brain areas. This is the first report examining the relationships between plasma IGF-1 and clinical manifestations and imaging features in PD patients.
Collapse
Affiliation(s)
- Xiaoxue Shi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Neurology, Henan University People's Hospital, Zhengzhou, China.
| | - Zhidong Wang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenhua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingjian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Shen Huang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shiyu Hu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Horvath A, Quinlan P, Eckerström C, Åberg ND, Wallin A, Svensson J. Low Serum Insulin-like Growth Factor-I Is Associated with Decline in Hippocampal Volume in Stable Mild Cognitive Impairment but not in Alzheimer's Disease. J Alzheimers Dis 2022; 88:1007-1016. [PMID: 35723105 PMCID: PMC9484094 DOI: 10.3233/jad-220292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Serum insulin-like growth factor-I (IGF-I) has shown some association with hippocampal volume in healthy subjects, but this relation has not been investigated in stable mild cognitive impairment (sMCI) or Alzheimer’s disease (AD). Objective: At a single memory clinic, we investigated whether serum IGF-I was associated with baseline magnetic resonance imaging (MRI)-estimated brain volumes and longitudinal alterations, defined as annualized changes, up to 6 years of follow-up. Methods: A prospective study of patients with sMCI (n = 110) and AD (n = 60). Brain regions included the hippocampus and amygdala as well as the temporal, parietal, frontal, and occipital lobes, respectively. Results: Serum IGF-I was statistically similar in sMCI and AD patients (112 versus 123 ng/mL, p = 0.31). In sMCI, serum IGF-I correlated positively with all baseline MRI variables except for the occipital lobe, and there was also a positive correlation between serum IGF-I and the annualized change in hippocampal volume (rs = 0.32, p = 0.02). Furthermore, sMCI patients having serum IGF-I above the median had lower annual loss of hippocampal volume than those with IGF-I below the median (p = 0.02). In contrast, in AD patients, IGF-I did not associate with baseline levels or annualized changes in brain volumes. Conclusion: In sMCI patients, our results suggest that IGF-I exerted neuroprotective effects on the brain, thereby maintaining hippocampal volume. In AD, serum IGF-I did not associate with brain volumes, indicating that IGF-I could not induce neuroprotection in this disease. This supports the notion of IGF-I resistance in AD.
Collapse
Affiliation(s)
- Alexandra Horvath
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Patrick Quinlan
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carl Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Acute Medicine and Geriatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine, Region Västra Götaland, Skaraborg Central Hospital, Skövde, Sweden
| |
Collapse
|
11
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
12
|
Li N, Cui N, Qiao M, Shen Y, Cheng Y, Song L, Huang X, Li L. The effects of lead exposure on the expression of IGF1R, IGFBP3, Aβ40, and Aβ42 in PC12 cells. J Trace Elem Med Biol 2022; 69:126877. [PMID: 34678598 DOI: 10.1016/j.jtemb.2021.126877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND To investigate the effects of lead exposure and IGF1R inhibitor AG1024 on the expression of IGF1R and IGFBP3 in PC12 cells. It is clear that the mechanism of the related proteins inducing AD is regulated by them, thus providing theoretical guidance for the prevention and treatment of lead poisoning. METHODS This study is mainly used PC12 neuron cell to cultivate and establish a corresponding lead exposure model, deal with cells with different concentrations of lead acetate respectively, divide the experiment into control group, 1 μmoL/L PbAc, 10 μmoL/L PbAc group, IGF1R inhibitor (AG1024) group, IGF1R inhibitor group (AG1024) + 1 μmoL/L PbAc group, IGF1R inhibitor group (AG1024) + 10 μmoL/L PbAc group, respective contamination's three periods of time 24 h, 48 h, and 72 h. Lead exposure dose on cell proliferation was examined by MTT. The protein expression of IGF1R and IGFBP3 in PC12 cells were tested by western blotting and immunohistochemistry, The expression of Aβ40 and Aβ42 in cell supernatant was determined by ELISA. RESULTS Compared with the control group, the proliferation of the cells in the high-dose lead-exposed group was significantly inhibited (P < 0.05), and the expression of IGF1R and IGFBP3 was significantly decreased (P < 0.05); the contents of Aβ40 and Aβ42 were not statistically significant among the groups (P > 0.05). CONCLUSION This study shows that lead can obviously down-regulate the expression of IGF1R and IGFBP3, lead and inhibitor can inhibit the proliferation of cells, promote the tendency of apoptosis, and damage the nervous system.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ningning Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yue Shen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Li Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
13
|
Zhang XX, Ma YH, Hu HY, Ma LZ, Tan L, Yu JT. Late-Life Obesity Associated with Tau Pathology in Cognitively Normal Individuals: The CABLE Study. J Alzheimers Dis 2021; 85:877-887. [PMID: 34897094 DOI: 10.3233/jad-215351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Existed evidence suggests that midlife obesity increases the risk of Alzheimer's disease (AD), while there is an inverse association between AD and obesity in late life. However, the underlying metabolic changes of AD pathological proteins attributed to obesity in two life stages were not clear. OBJECTIVE To investigate the associations of obesity types and obesity indices with AD biomarkers in cerebrospinal fluid (CSF) in different life stages. METHODS We recruited 1,051 cognitively normal individuals (61.94±10.29 years, 59.66%male) from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study with CSF detections for amyloid-β 42 (Aβ 42), total-tau (T-tau), and phosphorylated tau (P-tau). We utilized body mass index, waist circumference, waist-to-height ratio, and metabolic risk factors to determine human obesity types. Multiple linear models and interaction analyses were run to assess the impacts of obesity on AD biomarkers. RESULTS The metabolically unhealthy obesity or healthy obesity might exert a reduced tau pathology burden (p < 0.05). Individuals with overweight, general obesity, and central obesity presented lower levels of tau-related proteins in CSF than normal controls (p < 0.05). Specially, for late-life individuals, higher levels of obesity indices were associated with a lower load of tau pathology as measured by CSF T-tau and T-tau/Aβ 42 (p < 0.05). No similar significant associations were observed in midlife. CONCLUSION Collectively, late-life general and central obesity seems to be associated with the reduced load of tau pathology, which further consolidates the favorable influence of obesity in specific life courses for AD prevention.
Collapse
Affiliation(s)
- Xiao-Xue Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Khan T, Khan S, Akhtar M, Ali J, Najmi AK. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem Int 2021; 150:105158. [PMID: 34391818 DOI: 10.1016/j.neuint.2021.105158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
There is snowballing evidence that type 2 diabetes (T2D) predisposes to neuropathophysiological alterations including oxidative stress and triggered inflammatory responses in brain that eventually culminates into cognitive impairment.Accumulating evidences suggest that SGLT2 inhibitor can be a promising intervention for cognitive decline in T2DM. In the present paper, the potential effects of Empagliflozin (EMPA), a SGLT2 inhibitor, against T2D induced cognitive dysfunction have been explored. The effect of EMPA on array of inflammatory mediators including Interleukin-6(IL-6), Interleukin -1β (IL-1β), and Tumour necrosis factor-α(TNF-α)), neuronal proteins including glycogen synthase kinase-3β (GSK- 3β), Phosphorylated tau (p-tau), amyloid beta (Aβ) (1-40, 1-42) and altered oxidative parameters including SOD, catalase, TBARS was determined in the high fructose diet induced hyperglycaemic mice. The obtained results were compared with EMPA nanoparticles (Nps) formulated in our laboratory and found that EMPA Nps significantly showed reduced levels of inflammatory mediators and oxidative stress. Further, decrease in levels of p-tau, Aβ (1-40) and Aβ (1-42) were also observed with EMPA nanoparticles.Thus, the study has demonstrated that EMPA Nps could be a promising therapy to alleviate the progression of cognitive decline in T2D.
Collapse
Affiliation(s)
- Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India.
| |
Collapse
|
15
|
Evaluation of IGF-1 as a novel theranostic biomarker for schizophrenia. J Psychiatr Res 2021; 140:172-179. [PMID: 34116443 DOI: 10.1016/j.jpsychires.2021.05.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In the current study, we aimed to investigate fasting plasma levels of glucose, insulin, growth hormone, IGF-1, and lipid profile in remission schizophrenia patients, treatment resistant schizophrenia patients and healthy controls and to determine whether IGF-1 levels can be used as a theranostic biomarker in schizophrenia. METHODS Sixty-two patients under remission from schizophrenia, sixty-five treatment-resistant patients with schizophrenia and sixty-two healthy controls were included in the study. All patients were recruited and evaluated over 11 months. Symptoms at the time of evaluation were assessed twice using BPRS, PANSS, CGI, and GAF scales by an experienced psychiatrist in accordance with Andreaseen's remission criteria and TRIPS group resistance criteria. Blood samples were collected from all participants to determine fasting glucose, LDL, HDL, Triglyceride, Total Cholesterol, fasting, insulin, GH and IGF-1 levels. RESULTS Fasting blood glucose levels were found to be higher in patients with schizophrenia than in healthy controls. Moreover, LDL levels of the treatment sensitive group were higher than that of the treatment resistant group while they were not significantly different from the healthy controls. IGF-1 levels were lower in the treatment sensitive group than in both treatment resistant and healthy control groups. IGF-1, LDL and age of disease onset were found to be significantly associated with treatment resistance in a regression model. DISCUSSION In the present study, remitted patients with schizophrenia could be distinguished from treatment-resistant patients and healthy controls with serum IGF-1, fasting glucose and LDL levels. In addition, we found that smoking and age of disease onset together with IGF-1 levels could significantly predict resistance to treatment.
Collapse
|
16
|
Horvath A, Salman Z, Quinlan P, Wallin A, Svensson J. Patients with Alzheimer's Disease Have Increased Levels of Insulin-like Growth Factor-I in Serum but not in Cerebrospinal Fluid. J Alzheimers Dis 2021; 75:289-298. [PMID: 32250294 DOI: 10.3233/jad-190921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Insulin-like growth factor-I (IGF-I) is important for amyloid-β (Aβ) metabolism, and also interacts with the brain vasculature. In previous IGF-I studies, it has not been evaluated whether Alzheimer's disease (AD) patients had vascular comorbidities. OBJECTIVE AND METHODS A cross-sectional study of 40 consecutive non-diabetic AD patients and 36 healthy controls. We measured IGF-I in serum and cerebrospinal fluid (CSF) and also serum insulin. Mixed forms of AD and vascular dementia were excluded. RESULTS After adjustment for covariates including age, serum IGF-I level was higher in the AD group than in the controls, whereas CSF IGF-I and serum insulin were unchanged. Binary logistic regression confirmed that high serum IGF-I was associated with increased prevalence of AD [adjusted Odds Ratio (OR) = 1.83, 95% confidence interval (CI): 1.005-3.32 per standard deviation (SD) increase in serum IGF-I]. This association was more robust after exclusion of patients receiving treatment with acetylcholinesterase inhibitors or N-methyl D-aspartate (NMDA) receptor antagonists (OR = 2.23, 95 % CI: 1.10-4.48). In the total study population (n = 76) as well in the AD group (n = 40), serum IGF-I correlated negatively with CSF Aβ1-42, and CSF IGF-I correlated positively with CSF/serum albumin ratio, CSF total tau, and CSF phosphorylated tau. CONCLUSION In AD patients without major brain vascular comorbidities, serum but not CSF levels of IGF-I were increased after correction for covariates. This association was strengthened by exclusion of patients receiving medical treatment. Overall, the results support the notion of IGF-I resistance in mild AD dementia.
Collapse
Affiliation(s)
- Alexandra Horvath
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zeinab Salman
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrick Quinlan
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
18
|
Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22073365. [PMID: 33805974 PMCID: PMC8036996 DOI: 10.3390/ijms22073365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Auònoma de Barcelona, 08193 Barcelona, Spain;
| | - Mar Hernàndez-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Correspondence: ; Tel.: +34-934-896-766
| | - Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
19
|
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Ros P, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Impact of Long-Term HFD Intake on the Peripheral and Central IGF System in Male and Female Mice. Metabolites 2020; 10:metabo10110462. [PMID: 33202914 PMCID: PMC7698111 DOI: 10.3390/metabo10110462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF) system is responsible for growth, but also affects metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However, how diet and obesity modify this system has been poorly studied. We explored how intake of a high-fat diet (HFD) or commercial control diet (CCD) affects the IGF system in the circulation, visceral adipose tissue (VAT) and hypothalamus. Male and female C57/BL6J mice received HFD (60% fat, 5.1 kcal/g), CCD (10% fat, 3.7 kcal/g) or chow (3.1 % fat, 3.4 kcal/g) for 8 weeks. After 7 weeks of HFD intake, males had decreased glucose tolerance (p < 0.01) and at sacrifice increased plasma insulin (p < 0.05) and leptin (p < 0.01). Circulating free IGF1 (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.05) and IGFBP3 (p < 0.01) were higher after HFD in both sexes, with CCD increasing IGFBP2 in males (p < 0.001). In VAT, HFD reduced mRNA levels of IGF2 (p < 0.05), PAPP-A (p < 0.001) and stanniocalcin (STC)-1 (p < 0.001) in males. HFD increased hypothalamic IGF1 (p < 0.01), IGF2 (p < 0.05) and IGFBP5 (p < 0.01) mRNA levels, with these changes more apparent in females. Our results show that diet-induced changes in the IGF system are tissue-, sex- and diet-dependent.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| |
Collapse
|
20
|
Zegarra‐Valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐Rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB J 2020; 34:15975-15990. [DOI: 10.1096/fj.202001281rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jonathan A. Zegarra‐Valdivia
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
- Universidad Nacional de San Agustín de Arequipa Perú
| | - Jaime Pignatelli
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | | | - Ana M. Fernandez
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Victor Munive
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Laura Martinez‐Rachadell
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience School of Medicine UAM Madrid Spain
| | - Ignacio Torres Aleman
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| |
Collapse
|
21
|
Lee H, Kim E. Repositioning medication for cardiovascular and cerebrovascular disease to delay the onset and prevent progression of Alzheimer's disease. Arch Pharm Res 2020; 43:932-960. [PMID: 32909178 DOI: 10.1007/s12272-020-01268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a complex, progressive, neurodegenerative disorder. As with other common chronic diseases, multiple risk factors contribute to the onset and progression of AD. Many researchers have evaluated the epidemiologic and pathophysiological association between AD, cardiovascular diseases (CVDs), and cerebrovascular diseases (CBVDs), including commonly reported risk factors such as diabetes, hypertension, and dyslipidemia. Relevant therapies of CVDs/CBVDs for the attenuation of AD have also been empirically investigated. Considering the challenges of new drug development, in terms of cost and time, multifactorial approaches such as therapeutic repositioning of CVD/CBVD medication should be explored to delay the onset and progression of AD. Thus, in this review, we discuss our current understanding of the association between cardiovascular risk factors and AD, as revealed by clinical and non-clinical studies, as well as the therapeutic implications of CVD/CBVD medication that may attenuate AD. Furthermore, we discuss future directions by evaluating ongoing trials in the field.
Collapse
Affiliation(s)
- Heeyoung Lee
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea
| | - EunYoung Kim
- Evidence-Based Research Laboratory, Division of Clinical Pharmacotherapy, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
22
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Guerra-Cantera S, Frago LM, Díaz F, Ros P, Jiménez-Hernaiz M, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Short-Term Diet Induced Changes in the Central and Circulating IGF Systems Are Sex Specific. Front Endocrinol (Lausanne) 2020; 11:513. [PMID: 32849298 PMCID: PMC7431666 DOI: 10.3389/fendo.2020.00513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor (IGF) 1 exerts a wide range of functions in mammalians participating not only in the control of growth and metabolism, but also in other actions such as neuroprotection. Nutritional status modifies the IGF system, although little is known regarding how diet affects the newest members of this system including pregnancy-associated plasma protein-A (PAPP-A) and PAPP-A2, proteases that liberate IGF from the IGF-binding proteins (IGFBPs), and stanniocalcins (STCs) that inhibit PAPP-A and PAPP-A2 activity. Here we explored if a 1-week dietary change to either a high-fat diet (HFD) or a low-fat diet (LFD) modifies the central and peripheral IGF systems in both male and female Wistar rats. The circulating IGF system showed sex differences in most of its members at baseline. Males had higher levels of both free (p < 0.001) and total IGF1 (p < 0.001), as well as IGFBP3 (p < 0.001), IGFBP5 (p < 0.001), and insulin (p < 0.01). In contrast, females had higher serum levels of PAPP-A2 (p < 0.05) and IGFBP2 (p < 0.001). The responses to a short-term dietary change were both diet and sex specific. Circulating levels of IGF2 increased in response to LFD intake in females (p < 0.001) and decreased in response to HFD intake in males (p < 0.001). In females, LFD intake also decreased circulating IGFBP2 levels (p < 0.001). In the hypothalamus LFD intake increased IGF2 (p < 0.01) and IGFBP2 mRNA (p < 0.001) levels, as well as the expression of NPY (p < 0.001) and AgRP (p < 0.01), but only in males. In conclusion, short-term LFD intake induced more changes in the peripheral and central IGF system than did short-term HFD intake. Moreover, these changes were sex-specific, with IGF2 and IGFBP2 being more highly affected than the other members of the IGF system. One of the main differences between the commercial LFD employed and the HFD or normal rodent chow is that the LFD has a significantly higher sucrose content, suggesting that this nutrient could be involved in the observed responses.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificacion Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Maria Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- Julie A. Chowen
| |
Collapse
|
24
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Zegarra-Valdivia JA, Santi A, Fernández de Sevilla ME, Nuñez A, Torres Aleman I. Serum Insulin-Like Growth Factor I Deficiency Associates to Alzheimer’s Disease Co-Morbidities. J Alzheimers Dis 2019; 69:979-987. [DOI: 10.3233/jad-190241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Andrea Santi
- Cajal Institute (CSIC), Madrid, Spain
- CIBERNED, Spain
| | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | | |
Collapse
|
26
|
AsghariHanjani N, Vafa M. The role of IGF-1 in obesity, cardiovascular disease, and cancer. Med J Islam Repub Iran 2019; 33:56. [PMID: 31456980 PMCID: PMC6708115 DOI: 10.34171/mjiri.33.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Insulin-like growth factor1 (IGF1) is a polypeptide that structurally is similar to human pro-insulin, one of the factors that is altered in obesity and many related diseases, hence a large body of research devoted to evaluate it.
Methods: In this mini-review, we briefly explain the role of IGF1 in different conditions, including obesity, cardiovascular disease, and cancer through the results of review and original articles in both animal and human studies.
Results: The short-term metabolic effect of IGF-1 is insulin-like, and its long-term effect is growth factor-like. IGF1 has different roles in the initiation and progression of different diseases, because in some cases, the anti-apoptotic effect, can help cell survival while in others, it may lead to cancer or increment of adipocytes.
Conclusion: It is highly recommended to consider the different impacts of IGF1 in health and diseases prevention in future studies and interventions
Collapse
Affiliation(s)
- Nazanin AsghariHanjani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Hölscher C. Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Front Aging Neurosci 2019; 11:88. [PMID: 31068799 PMCID: PMC6491455 DOI: 10.3389/fnagi.2019.00088] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer’s disease (AD). The underlying mechanism that links up the two conditions seems to be the de-sensitization of insulin signaling. In patients with AD, insulin signaling was found to be de-sensitized in the brain, even if they did not have diabetes. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function and replacement, autophagy, oxidative stress management, synaptic plasticity, and cognitive function. Insulin desensitization, therefore, can enhance the risk of developing neurological disorders in later life. Other risk factors, such as high blood pressure or brain injury, also enhance the likelihood of developing AD. All these risk factors have one thing in common – they induce a chronic inflammation response in the brain. Pro-inflammatory cytokines block growth factor signaling and enhance oxidative stress. The underlying molecular processes for this are described in the review. Treatments to re-sensitize insulin signaling in the brain are also described, such as nasal insulin tests in AD patients, or treatments with re-sensitizing hormones, such as leptin, ghrelin, glucagon-like peptide 1 (GLP-1),and glucose-dependent insulinotropic polypeptide (GIP). The first clinical trials show promising results and are a proof of concept that utilizing such treatments is valid.
Collapse
Affiliation(s)
- Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
28
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
29
|
Femminella GD, Frangou E, Love SB, Busza G, Holmes C, Ritchie C, Lawrence R, McFarlane B, Tadros G, Ridha BH, Bannister C, Walker Z, Archer H, Coulthard E, Underwood BR, Prasanna A, Koranteng P, Karim S, Junaid K, McGuinness B, Nilforooshan R, Macharouthu A, Donaldson A, Thacker S, Russell G, Malik N, Mate V, Knight L, Kshemendran S, Harrison J, Hölscher C, Brooks DJ, Passmore AP, Ballard C, Edison P. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer's disease: study protocol for a randomised controlled trial (ELAD study). Trials 2019; 20:191. [PMID: 30944040 PMCID: PMC6448216 DOI: 10.1186/s13063-019-3259-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue currently approved for type 2 diabetes and obesity. Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells. The primary objective of the study is to evaluate the change in cerebral glucose metabolic rate after 12 months of treatment with liraglutide in participants with Alzheimer's disease compared to those who are receiving placebo. METHODS/DESIGN ELAD is a 12-month, multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild Alzheimer's dementia. A total of 206 participants will be randomised to receive either liraglutide or placebo as a daily injection for a year. The primary outcome will be the change in cerebral glucose metabolic rate in the cortical regions (hippocampus, medial temporal lobe, and posterior cingulate) from baseline to follow-up in the treatment group compared with the placebo group. The key secondary outcomes are the change from baseline to 12 months in z scores for clinical and cognitive measures (Alzheimer's Disease Assessment Scale-Cognitive Subscale and Executive domain scores of the Neuropsychological Test Battery, Clinical Dementia Rating Sum of Boxes, and Alzheimer's Disease Cooperative Study-Activities of Daily Living) and the incidence and severity of treatment-emergent adverse events or clinically important changes in safety assessments. Other secondary outcomes are 12-month change in magnetic resonance imaging volume, diffusion tensor imaging parameters, reduction in microglial activation in a subgroup of participants, reduction in tau formation and change in amyloid levels in a subgroup of participants measured by tau and amyloid imaging, and changes in composite scores using support machine vector analysis in the treatment group compared with the placebo group. DISCUSSION Alzheimer's disease is a leading cause of morbidity worldwide. As available treatments are only symptomatic, the search for disease-modifying therapies is a priority. If the ELAD trial is successful, liraglutide and GLP-1 analogues will represent an important class of compounds to be further evaluated in clinical trials for Alzheimer's treatment. TRIAL REGISTRATION ClinicalTrials.gov, NCT01843075 . Registration 30 April 2013.
Collapse
Affiliation(s)
| | - Eleni Frangou
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sharon B Love
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Gail Busza
- Department of Medicine, Imperial College London, London, UK
| | - Clive Holmes
- Southern Health NHS Foundation Trust, Havant, UK
| | - Craig Ritchie
- Department of Medicine, Imperial College London, London, UK
| | | | | | - George Tadros
- Aston Medical school, Aston University, Birmingham, UK
| | - Basil H Ridha
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | | - Zuzana Walker
- University College London and Essex Partnership University NHS Foundation Trust, Runwell, UK
| | | | | | - Ben R Underwood
- Cambridgeshire and Peterborough NHS Foundation Trust, Peterborough, UK
| | - Aparna Prasanna
- Black Country Partnership NHS Foundation Trust, West Bromwich, UK
| | - Paul Koranteng
- Northamptonshire Healthcare NHS Foundation Trust, Kettering, UK
| | - Salman Karim
- Lancashire Care NHS Foundation Trust, Preston, UK
| | - Kehinde Junaid
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | | | | | | | | | - Simon Thacker
- Derbyshire Healthcare NHS Foundation Trust, Derby, UK
| | - Gregor Russell
- Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Naghma Malik
- 5 Boroughs Partnership NHS Foundation Trust, Warrington, UK
| | - Vandana Mate
- Cornwall Partnership NHS Foundation Trust, Redruth, UK
| | - Lucy Knight
- Somerset Partnership NHS Foundation Trust, Bridgwater, UK
| | - Sajeev Kshemendran
- South Staffordshire and Shropshire Healthcare NHS Foundation Trust, Stafford, UK
| | - John Harrison
- Alzheimer Center VUmc Amsterdam, Amsterdam, the Netherlands.,Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | | | - David J Brooks
- Department of Medicine, Imperial College London, London, UK.,Newcastle University, Newcastle upon Tyne, UK
| | | | - Clive Ballard
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Paul Edison
- Department of Medicine, Imperial College London, London, UK. .,School of Medicine, College of Biomedical and Life sciences, Cardiff University, Cardiff, CF14 4YS, UK.
| |
Collapse
|
30
|
De Vita T, Albani C, Realini N, Migliore M, Basit A, Ottonello G, Cavalli A. Inhibition of Serine Palmitoyltransferase by a Small Organic Molecule Promotes Neuronal Survival after Astrocyte Amyloid Beta 1-42 Injury. ACS Chem Neurosci 2019; 10:1627-1635. [PMID: 30481470 DOI: 10.1021/acschemneuro.8b00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a slow-progressing disease of the brain characterized by symptoms such as impairment of memory and other cognitive functions. AD is associated with an inflammatory process that involves astrocytes and microglial cells, among other components. Astrocytes are the most abundant type of glial cells in the central nervous system (CNS). They are involved in inducing neuroinflammation. The present study uses astrocyte-neuron cocultures to investigate how ARN14494, a serine palmitoyltransferase (SPT) inhibitor, affects the CNS in terms of anti-inflammation and neuroprotection. SPT is the first rate-limiting enzyme in the de novo ceramide synthesis pathway. Consistent evidence suggests that ceramide is increased in AD brain patients. After β-amyloid 1-42 injury in an in vitro model of AD, ARN14494 inhibits SPT activity and the synthesis of long-chain ceramides and dihydroceramides that are involved in AD progression. In mouse primary cortical astrocytes, ARN14494 prevents the synthesis of proinflammatory cytokines TNFα and IL1β, growth factor TGFβ1, and oxidative stress-related enzymes iNOS and COX2. ARN14494 also exerts neuroprotective properties in primary cortical neurons. ARN14494 decreases neuronal death and caspase-3 activation in neurons, when the neuroinflammation is attenuated in astrocytes. These findings suggest that ARN14494 protects neurons from β-amyloid 1-42 induced neurotoxicity through a variety of mechanisms, including antioxidation, antiapoptosis, and anti-inflammation. SPT inhibition could therefore be a safe therapeutic strategy for ameliorating the pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- Teresa De Vita
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clara Albani
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Natalia Realini
- D3 Validation, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Migliore
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Abdul Basit
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giuliana Ottonello
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
31
|
Liraglutide and its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer's Disease and Cerebral Ischemic Events. Int J Mol Sci 2019; 20:ijms20051050. [PMID: 30823403 PMCID: PMC6429395 DOI: 10.3390/ijms20051050] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Liraglutide is a GLP-1 analog (glucagon like peptide-1) used primarily in the treatment of diabetes mellitus type 2 (DM2) and obesity. The literature starts to suggest that liraglutide may reduce the effects of ischemic stroke by activating anti-apoptotic pathways, as well as limiting the harmful effects of free radicals. The GLP-1R expression has been reported in the cerebral cortex, especially occipital and frontal lobes, the hypothalamus, and the thalamus. Liraglutide reduced the area of ischemia caused by MCAO (middle cerebral artery occlusion), limited neurological deficits, decreased hyperglycemia caused by stress, and presented anti-apoptotic effects by increasing the expression of Bcl-2 and Bcl-xl proteins and reduction of Bax and Bad protein expression. The pharmaceutical managed to decrease concentrations of proapoptotic factors, such as NF-κB (Nuclear Factor-kappa β), ICAM-1 (Intercellular Adhesion Molecule 1), caspase-3, and reduced the level of TUNEL-positive cells. Liraglutide was able to reduce the level of free radicals by decreasing the level of malondialdehyde (MDA), and increasing the superoxide dismutase level (SOD), glutathione (GSH), and catalase. Liraglutide may affect the neurovascular unit causing its remodeling, which seems to be crucial for recovery after stroke. Liraglutide may stabilize atherosclerotic plaque, as well as counteract its early formation and further development. Liraglutide, through its binding to GLP-1R (glucagon like peptide-1 receptor) and consequent activation of PI3K/MAPK (Phosphoinositide 3-kinase/mitogen associated protein kinase) dependent pathways, may have a positive impact on Aβ (amyloid beta) trafficking and clearance by increasing the presence of Aβ transporters in cerebrospinal fluid. Liraglutide seems to affect tau pathology. It is possible that liraglutide may have some stem cell stimulating properties. The effects may be connected with PKA (phosphorylase kinase A) activation. This paper presents potential mechanisms of liraglutide activity in conditions connected with neuronal damage, with special emphasis on Alzheimer's disease and cerebral ischemia.
Collapse
|
32
|
Fernandez A, Santi A, Torres Aleman I. Insulin Peptides as Mediators of the Impact of Life Style in Alzheimer's disease. Brain Plast 2018; 4:3-15. [PMID: 30564544 PMCID: PMC6297900 DOI: 10.3233/bpl-180071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
The search for the cause of Alzheimer's disease (AD), that affects millions of people worldwide, is currently one of the most important scientific endeavors from a clinical perspective. There are so many mechanisms proposed, and so disparate changes observed, that it is becoming a challenging task to provide a comprehensive view of possible pathogenic processes in AD. Tauopathy (intracellular neurofibrillary tangles) and amyloidosis (extracellular amyloid plaques) are the anatomical hallmarks of the disease, and the formation of these proteinaceous aggregates in specific brain areas is widely held as the ultimate pathogenic mechanism. However, the triggers of this dysproteostasis process remain unknown. Further, neurofibrillary tangles and plaques may only constitute the last stages of a process of still uncertain origin. Thus, without an established knowledge of its etiology, and no cure in the horizon, prevention - or merely delaying its development, has become a last-resort goal in AD research. As with other success stories in preventive medicine, epidemiological studies have provided basic knowledge of risk factors in AD that may contribute to understand its etiology. Disregarding old age, gender, and ApoE4 genotype as non preventable risk factors, there are diverse life-style traits - many of them closely related to cardiovascular health, that have been associated to AD risk. Most prominent among them are diet, physical and mental activity, exposure to stress, and sleep/wake patterns. We argue that all these life-style factors engage insulinergic pathways that affect brain function, providing a potentially unifying thread for life-style and AD risk. Although further studies are needed to firmly establish a link between faulty insulinergic function and AD, we herein summarize the evidence that this link should be thoroughly considered.
Collapse
Affiliation(s)
| | - A. Santi
- Cajal Institute and Ciberned, Madrid, Spain
| | | |
Collapse
|
33
|
Bryzgalov DV, Kuznetsova IL, Rogaev EI. Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. BIOCHEMISTRY (MOSCOW) 2018; 83:1124-1138. [PMID: 30472951 DOI: 10.1134/s0006297918090146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of memory enhancement is extremely important in intellectual activity areas and therapy of different types of dementia, including Alzheimer's disease (AD). The attempts to solve this problem have come from different research fields. In the first part of our review, we describe the results of targeting certain genes involved in memory-associated molecular pathways. The second part of the review is focused on the deep stimulation of brain structures that can slow down memory loss in AD. The third part describes the results of the use of non-invasive brain stimulation techniques for memory modulation, consolidation, and retrieval in healthy people and animal models. Integration of data from different research fields is essential for the development of efficient strategies for memory enhancement.
Collapse
Affiliation(s)
- D V Bryzgalov
- Memory, Oscillations, Brain States (MOBS) Team, Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, Paris, France.
| | - I L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| |
Collapse
|
34
|
Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease. Drug Des Devel Ther 2018; 12:3999-4021. [PMID: 30538427 PMCID: PMC6255119 DOI: 10.2147/dddt.s173970] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia,
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia,
| | - Hamed Karimian
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Girish Prabhu
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
35
|
Zhong KL, Chen F, Hong H, Ke X, Lv YG, Tang SS, Zhu YB. New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer's Disease. Metab Brain Dis 2018; 33:1009-1018. [PMID: 29626315 DOI: 10.1007/s11011-018-0227-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests that diabetes mellitus (DM) is associated with mild cognitive impairment (MCI), vascular dementia and Alzheimer's disease (AD). Biological, clinical and epidemiological data support a close link between DM and AD. Increasingly, studies have found that several antidiabetic agents can promote neurogenesis, and clinically ameliorate cognitive and memory impairments in different clinical settings. Data has shown that these antidiabetic drugs positively affect mitochondrial and synaptic function, neuroinflammation, and brain metabolism. Evidence to date strongly suggests that these antidiabetic drugs could be developed as disease-modifying therapies for MCI and AD in patients with and without diabetes.
Collapse
Affiliation(s)
- Kai Long Zhong
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Fang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuan Ke
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Ge Lv
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Su Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Bing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
36
|
Kamal MA, Shakil S, Nawaz MS, Yu QS, Tweedie D, Tan Y, Qu X, Greig NH. Inhibition of Butyrylcholinesterase with Fluorobenzylcymserine, An Experimental Alzheimer's Drug Candidate: Validation of Enzoinformatics Results by Classical and Innovative Enzyme Kinetic Analyses. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:820-827. [PMID: 28176640 DOI: 10.2174/1871527316666170207160606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selective butyrylcholinesterase (BuChE)-inhibition, increases acetylcholine (ACh) levels. In rodents, this inhibition is known to boost cognition. Also, this occurs without the typical unwanted adverse effects of acetylcholinesterase-inhibitors or AChE-Is. The novel compound, fluorobenzylcymserine (FBC), is derived from our effort to design a selective BuChE-inhibitor. Also, we wanted to check whether butyrylcholinesterase-inhibitors (BuChE-Is) possessed an edge over AChE-Is in Alzheimer's disease (AD) in terms of efficacy and/or tolerance. METHOD FBC was synthesized as reported earlier while enzymatic activity of BuChE was calculated by Ellman-technique. Molecular docking was performed using Autodock4.2. We applied classical as well as innovative analyses of enzyme-kinetics for exploring "FBC:human BuChE-interaction". The mode of inhibition and kinetic parameters were also determined. RESULTS Docking results displayed two strong interacting sites for FBC. One of these binding sites was previously identified as a deep narrow groove having polar aromatic residues while a second site was identified during this study which displayed better interaction and was lined with aliphatic and sulphur containing residues. At low concentrations of BuChE, the IC50 was found to be very low i.e. 4.79 and 6.10 nM for 12 and 36 µg, respectively, whereas it increased exponentially by increasing the units of BuChE. CONCLUSION These analyses indicate that FBC is an interesting AD drug candidate that could provide a potent and partial mixed type of inhibition of human BuChE.
Collapse
Affiliation(s)
- Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Shazi Shakil
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Muhammad S Nawaz
- Department of Biological Science, COMSATS, Islamabad, Pakistan; 4Novel Global Community Educational Foundation, New South Wales. Australia
| | - Qian-Sheng Yu
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. United States
| | - David Tweedie
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. United States
| | - Y Tan
- Department of Medical & Molecular Biosciences, Faculty of Science, University of Technology, Sydney, NSW. Australia
| | - Xianqin Qu
- Department of Medical & Molecular Biosciences, Faculty of Science, University of Technology, Sydney, NSW. Australia
| | - Nigel H Greig
- Drug Design & Development Section, Gerontology Research Center, Room 4B02, 5600 Nathan Shock Dr., Baltimore, MD 21224. United States
| |
Collapse
|
37
|
Goetzl EJ, Nogueras-Ortiz C, Mustapic M, Mullins RJ, Abner EL, Schwartz JB, Kapogiannis D. Deficient neurotrophic factors of CSPG4-type neural cell exosomes in Alzheimer disease. FASEB J 2018; 33:231-238. [PMID: 29924942 DOI: 10.1096/fj.201801001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exosomes derived from chondroitin sulfate proteoglycan (CSPG) 4 type neural precursor cells (CSPG4Es) were purified from human plasma by sequential immunoabsorption with anti-CSPG4 and anti-platelet growth factor receptor α mAb to characterize the potential in vivo roles of CSPG4 cells in neuronal repair. Hepatocyte growth factor, fibroblast growth factors (FGFs)-2 and -13, and type 1 insulin-like growth factor (IGF-1), which enhance neuronal survival and functions, were quantified in CSPG4E extracts. For CSPG4Es of 24 healthy control subjects, mean levels of hepatocyte growth factor, FGF-13, and IGF-1, but not FGF-2, were significantly higher by up to 7-fold than in their neuronal-derived exosomes, and mean levels of all 4 growth factors were significantly higher by up to 8-fold than in their astrocyte-derived exosomes. Mean CSPG4E levels of all growth factors were significantly lower in patients with mild Alzheimer disease (AD) ( n = 24) than in age- and sex-matched cognitively normal control subjects ( n = 24). Mean CSPG4E levels of all growth factors were also significantly lower in 15 patients at the stage of moderate dementia from AD (AD2) and at their preclinical stage 3 to 8 yr earlier (AD1), with no differences between values at stages AD1 and AD2. Current findings suggest that CSPG4 cells export in exosomes higher levels of neurotrophic factors than neurons or astrocytes and that CSPG4E neurotrophic factors are diminished early in AD, with no significant progression of decreases later in the course.-Goetzl, E. J., Nogueras-Ortiz, C., Mustapic, M., Mullins, R. J., Abner, E. L., Schwartz, J. B., Kapogiannis, D. Deficient neurotrophic factors of CSPG4-type neural cell exosomes in Alzheimer disease.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Jewish Home of San Francisco, San Francisco, California, USA
| | | | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland, USA
| | - Roger J Mullins
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Janice B Schwartz
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Jewish Home of San Francisco, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
38
|
Durães F, Pinto M, Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11020044. [PMID: 29751602 PMCID: PMC6027455 DOI: 10.3390/ph11020044] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are increasing in number, given that the general global population is becoming older. They manifest themselves through mechanisms that are not fully understood, in many cases, and impair memory, cognition and movement. Currently, no neurodegenerative disease is curable, and the treatments available only manage the symptoms or halt the progression of the disease. Therefore, there is an urgent need for new treatments for this kind of disease, since the World Health Organization has predicted that neurodegenerative diseases affecting motor function will become the second-most prevalent cause of death in the next 20 years. New therapies can come from three main sources: synthesis, natural products, and existing drugs. This last source is known as drug repurposing, which is the most advantageous, since the drug’s pharmacokinetic and pharmacodynamic profiles are already established, and the investment put into this strategy is not as significant as for the classic development of new drugs. There have been several studies on the potential of old drugs for the most relevant neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
39
|
Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canzoniero LMT, Cimini A, Sensi SL. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging 2017; 64:33-43. [PMID: 29331730 DOI: 10.1016/j.neurobiolaging.2017.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Modulation of insulin-dependent signaling is emerging as a valuable therapeutic tool to target neurodegeneration. In the brain, the activation of insulin receptors promotes cell growth, neuronal repair, and protection. Altered brain insulin signaling participates in the cognitive decline seen in Alzheimer's disease patients and the aging brain. Glucagon-like peptide-1 (GLP-1) regulates insulin secretion and, along with GLP-1 analogues, enhances neurotrophic signaling and counteracts cognitive deficits in preclinical models of neurodegeneration. Moreover, recent evidence indicates that GLP-1 modulates the activity of the brain-derived neurotrophic factor (BDNF). In this study, in adult wild-type mice, here employed as a model of mid-life brain aging, we evaluated the effects of a 2-month treatment with exenatide, a GLP-1 analogue. We found that exenatide promotes the enhancement of long-term memory performances. Biochemical and imaging analyses show that the drug promotes the activation of the BDNF-TrkB neurotrophic axis and inhibits apoptosis by decreasing p75NTR-mediated signaling. The study provides preclinical evidence for the use of exenatide to delay age-dependent cognitive decline.
Collapse
Affiliation(s)
- Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Noemi Massetti
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Elena Silvestri
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, USA; National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy; Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, USA.
| |
Collapse
|
40
|
Lee A, Shen M, Qiu A. Psychiatric polygenic risk associates with cortical morphology and functional organization in aging. Transl Psychiatry 2017; 7:1276. [PMID: 29225336 PMCID: PMC5802582 DOI: 10.1038/s41398-017-0036-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/04/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
Common brain abnormalities in cortical morphology and functional organization are observed in psychiatric disorders and aging, reflecting shared genetic influences. This preliminary study aimed to examine the contribution of a polygenetic risk for psychiatric disorders (PRScross) to aging brain and to identify molecular mechanisms through the use of multimodal brain images, genotypes, and transcriptome data. We showed age-related cortical thinning in bilateral inferior frontal cortex (IFC) and superior temporal gyrus and alterations in the functional connectivity between bilateral IFC and between right IFC and right inferior parietal lobe as a function of PRScross. Interestingly, the genes in PRScross, that contributed most to aging neurodegeneration, were expressed in the functioanlly connected cortical regions. Especially, genes identified through the genotype-functional connectivity association analysis were commonly expressed in both cortical regions and formed strong gene networks with biological processes related to neural plasticity and synaptogenesis, regulated by glutamatergic and GABAergic transmission, neurotrophin signaling, and metabolism. This study suggested integrating genotype and transcriptome with neuroimage data sheds new light on the mechanisms of aging brain.
Collapse
Affiliation(s)
- Annie Lee
- 0000 0001 2180 6431grid.4280.eDepartment of Biomedical Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Mojun Shen
- 0000 0004 0637 0221grid.185448.4Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609 Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore. .,Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609, Singapore. .,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
41
|
Girard H, Potvin O, Nugent S, Dallaire-Théroux C, Cunnane S, Duchesne S. Faster progression from MCI to probable AD for carriers of a single-nucleotide polymorphism associated with type 2 diabetes. Neurobiol Aging 2017; 64:157.e11-157.e17. [PMID: 29338921 DOI: 10.1016/j.neurobiolaging.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Sporadic Alzheimer's disease (AD), as opposed to its autosomal dominant form, is likely caused by a complex interaction of genetic, environmental, and health lifestyle factors. Twin studies indicate that sporadic AD heritability could be between 58% and 79%, around half of which is explained by the ε4 allele of the apolipoprotein E (APOE4). We hypothesized that genes associated with known risk factors for AD, namely hypertension, hypercholesterolemia, obesity, diabetes, and cardiovascular disease, would contribute significantly to the remaining heritability. We analyzed 22 AD-associated single-nucleotide polymorphisms (SNPs), associated with these risk factors, that were included in the sequencing data of the Alzheimer's Disease Neuroimaging Initiative 1 data set, which included 355 participants with mild cognitive impairment (MCI). We built survival models with the selected SNPs to predict progression of MCI to probable AD over the 10-year follow-up of the study. The rs391300 SNP, located on the serine racemase (SRR) gene and linked to increased susceptibility to type 2 diabetes, was associated with progression from MCI to probable AD.
Collapse
Affiliation(s)
- Hugo Girard
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada; Département de radiologie, Faculté de médecine, Université Laval, Québec, Canada
| | - Olivier Potvin
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Scott Nugent
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Caroline Dallaire-Théroux
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada; Faculté de médecine, Université Laval, Québec, Canada
| | - Stephen Cunnane
- Département de médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Duchesne
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada; Département de radiologie, Faculté de médecine, Université Laval, Québec, Canada.
| | | |
Collapse
|
42
|
Chalichem NSS, Gonugunta C, Krishnamurthy PT, Duraiswamy B. DPP4 Inhibitors Can Be a Drug of Choice for Type 3 Diabetes: A Mini Review. Am J Alzheimers Dis Other Demen 2017; 32:444-451. [PMID: 28747063 PMCID: PMC10852729 DOI: 10.1177/1533317517722005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As well known to the scientific community, Alzheimer's disease (AD) is an irreversible neurodegenerative disease that ends up with impairment of memory and cognition due to neuronal and synapse loss. Patient's quality of life can be enhanced by targeting neurogenesis as a therapeutic paradigm. Moreover, several research evidences support the concept that AD is a type of metabolic disorder mediated by impairment in brain insulin responsiveness and energy metabolism. Growing evidence suggests that endogenous peptides such as glucagon-like peptide-1 (GLP-1) and stromal-derived factor-1α (SDF-1α) provide neuroprotection across a range of experimental models of AD. So, preserving functional activity of SDF-1α and GLP-1 by dipeptidyl peptidase-4 inhibition will enhance the homing/recruitment of brain resident and nonresident circulating stem cells/progenitor cells, a noninvasive approach for promoting neurogenesis. So, herewith we provide this in support of dipeptidyl peptidase-4 inhibitors as a new target of attention for treating AD.
Collapse
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, (Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru), Ooty, India
| | - Chaitanya Gonugunta
- Department of Pharmacology, Guntur Medical College, Guntur, Andhra Pradesh, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru), Ooty, India
| | - Basavan Duraiswamy
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, (Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru), Ooty, India
| |
Collapse
|
43
|
Tsai CL, Ukropec J, Ukropcová B, Pai MC. An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. Neuroimage Clin 2017; 17:272-284. [PMID: 29527475 PMCID: PMC5842646 DOI: 10.1016/j.nicl.2017.10.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/09/2017] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Abstract
Although exercise is an effective way to decrease the risk of developing Alzheimer's disease, the biological basis for such benefits from the different exercise modes remains elusive. The present study thus aimed (i) to investigate the effects of acute aerobic or resistance exercise on neurocognitive performances and molecular markers when performing a cognitive task involving executive functioning in older adults with amnestic mild cognitive impairment (aMCI), and (ii) to explore relationships of acute exercise-induced neurocognitive changes with changes in circulating levels of neuroprotective growth factors (e.g., BDNF, IGF-1, VEGF, and FGF-2, collectively termed 'exerkines'), elicited by different acute exercise modes. Sixty-six older adults with aMCI were recruited and randomly assigned to an aerobic exercise (AE) group, a resistance exercise (RE) group, or a non-exercise-intervention (control) group. The behavioral [i.e., accuracy rate (AR) and reaction time (RT)] and electrophysiological [i.e., event-related potential (ERP) P3 latency and amplitude collected from the Fz, Cz, and Pz electrodes] indices were simultaneously measured when participants performed a Flanker task at baseline and after either an acute bout of 30 min of moderate-intensity AE, RE or a control period. Blood samples were taken at three time points, one at baseline (T1) and two after an acute exercise intervention (T2 and T3: before and after cognitive task test, respectively). The results showed that the acute AE and RE not only improved behavioral (i.e., RTs) performance but also increased the ERP P3 amplitudes in the older adults with aMCI. Serum FGF-2 levels did not change with acute aerobic or resistance exercise. However, an acute bout of aerobic exercise significantly increased serum levels of BDNF and IGF-1 and tended to increase serum levels of VEGF in elderly aMCI individuals. Acute resistance exercise increased only serum IGF-1 levels. However, the exercise-induced elevated levels of these molecular markers returned almost to baseline levels in T3 (about 20 min after acute exercise). In addition, changes in the levels of neurotrophic and angiogenic factors were not correlated with changes in RTs and P3 amplitudes. The present findings of changes in neuroprotective growth factors and neurocognitive performances through acute AE or RE suggest that molecular and neural prerequisites for exercise-dependent plasticity are preserved in elderly aMCI individuals. However, the distinct pattern of changes in circulating molecular biomarkers induced by two different exercise modes in aMCI elderly individuals and the potentially interactive mechanisms of the effects of BDNF, IGF-1, and VEGF on amyloid-β provide a basis for future long-term exercise intervention to investigate whether AE relative to RE might be more effective in prevention/treatment of an early stage neurodegenerative disease.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan, ROC..
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 704, Taiwan, ROC.; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Taiwan.
| |
Collapse
|
44
|
Bao J, Mahaman YAR, Liu R, Wang JZ, Zhang Z, Zhang B, Wang X. Sex Differences in the Cognitive and Hippocampal Effects of Streptozotocin in an Animal Model of Sporadic AD. Front Aging Neurosci 2017; 9:347. [PMID: 29163130 PMCID: PMC5671606 DOI: 10.3389/fnagi.2017.00347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023] Open
Abstract
More than 95% of Alzheimer's disease (AD) belongs to sporadic AD (sAD), and related animal models are the important research tools for investigating the pathogenesis and developing new drugs for sAD. An intracerebroventricular infusion of streptozotocin (ICV-STZ) is commonly employed to generate sporadic AD animal model. Moreover, the potential impact of sex on brain function is now emphasized in the field of AD. However, whether sex differences exist in AD animal models remains unknown. Here we reported that ICV-STZ remarkably resulted in learning and memory impairment in the Sprague-Dawley male rats, but not in the female rats. We also found tau hyperphosphorylation, an increase of Aβ40/42 as well as increase in both GSK-3β and BACE1 activities, while a loss of dendritic and synaptic plasticity was observed in the male STZ rats. However, STZ did not induce above alterations in the female rats. Furthermore, estradiol levels of serum and hippocampus of female rats were much higher than that of male rats. In conclusion, sex differences exist in this sporadic AD animal model (Sprague-Dawley rats induced by STZ), and this should be considered in future AD research.
Collapse
Affiliation(s)
- Jian Bao
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou A R Mahaman
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiguo Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaochuan Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
45
|
Picillo M, Pivonello R, Santangelo G, Pivonello C, Savastano R, Auriemma R, Amboni M, Scannapieco S, Pierro A, Colao A, Barone P, Pellecchia MT. Serum IGF-1 is associated with cognitive functions in early, drug-naïve Parkinson's disease. PLoS One 2017; 12:e0186508. [PMID: 29065116 PMCID: PMC5655531 DOI: 10.1371/journal.pone.0186508] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Cognitive deficits are common in Parkinson's disease (PD) since the early stages and many patients eventually develop dementia. Yet, occurrence of dementia in PD is unpredictable. Evidence supports the hypothesis that insulin-like growth factor-1 (IGF-1) is involved in cognitive deficits. Our aim was to evaluate the relationship between serum IGF-1 levels and neuropsychological scores in a large cohort of drug-naïve PD patients during the earliest stages of the disease. METHODS Serum IGF-1 levels were determined in 405 early, drug-naïve PD patients and 191 healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). The association between serum IGF-1 levels and neuropsychological scores was evaluated with linear regression analysis. RESULTS IGF-1 levels were similar in PD and HC. In PD patients the lowest IGF-1 quartile was a predictor of lower performances at the Semantic Fluency task (β = -3.46, 95%CI: -5.87 to -1.01, p = 0.005), the Symbol Digit Modalities Score (β = -2.09, 95%CI: -4.02 to -0.15, p = 0.034), and Hopkins Verbal Learning Test Retention (β = -0.05, 95%CI: -0.09 to -0.009, p = 0.019). CONCLUSIONS Lower serum IGF-1 levels are associated to poor performances in cognitive tasks assessing executive function, attention and verbal memory in a large cohort of early PD patients. Follow-up studies are warranted to assess if IGF-1 is related to the development of dementia in PD.
Collapse
Affiliation(s)
- Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriella Santangelo
- Neuropsychology Laboratory, Department of Psychology, Second University of Naples, Caserta, Italy
| | - Claudia Pivonello
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Riccardo Savastano
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - Renata Auriemma
- IOS and Coleman Medicina Futura Medical Center, Naples, Italy
| | - Marianna Amboni
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
- IDC Hermitage-Capodimonte, Naples, Italy
| | - Sara Scannapieco
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - Angela Pierro
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
- * E-mail:
| |
Collapse
|
46
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017; 71:e21990. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
47
|
Cai XS, Tan ZG, Li JJ, Gao WH, Li SJ, Li JL, Tang YM, Li HW, Hui HX. Glucagon-Like Peptide-1 (GLP-1) Treatment Ameliorates Cognitive Impairment by Attenuating Arc Expression in Type 2 Diabetic Rats. Med Sci Monit 2017; 23:4334-4342. [PMID: 28885995 PMCID: PMC5601394 DOI: 10.12659/msm.903252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Glucagon-like peptide-1 (GLP-1) has been reported to exert some beneficial effects on the central nervous system (CNS). However, the effect of GLP-1 on cognitive impairment associated with type 2 diabetes is not well known. This study investigated the effect of GLP-1 on ameliorating memory deficits in type 2 diabetic rats. Material/Methods Type 2 diabetic rats were induced by a high-sugar, high-fat diet, followed by streptozotocin (STZ) injection and then tested in the Morris Water Maze (MWM) 1 week after the induction of diabetes. The mRNA expression of Arc, APP, BACE1, and PS1 were determined by real-time quantitative PCR, and the Arc protein was analyzed by immunoblotting and immunohistochemistry. Results Type 2 diabetic rats exhibited a significant decline in learning and memory in the MWM tests, but GLP-1 treatment was able to protect this decline and significantly improved learning ability and memory. The mRNA expression assays showed that GLP-1 treatment markedly reduced Arc, APP, BACE1, and PS1 expressions, which were elevated in the diabetic rats. Immunoblotting and immunohistochemistry results also confirmed that Arc protein increased in the hippocampus of diabetic rats, but was reduced after GLP-1 treatment. Conclusions Our findings suggest that GLP-1 treatment improves learning and memory deficits in type 2 diabetic rats, and this effect is likely through the reduction of Arc expression in the hippocampus.
Collapse
Affiliation(s)
- Xiang-Sheng Cai
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland).,International Center for Metabolic Diseases, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Dongguan SMU Metabolic Medicine R&D Inc., Dongguan, Guangdong, China (mainland)
| | - Zhao-Guang Tan
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland).,International Center for Metabolic Diseases, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Dongguan SMU Metabolic Medicine R&D Inc., Dongguan, Guangdong, China (mainland)
| | - Jing-Jing Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wei-Hong Gao
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland).,International Center for Metabolic Diseases, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Dongguan SMU Metabolic Medicine R&D Inc., Dongguan, Guangdong, China (mainland)
| | - Shu-Ji Li
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jin-Long Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yong-Ming Tang
- UCLA Center for Excellence in Pancreatic Disease, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hong-Wei Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Hong-Xiang Hui
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China (mainland).,International Center for Metabolic Diseases, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Dongguan SMU Metabolic Medicine R&D Inc., Dongguan, Guangdong, China (mainland).,UCLA Center for Excellence in Pancreatic Disease, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Carelli-Alinovi C, Misiti F. Erythrocytes as Potential Link between Diabetes and Alzheimer's Disease. Front Aging Neurosci 2017; 9:276. [PMID: 28890694 PMCID: PMC5574872 DOI: 10.3389/fnagi.2017.00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
Many studies support the existence of an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD). In AD, in addition to brain, a number of peripheral tissues and cells are affected, including red blood cell (RBC) and because there are currently no reliable diagnostic biomarkers of AD in the blood, a gradually increasing attention has been given to the study of RBC's alterations. Recently it has been evidenced in diabetes, RBC alterations superimposable to the ones occurring in AD RBC. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of RBC's alterations and vice versa. Once again this represents a further evidence of a shared pathway between AD and T2DM. The present review summarizes the two disorders, highlighting the role of RBC in the postulated common biochemical links, and suggests RBC as a possible target for clinical trials.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- School of Medicine, Biochemistry and Clinical Biochemistry Institute, Università Cattolica del Sacro CuoreRome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio MeridionaleCassino, Italy
| |
Collapse
|
49
|
Protective effects of Huanglian Wendan Decoction aganist cognitive deficits and neuronal damages in rats with diabetic encephalopathy by inhibiting the release of inflammatory cytokines and repairing insulin signaling pathway in hippocampus. Chin J Nat Med 2017; 14:813-822. [PMID: 27914525 DOI: 10.1016/s1875-5364(16)30098-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/28/2022]
Abstract
Huanglian Wendan decoction (HLWDD) has been used for the treatment of symptom of "Re", one of major causes in diabetes and metabolic disorders, according to the theory of traditional Chinese medicine. The present study aimed at investigating the cerebral protective effects of HLWDD on diabetic encephalopathy (DE), one of the major diabetic complications. The effects of HLWDD and metformin were analyzed in the streptozocin (STZ) + high-glucose-fat (HGF) diet-induced DE rats by gastric intubation. In the present study, the effects of HLWDD on cognition deficits were investigated after 30-day intervention at two daily dose levels (3 and 6 g·kg-1). To explore the potential mechanisms underlying the effects of HLWDD, we detected the alterations of neuronal damages, inflammatory cytokines, and impaired insulin signaling pathway in hippocampus of the DE rats. Based on our results from the present study, we concluded that the protective effects of HLWDD against the cognitive deficits and neuronal damages through inhibiting the release of inflammatory cytokines and repairing insulin signaling pathway in hippocampus of the DE rats.
Collapse
|
50
|
Wang JM, Qu ZQ, Wu JL, Chung P, Zeng YS. Mitochondrial protective and anti-apoptotic effects of Rhodiola crenulata extract on hippocampal neurons in a rat model of Alzheimer's disease. Neural Regen Res 2017; 12:2025-2034. [PMID: 29323042 PMCID: PMC5784351 DOI: 10.4103/1673-5374.221160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata (RCE) improved spatial cognition in a rat model of Alzheimer's disease. Another study from our laboratory showed that RCE enhanced neural cell proliferation in the dentate gyrus of the hippocampus and prevented damage to hippocampal neurons in a rat model of chronic stress-induced depression. However, the mechanisms underlying the neuroprotective effects of RCE are unclear. In the present study, we investigated the anti-apoptotic effect of RCE and its neuroprotective mechanism of action in a rat model of Alzheimer's disease established by intracerebroventricular injection of streptozotocin. The rats were pre-administered RCE at doses of 1.5, 3.0 or 6.0 g/kg for 21 days before model establishment. ATP and cytochrome c oxidase levels were significantly decreased in rats with Alzheimer's disease. Furthermore, neuronal injury was obvious in the hippocampus, with the presence of a large number of apoptotic neurons. In comparison, in rats given RCE pretreatment, ATP and cytochrome c oxidase levels were markedly increased, the number of apoptotic neurons was reduced, and mitochondrial injury was mitigated. The 3.0 g/kg dose of RCE had the optimal effect. These findings suggest that pretreatment with RCE prevents mitochondrial dysfunction and protects hippocampal neurons from apoptosis in rats with Alzheimer's disease.
Collapse
Affiliation(s)
- Jun-Mei Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ze-Qiang Qu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peter Chung
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University; Institute of Spinal Cord Injury, Sun Yat-sen University; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|