1
|
Tian S, Li K, Tang H, Peng Y, Xia L, Wang X, Chen X, Zhou F. Clinical characteristics of Gram-negative and Gram-positive bacterial infection in acute cholangitis: a retrospective observational study. BMC Infect Dis 2022; 22:269. [PMID: 35307004 PMCID: PMC8935737 DOI: 10.1186/s12879-021-06964-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the difference in the severity of illness, organ dysfunction, and prognosis of acute cholangitis due to different pathogenic bacterial infection types. Methods A retrospective observational study was performed. Patients who met the selection criteria according to blood culture and bile culture results of different pathogenic bacterial were divided into groups. The severity of illness, organ dysfunction, and prognosis of the groups were analyzed and compared comprehensively. Results A total of 424 patients were included, and no bacterial growth developed in 111 patients (26.2%). Among the 313 patients (73.8%) with bacterial growth, 155 patients had only Gram-negative bacteria cultured (49.5%), 48 patients had only Gram-positive bacteria cultured (15.3%), and 110 patients had both Gram-negative and Gram-positive bacteria cultured (35.1%). The proportion of Grade III patients and the APACHE II and SOFA scores of the mixed Gram-negative and positive group were the highest (p < 0.05); the intensive care unit admission day and hospital stay were longer, and the mortality rate were also higher 20/110 (18.2%) than the other two groups. Regression analysis showed that bacterial growth was an independent risk factor for organ dysfunction. The risks of an increased septic shock, neurological dysfunction, hepatic dysfunction, hematological dysfunction, and respiratory dysfunction in the mixed Gram-negative and positive group were higher than the Gram-negative group (P < 0.05). The Cox proportional hazards regression prompt showed that different culture results were independent risk factors for death. The mixed Gram-negative and positive group had increased hazard ratios and 95% CI of 7.30 (95% CI 1.55 to 34.38) compared with the Gram-negative group. There was no difference between the Gram-negative group and the Gram-positive group in the severity of illness, organ dysfunction, intensive care unit admission day, hospital stay, mortality rate, and risk of death (P > 0.05). Conclusions In acute cholangitis, mixed infection with Gram-negative and Gram-positive bacteria was more severe and was associated with a higher risk of death. There were no apparent differences between Gram-negative and Gram-positive bacterial infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06964-1.
Collapse
|
2
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
3
|
Duan J, Xie Y, Yang J, Luo Y, Guo Y, Wang C. Variation of Circulating Inflammatory Mediators in Staphylococcus aureus and Escherichia coli Bloodstream Infection. Med Sci Monit 2016; 22:161-71. [PMID: 26772168 PMCID: PMC4720174 DOI: 10.12659/msm.896576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background The aim of this study was to examine the behavior of circulating inflammatory mediators and to exclude gram-positive from gram-negative bloodstream infections. Results may be helpful in selection of optimal specific antibiotic therapies. Material/Methods Mice (25–27 g) were randomized to 3 groups infected with Staphylococcus aureus (S. aureus) ATCC 25923, Escherichia coli (E. coli) ATCC 25922, or phosphate-buffered saline (PBS). The white blood cell count (WBC) and the concentrations of serum C-reactive protein (CRP), procalcitonin (PCT), interleukin (IL)-1α, IL-1β, IL-6, IL-10, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were detected in blood samples at different time intervals after intravenous tail injection. Results The results showed that compared to the control mice, infected animals exhibited significantly higher levels of all mediators after bacterial infection. Moreover, compared to the mice that received S. aureus, animals with E. coli infection showed significantly greater increases in serum IL-1α, IL-1β, IL-6, MCP-1, and MIP-1α levels. Conclusions These results suggest that the use of the analyzed serum markers at an early stage of bloodstream infection may give useful information for the clinician to distinguish gram-negative from gram-positive infections.
Collapse
Affiliation(s)
- Jinyan Duan
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Yinjing Xie
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Jiyong Yang
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Yanping Luo
- Department of Microbiology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Yuni Guo
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
4
|
Antiulcerogenic activity of Carica papaya seed in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:305-17. [DOI: 10.1007/s00210-014-1069-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/11/2014] [Indexed: 01/18/2023]
|
5
|
Chen K, Li J, Wang J, Xia Y, Dai W, Wang F, Shen M, Cheng P, Zhang Y, Wang C, Yang J, Zhu R, Zhang H, Zheng Y, Lu J, Fan Z, Zhou Y, Guo C. 15-Deoxy- γ 12,14-prostaglandin J2 Reduces Liver Impairment in a Model of ConA-Induced Acute Hepatic Inflammation by Activation of PPAR γ and Reduction in NF- κ B Activity. PPAR Res 2014; 2014:215631. [PMID: 25120564 PMCID: PMC4121249 DOI: 10.1155/2014/215631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022] Open
Abstract
Objective. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) reduces inflammation and has been identified as an anti-inflammatory prostaglandin in numerous animal models. In this study, we investigated both effects of 15d-PGJ2 and its protection mechanism in concanavalin A- (ConA-) induced autoimmune hepatitis in mice. Materials and Methods. In vivo, Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and 15d-PGJ2 (10 μg or 25 μg) was administered 1 h before the ConA injection. The histological grade, proinflammatory cytokine levels, and NF-κB and PPARγ activity were determined 6, 12, and 24 h after the ConA injection. In vitro, LO2 cells and RAW264.7 cells were pretreated with 15d-PGJ2 (2 μM) 1 h before the stimulation with ConA (30 μg/mL). The NF-κB and PPARγ activity were determined 30 min after the ConA administration. Results. Pretreatment with 15d-PGJ2 reduced the pathological effects of ConA-induced autoimmune hepatitis and significantly reduced the levels of cytokines after injection. 15d-PGJ2 activated PPARγ, blocked the degradation of IκBα, and inhibited the translocation of NF-κB into the nucleus. Conclusion. These results indicate that 15d-PGJ2 protects against ConA-induced autoimmune hepatitis by reducing proinflammatory cytokines. This reduction in inflammation may correlate with the activation of PPARγ and the reduction in NF-κB activity.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Miao Shen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chengfen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhuoyi Fan
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
6
|
Oeste CL, Pérez-Sala D. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function. MASS SPECTROMETRY REVIEWS 2014; 33:110-125. [PMID: 23818260 DOI: 10.1002/mas.21383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Cyclopentenone prostaglandins (cyPG) are endogenous lipid mediators involved in the resolution of inflammation and the regulation of cell proliferation and cellular redox status. Upon exogenous administration they have shown beneficial effects in models of inflammation and tissue injury, as well as potential antitumoral actions, which have raised a considerable interest in their study for the development of therapeutic tools. Due to their electrophilic nature, the best-known mechanism of action of these mediators is the covalent modification of proteins at cysteine residues through Michael addition. Identification of cyPG targets through proteomic approaches, including MS/MS analysis to pinpoint the modified residues, is proving critical to characterize their mechanisms of action. Among the targets of cyPG are proinflammatory transcription factors, proteins involved in cell defense, such as the regulator of the antioxidant response Keap1 and detoxifying enzymes like GST, and key signaling proteins like Ras proteins. Moreover, cyPG may interact with redox-active small molecules, such as glutathione and hydrogen sulfide. Much has been learned about cyPG in the past few years and this knowledge has also contributed to clarify both pharmacological actions and signaling mechanisms of these and other electrophilic lipids. Given the fact that many cyPG targets are involved in or are targets for redox regulation, there is a complex interplay with redox-induced modifications. Here we address the modification of protein cysteine residues by cyPG elucidated by proteomic studies, paying special attention to the interplay with redox signaling.
Collapse
Affiliation(s)
- Clara L Oeste
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
7
|
Buckner MMC, Antunes LCM, Gill N, Russell SL, Shames SR, Finlay BB. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium. PLoS One 2013; 8:e69759. [PMID: 23922794 PMCID: PMC3724865 DOI: 10.1371/journal.pone.0069759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/02/2022] Open
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this prostaglandin.
Collapse
Affiliation(s)
- Michelle M. C. Buckner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M Antunes
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Navkiran Gill
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie R. Shames
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
8
|
He X, Hu JL, Li J, Zhao L, Zhang Y, Zeng YJ, Dai SS, He FT. A feedback loop in PPARγ-adenosine A2A receptor signaling inhibits inflammation and attenuates lung damages in a mouse model of LPS-induced acute lung injury. Cell Signal 2013; 25:1913-23. [PMID: 23712033 DOI: 10.1016/j.cellsig.2013.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/12/2013] [Indexed: 12/13/2022]
Abstract
Although peroxisome proliferator-activated receptor-γ (PPARγ) and adenosine A2A receptor (A2AR) are reported to be anti-inflammatory factors in acute lung injury (ALI), their internal link and synergic or antagonistic effect after activation are poorly understood. Here, we found that PPARγ and A2AR could upregulate the mRNA and protein expressions of each other in lung tissues of LPS-induced mouse ALI model and murine macrophages. Further investigation demonstrated that PPARγ upregulated A2AR expression by directly binding to a DR10 response element (-218 to -197) within A2AR gene promoter region. Instead of directly interacting with PPARγ, A2AR stimulated PPARγ expression via protein kinase A (PKA)-cAMP response element binding protein (CREB) signaling by provoking the binding of CREB to a cAMP responsive element (CRE)-like site in PPARγ gene promoter region. In addition, combination of PPARγ and A2AR agonists was found to exert obviously better effect on suppressing neutrophil infiltration and inflammatory cytokine expressions, attenuating lung edema, pathological changes and improving lung function of blood gas exchange than their single application. These findings reveal a novel functional positive feedback loop between PPARγ and A2AR signaling to potentialize their effect on inhibiting inflammation and attenuating lung damages in ALI. It suggests that targeting this PPARγ-A2AR signaling rather than PPARγ or A2AR alone may be a more attractive and efficient potential therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Xie He
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Coldewey SM, Rogazzo M, Collino M, Patel NSA, Thiemermann C. Inhibition of IκB kinase reduces the multiple organ dysfunction caused by sepsis in the mouse. Dis Model Mech 2013; 6:1031-42. [PMID: 23649820 PMCID: PMC3701222 DOI: 10.1242/dmm.012435] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor κB (NF-κB) plays a pivotal role in sepsis. Activation of NF-κB is initiated by the signal-induced ubiquitylation and subsequent degradation of inhibitors of kappa B (IκBs) primarily via activation of the IκB kinase (IKK). This study was designed to investigate the effects of IKK inhibition on sepsis-associated multiple organ dysfunction and/or injury (MOD) and to elucidate underlying signaling mechanisms in two different in vivo models: male C57BL/6 mice were subjected to either bacterial cell wall components [lipopolysaccharide and peptidoglycan (LPS/PepG)] or underwent cecal ligation and puncture (CLP) to induce sepsis-associated MOD. At 1 hour after LPS/PepG or CLP, mice were treated with the IKK inhibitor IKK 16 (1 mg/kg body weight). At 24 hours, parameters of organ dysfunction and/or injury were assessed in both models. Mice developed a significant impairment in systolic contractility (echocardiography), and significant increases in serum creatinine, serum alanine aminotransferase and lung myeloperoxidase activity, thus indicating cardiac dysfunction, renal dysfunction, hepatocellular injury and lung inflammation, respectively. Treatment with IKK 16 attenuated the impairment in systolic contractility, renal dysfunction, hepatocellular injury and lung inflammation in LPS/PepG-induced MOD and in polymicrobial sepsis. Compared with mice that were injected with LPS/PepG or underwent CLP, immunoblot analyses of heart and liver tissues from mice that were injected with LPS/PepG or underwent CLP and were also treated with IKK 16 revealed: (1) significant attenuation of the increased phosphorylation of IκBα; (2) significant attenuation of the increased nuclear translocation of the NF-κB subunit p65; (3) significant attenuation of the increase in inducible nitric oxide synthase (iNOS) expression; and (4) a significant increase in the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). Here, we report for the first time that delayed IKK inhibition reduces MOD in experimental sepsis. We suggest that this protective effect is (at least in part) attributable to inhibition of inflammation through NF-κB, the subsequent decrease in iNOS expression and the activation of the Akt-eNOS survival pathway.
Collapse
Affiliation(s)
- Sina M Coldewey
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, The William Harvey Research Institute, London, EC1M 6BQ, UK.
| | | | | | | | | |
Collapse
|
10
|
Wolff Cordeiro K, Aparecida Pinto L, Nazari Formagio AS, Faloni de Andrade S, Leite Kassuya CA, de Cássia Freitas K. Antiulcerogenic effect of Croton urucurana Baillon bark. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:331-337. [PMID: 22771279 DOI: 10.1016/j.jep.2012.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Croton urucurana (Euphorbiaceae) bark is used to treat gastric ulcers. However, to our knowledge, no study has been conducted to confirm this therapeutic property. AIM OF THE STUDY To evaluate the antiulcerogenic effect and any possible toxic effects of Croton urucurana bark in an induced gastric ulcer model in rats. MATERIALS AND METHODS The preventive and healing properties of Croton urucurana bark methanol extract (CUE) were evaluated in experimental models of acute (ethanol and indomethacin) and chronic (acetic acid) gastric ulcers. The gastric juice and mucous were evaluated using the pylorus ligation model, while the gastroprotective action of sulphydryl compounds and nitric oxide were analysed using the ethanol model. The toxicity was evaluated with acute and subacute toxicity tests. RESULTS No signs of toxicity were observed in the parameters analysed. All of the CUE doses tested (50, 100 and 250mg/kg) significantly reduced the gastric lesions by 70.25, 95.40 and 98.71%, respectively. Treatment with 30mg/kg lansoprazole (positive control) inhibited 82.58% of the gastric lesions. In the indomethacin model, the 50, 100 and 250mg/kg doses of CUE significantly reduced gastric damage by 67.85, 82.50 and 71.01%, respectively, and the positive control, cimetidine (200mg/kg), reduced gastric damage by 91.02%. The CUE (100mg/kg) and cimetidine (200mg/kg) treatments significantly reduced the ulcerative pathology induced by acetic acid, promoting 81.55 and 72.62% healing, respectively. Nitric oxide did not change the cytoprotection generated by CUE. However, the antiulcerogenic activity of CUE appears to involve sulphydryl compounds because CUE activity was inhibited in animals receiving a sulphydryl compound blocker. In addition, CUE exhibited systemic effects, increasing mucous production and decreasing gastric acidity. CONCLUSIONS The present study shows that Croton urucurana bark exerts gastroprotective activity in rats without causing toxicity. This effect appears to involve sulphydryl compounds, increasing mucus production and reducing gastric acidity.
Collapse
Affiliation(s)
- Kátia Wolff Cordeiro
- Federal University of Grande Dourados, College of Health Science, Dourados, Mato Grosso do Sul CEP 79804-970, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 2011; 82:1335-51. [PMID: 21843512 DOI: 10.1016/j.bcp.2011.07.100] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023]
Abstract
15-deoxy-Δ(12,14)-prostagandin J(2) (15d-PGJ2) is produced in the inflamed cells and tissues as a consequence of upregulation of cyclooxygenase-2 (COX-2). 15d-PGJ2 is known to be the endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) with multiple physiological properties. Though one of the terminal products of the COX-2-catalyzed reactions, this cyclopentenone prostaglandin exerts potent anti-inflammatory actions, in part, by antagonizing the activities of pro-inflammatory transcription factors, such as NF-κB, STAT3, and AP-1, while stimulating the anti-inflammatory transcription factor Nrf2. These effects are not necessarily dependent on its activation of PPARγ, but often involves direct interaction with the above signaling molecules and their regulators. The locally produced 15d-PGJ2 is also involved in the resolution of inflammatory responses. Thus, 15d-PGJ2, especially formed during the late phase of inflammation, might inhibit cytokine secretion and other events by antigen-presenting cells like dendritic cells or macrophages. 15d-PGJ2 can also affect the priming and effector functions of T lymphocytes and induce their apoptotic cell death. These represent a negative feedback explaining how once-initiated immunologic and inflammatory responses are switched off and terminated. In this context, 15d-PGJ2 and its synthetic derivatives have therapeutic potential for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Young-Joon Surh
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul 151-742, South Korea.
| | | | | | | | | | | | | |
Collapse
|
12
|
Impact of salmonella infection on host hormone metabolism revealed by metabolomics. Infect Immun 2011; 79:1759-69. [PMID: 21321075 DOI: 10.1128/iai.01373-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The interplay between pathogens and their hosts has been studied for decades using targeted approaches, such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods, such as transcriptomics and proteomics, have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomic study of Salmonella enterica serovar Typhimurium infection. Our results revealed that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease and by the host to counter infection.
Collapse
|
13
|
Vasconcelos PCP, Andreo MA, Vilegas W, Hiruma-Lima CA, Pellizzon CH. Effect of Mouriri pusa tannins and flavonoids on prevention and treatment against experimental gastric ulcer. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:146-53. [PMID: 20600773 DOI: 10.1016/j.jep.2010.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 05/16/2023]
Abstract
AIM OF THE STUDY Mouriri pusa, popularly known as "manapuçá" or "jaboticaba do mato", is a plant from Brazilian cerrado that has been found to be commonly used in the treatment of gastrointestinal disturbs in its native region. The present work was carried out to investigate the effect of tannins (TF) and flavonoids (FF) fractions from Mouriri pusa leaves methanolic extract on the prevention and cicatrisation process of gastric ulcers, and also evaluate possible toxic effects. MATERIALS AND METHODS The following protocols were taken in rats: acute assay, in which ulcers were induced by oral ethanol after pre-treatment with the fractions; and 14 days treatment assay, in which ulcers were treated for 14 days after induction by local injection of acetic acid. RESULTS In the acute model, treatment with either, TF (25mg/kg) or FF (50mg/kg), was able to reduce lesion area, showing gastroprotective effect. In addition, FF proved itself anti-inflammatory by reducing COX-2 levels. In acetic acid model, both fractions exhibited larger ulcers' regenerative mucosa, indicating cicatrisation enhancement. FF group also showed augmented cell proliferation, anti-inflammatory action and enhanced angiogenesis as well as increased mucus secretion. Moreover, concerning the toxicity parameters analyzed, no alteration in the fractions groups was observed. CONCLUSIONS Tannins and flavonoids from Mouriri pusa provide beneficial effects against gastric ulcers with relative safety.
Collapse
Affiliation(s)
- P C P Vasconcelos
- Botucatu Institute of Biosciences, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | | | | | | | | |
Collapse
|
14
|
Randy LH, Guoying B. Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinson's Disease. Curr Neuropharmacol 2010; 5:35-46. [PMID: 18615152 DOI: 10.2174/157015907780077123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 01/04/2023] Open
Abstract
Evidence suggests inflammation, mitochondria dysfunction, and oxidative stress play major roles in Parkinson's disease (PD), where the primary pathology is the significant loss of dopaminergic neurons in the substantia nigra (SN). Current methods used to treat PD focus mainly on replacing dopamine in the nigrostriatal system. However, with time these methods fail and worsen the symptoms of the disease. This implies there is more to the treatment of PD than just restoring dopamine or the dopaminergic neurons, and that a broader spectrum of factors must be changed in order to restore environmental homeostasis. Pharmacological agents that can protect against progressive neuronal degeneration, increase the level of dopamine in the nigrostriatal system, or restore the dopaminergic system offer various avenues for the treatment of PD. Drugs that reduce inflammation, restore mitochondrial function, or scavenge free radicals have also been shown to offer neuroprotection in various animal models of PD. The activation of peroxisome proliferator receptor- gamma (PPAR-gamma ) has been associated with altering insulin sensitivity, increasing dopamine, inhibiting inflammation, altering mitochondrial bioenergetics, and reducing oxidative stress - a variety of factors that are altered in PD. Therefore, PPAR-gamma activation may offer a new clinically relevant treatment approach to neuroinflammation and PD related neurodegeneration. This review will summarize the current understanding of the role of PPAR-gamma agonists in neuroinflammation and discuss their potential for the treatment of PD.
Collapse
Affiliation(s)
- L Hunter Randy
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington KY 40536, USA
| | | |
Collapse
|
15
|
Murch O, Abdelrahman M, Kapoor A, Thiemermann C. Muramyl dipeptide enhances the response to endotoxin to cause multiple organ injury in the anesthetized rat. Shock 2008; 29:388-94. [PMID: 17693945 DOI: 10.1097/shk.0b013e3181453e59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleotide oligomerization domain (NOD) proteins recognize peptidoglycan fragments, resulting in up-regulation of transcription factors, and may enhance the inflammatory response to infection. Specifically, NOD2 has been shown to sense muramyl dipeptide (MDP), which is released during bacterial cell growth and replication. Activation of NOD2 by MDP enhances the inflammatory response caused by LPS (endotoxin). Here, we investigated the effects of MDP on the organ injury/dysfunction caused by systemic administration of a low dose of LPS. Male Wistar rats were coadministered with either MDP (1 - 10 mg kg(-1), i.v.) or vehicle (0.5 mL kg(-1) saline, i.v.), and a low dose of LPS (1 mg kg(-1), i.v.) or vehicle (1 mL kg(-1), saline, i.v.). MAP and heart rate were continuously monitored for 6 h. Markers of organ dysfunction/injury, plasma cytokine levels, and lung myeloperoxidase activity were measured 6 h after MDP and LPS coadministration. In a separate study, MDP (3 or 10 mg kg(-1), i.v.) or vehicle (0.5 mL kg(-1) saline, i.v.) was administered 24 h before LPS infusion. When compared with animals receiving low-dose LPS alone, coadministration of MDP (10 mg kg(-1), i.v.) and LPS, or administration of MDP (10 mg kg(-1), i.v.) 24 h before LPS resulted in a significant increase in the degree of organ injury, cytokine release, and lung injury caused by LPS alone. Thus, our results demonstrate that the two bacterial wall components MDP and LPS work in concert to cause multiple organ injury and systemic inflammation. We hope that our results stimulate other studies designed to evaluate the effects of NOD ligands in animal models of inflammation.
Collapse
Affiliation(s)
- Oliver Murch
- Centre for Experimental Medicine, Nephrology & Critical Care, The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | | | | | | |
Collapse
|
16
|
Coste A, Lagane C, Filipe C, Authier H, Galès A, Bernad J, Douin-Echinard V, Lepert JC, Balard P, Linas MD, Arnal JF, Auwerx J, Pipy B. IL-13 Attenuates Gastrointestinal Candidiasis in Normal and Immunodeficient RAG-2−/−Mice via Peroxisome Proliferator-Activated Receptor-γ Activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:4939-47. [DOI: 10.4049/jimmunol.180.7.4939] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Vasconcelos PCP, Kushima H, Andreo M, Hiruma-Lima CA, Vilegas W, Takahira RK, Pellizzon CH. Studies of gastric mucosa regeneration and safety promoted by Mouriri pusa treatment in acetic acid ulcer model. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:293-301. [PMID: 18023306 DOI: 10.1016/j.jep.2007.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mouriri pusa Gardn. (Melastomataceae) is a medicinal plant commonly used by people living in the Cerrado to treat gastrointestinal disturbances. This medicinal plant has shown intense gastroprotective action in rodent gastric lesion, but still there are no data about its healing effect on gastric mucosa. AIM OF THE STUDY To evaluate the methanolic extract (MeOH) obtained from Mouriri pusa leaves for its effect on the cicatrisation process of gastric ulcer. MATERIALS AND METHODS The healing effects on gastric ulcers inducted by subserosal injection of acetic acid were evaluated by macroscopic and microscopic measures, immunohistochemistry and cell counting in rats treated with MeOH extract of Mouriri pusa (250 mg/kg, p.o./daily) for 14 or 30 days. The toxicity of Mouriri pusa was also evaluated by body and organ weight measure and clinical biochemical parameters. RESULTS Mouriri pusa treatments lasting 14 and 30 days showed elevated mucus secretion (PAS) and thicker regenerative gastric mucosa, denoting increased cell proliferation, which was confirmed by PCNA immunohistochemical analysis. Moreover, there was important cell recruitment (neutrophils and mast cells) to the site of the ulcer, which is an important factor in ulcer healing. No toxic effect was observed in all parameters evaluated. Phenolic compounds present in the MeOH extract like tannins, flavonoids and epicatechin are the probable agents involved in the healing effects of this medicinal plant. CONCLUSIONS These findings showed a potential effect of Mouriri pusa in increasing regeneration of damaged gastric mucosa with safety for human use.
Collapse
Affiliation(s)
- P C P Vasconcelos
- Departmento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior s/n, Botucatu, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Vish MG, Mangeshkar P, Piraino G, Denenberg A, Hake PW, O'Connor M, Zingarelli B. Proinsulin c-peptide exerts beneficial effects in endotoxic shock in mice. Crit Care Med 2007; 35:1348-55. [PMID: 17414724 DOI: 10.1097/01.ccm.0000260245.61343.b3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Insulin connecting peptide (c-peptide) aids the folding of proinsulin and has been considered to have little biological activity. Recently, c-peptide has been shown to improve diabetic neuropathy and nephropathy as well as vascular inflammation. In vitro studies have reported that c-peptide may activate peroxisome proliferator-activated receptor-gamma, a nuclear transcription factor that plays a regulatory role in inflammation. This study was designed to investigate the biological effects of c-peptide during endotoxemia. DESIGN Prospective, randomized laboratory investigation that used an established murine model of endotoxic shock. SETTING University hospital laboratory. SUBJECTS Mice were subjected to endotoxic shock by intraperitoneal administration of Escherichia coli lipopolysaccharide. INTERVENTIONS Mice received vehicle or c-peptide (70-140 nmol/kg) intraperitoneally at 3 hrs and 6 hrs after lipopolysaccharide. Mortality was monitored for 96 hrs. In a separate experiment, mice were killed at 4, 7, and 18 hrs after lipopolysaccharide administration. Lungs and plasma were collected for biochemical assays. MEASUREMENTS AND MAIN RESULTS In vehicle-treated mice, endotoxic shock resulted in lung injury and was associated with a 41% survival rate and elevation in plasma tumor necrosis factor-alpha, macrophage inflammatory protein-1alpha, monocyte chemoattractant protein-1, and keratinocyte-derived chemokine levels. Lung nuclear levels of phosphorylated extracellular signal-regulated kinases 1 and 2 were significantly increased in vehicle-treated mice. On the other hand, lung nuclear expression and DNA binding of proliferator-activated receptor-gamma were decreased in comparison to control animals. Treatment with c-peptide (140 nmol/kg) improved survival rate (68%) and reduced plasma levels of tumor necrosis factor-alpha, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1, but it did not exert hypoglycemic effects. Treatment with c-peptide also up-regulated lung nuclear expression and DNA binding of proliferator-activated receptor-gamma and reduced phosphorylation of extracellular signal-regulated kinases 1 and 2 in comparison to vehicle-treated mice. CONCLUSIONS Our data show that c-peptide has beneficial effects in endotoxic shock, and this therapeutic effect is associated with activation of proliferator-activated receptor-gamma.
Collapse
Affiliation(s)
- Michael G Vish
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, OH, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Song DH, Kang JH, Lee GS, Jeung EB, Yang MP. Upregulation of tumor necrosis factor-alpha expression by trans10-cis12 conjugated linoleic acid enhances phagocytosis of RAW macrophages via a peroxisome proliferator-activated receptor gamma-dependent pathway. Cytokine 2007; 37:227-35. [PMID: 17540578 DOI: 10.1016/j.cyto.2007.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/28/2007] [Accepted: 04/11/2007] [Indexed: 11/20/2022]
Abstract
The aim of this study was to examine whether tumor necrosis factor (TNF)-alpha expression in the phagocytic activity of RAW macrophages by trans10-cis12 (10t-12c) conjugated linoleic acid (CLA) is associated with peroxisome proliferator-activated receptor gamma (PPARgamma) activation. 10t-12c CLA induced the TNF-alpha expression in RAW macrophages. Phagocytic activity of naive RAW macrophages was increased either by recombinant mouse (rm) TNF-alpha or by culture supernatant from 10t-12c CLA-treated RAW macrophages. This phagocytic activity was inhibited by addition of anti-rmTNF-alpha polyclonal antibody (pAb). 10t-12c CLA also increased the level of PPARgamma protein and mRNA in RAW macrophages. When naive RAW macrophages were incubated with the culture supernatant from RAW macrophages treated with 10t-12c CLA plus GW 9662, a PPARgamma antagonist, their phagocytic activity was significantly inhibited. In addition, GW 9662 antagonized the effect of 10t-12c CLA in stimulating TNF-alpha expression. These results suggest that 10t-12c CLA modulates the phagocytic activity of RAW macrophages by upregulating TNF-alpha expression via a PPARgamma-dependent pathway.
Collapse
Affiliation(s)
- Deok-Ho Song
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Renedo M, Gayarre J, García-Domínguez CA, Pérez-Rodríguez A, Prieto A, Cañada FJ, Rojas JM, Pérez-Sala D. Modification and activation of Ras proteins by electrophilic prostanoids with different structure are site-selective. Biochemistry 2007; 46:6607-16. [PMID: 17489560 DOI: 10.1021/bi602389p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclopentenone prostanoids (cyP) arise as important modulators of inflammation and cell proliferation. Although their physiological significance has not been fully elucidated, their potent biological effects have spurred their study as leads for the development of therapeutic agents. A key determinant of cyP action is their ability to bind to thiol groups in proteins or in glutathione through Michael addition. Even though several protein targets for cyP addition have been identified, little is known about the structural determinants from the protein or the cyP that drive this modification. The results herein presented provide the first evidence that cyP with different structures target distinct thiol sites in a protein molecule, namely, H-Ras. Whereas 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) and Delta12-PGJ2 preferentially target the C-terminal region containing cysteines 181 and 184, PGA1 and 8-iso-PGA1 bind mainly to cysteine 118, located in the GTP-binding motif. The biological counterparts of this specificity are the site-selective modification and activation of H-Ras in cells and the differential interaction of cyP with H, N, and K-Ras proteins. Cysteine 184 is unique to H-Ras, whereas cysteine 118 is present in the three Ras homologues. Consistent with this, PGA1 binds to and activates H-, N-, and K-Ras, thus differing from the preferential interaction of 15d-PGJ2 with H-Ras. These results put forward the possibility of influencing the selectivity of cyP-protein addition by modifying cyP structure. Furthermore, they may open new avenues for the development of cyP-based drugs.
Collapse
Affiliation(s)
- Marta Renedo
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dugo L, Collin M, Thiemermann C. Glycogen synthase kinase 3beta as a target for the therapy of shock and inflammation. Shock 2007; 27:113-23. [PMID: 17224784 DOI: 10.1097/01.shk.0000238059.23837.68] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After the discovery that glycogen synthase kinase (GSK) 3beta plays a fundamental role in the regulation of the activity of nuclear factor kappaB, a number of studies have investigated the effects of this protein kinase in the regulation of the inflammatory process. The GSK-3beta inhibition, using genetically modified cells and chemically different pharmacological inhibitors, affects the regulation of various inflammatory mediators in vitro and in vivo. Insulin, an endogenous inhibitor of GSK-3 in the pathway leading to the regulation of glycogen synthase activity, has recently been clinically used in the therapy for septic shock. The beneficial anti-inflammatory effects of insulin in preclinical and clinical studies could possibly be due, at least in part, to the inhibition of GSK-3 and not directly correlated to the regulation of blood glucose. We describe the latest studies describing the effects of GSK-3 inhibition as potential target of the therapy for diseases associated with inflammation, ischemia/reperfusion, and shock.
Collapse
Affiliation(s)
- Laura Dugo
- Centre for Experimental Medicine, Nephrology and Critical Care Medicine, William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | | | | |
Collapse
|
22
|
Orliac ML, Peroni RN, Abramoff T, Neuman I, Podesta EJ, Adler-Graschinsky E. Increases in vanilloid TRPV1 receptor protein and CGRP content during endotoxemia in rats. Eur J Pharmacol 2007; 566:145-52. [PMID: 17482593 DOI: 10.1016/j.ejphar.2007.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 02/08/2023]
Abstract
The aim of the present study was to determine whether the transient receptor potential vanilloid (TRPV1) receptor protein as well as the calcitonin gene-related peptide (CGRP) content could be enhanced after the i.p. administration of 5 mg/kg lipopolysaccharide (LPS) to Sprague-Dawley rats. In tongue tissue, used as a representative model of TRPV1 receptors expression, there was a significant increase in the abundance of TRPV1 receptor protein 6 h after LPS administration. In mesenteric arteries, the density of the CGRP-positive nerves as well as the release of CGRP induced by 10 microM anandamide was also significantly increased 6 h after LPS administration. The relaxant responses induced by anandamide in mesenteric beds isolated from either untreated or LPS-treated rats were abolished after a 2 h exposure to 10 microM capsaicin. Moreover, anandamide-induced relaxations of untreated mesenteries were potentiated by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 0.1 microM), but not by its inactive analogue 4alpha-phorbol (0.1 microM). The potentiation of anandamide effects caused by the PKC activator was accompanied by a significant increase in the overflow of CGRP induced by anandamide in the untreated rats. It is proposed that the overexpression of the TRPV1 receptors and the increased content of CGRP could contribute to the enhancement of anandamide effects during the endotoxemic shock. An eventual phosphorylation event linked to the overflow of CGRP could also participate in the enhanced relaxation caused by anandamide in endotoxemia.
Collapse
Affiliation(s)
- María Luz Orliac
- Instituto de Investigaciones Farmacológicas (ININFA-CONICET), Junín 956, 5 piso C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Murch O, Collin M, Thiemermann C. LYSOPHOSPHATIDIC ACID REDUCES THE ORGAN INJURY CAUSED BY ENDOTOXEMIA-A ROLE FOR G-PROTEIN-COUPLED RECEPTORS AND PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-γ. Shock 2007; 27:48-54. [PMID: 17172980 DOI: 10.1097/01.shk.0000235086.63723.7e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exogenous lysophosphatidic acid (LPA) has been shown to beneficial in renal ischemia/reperfusion injury, wound healing and colitis. LPA acts via specific G-protein-coupled receptors and also peroxisome proliferator-activated receptor-gamma (PPAR-gamma). However, activation of PPAR-gamma is dependent on the presence of an unsaturated acyl chain. Here we investigate the effects of saturated LPA (18:0) and unsaturated LPA (18:1) on the organ injury associated with endotoxemia and the receptors mediating LPA activity. Male Wistar rats received either lipopolysaccharide (LPS, 6 mg/kg i.v.) or vehicle. The PPAR-gamma antagonist GW9662 (1 mg/kg i.v.), the LPA receptor antagonist Ki16425 (0.5 mg/kg i.v.) or vehicle was administered 30 min after LPS. LPA 18:0 or LPA 18:1 (1 mg/kg i.v.) or vehicle was administered 1 h after injection of LPS. Endotoxemia for 6 h resulted in an increase in serum levels of aspartate aminotransferase, alanine aminotransferase and creatine kinase. Therapeutic administration of LPA 18:0 or 18:1 reduced the organ injury caused by LPS. LPA 18:0 also attenuated the increase in plasma IL-1beta caused by LPS. Ki16425, but not GW9662, attenuated the beneficial effects of LPA 18:0, however, Ki16425 and GW9662 attenuated the beneficial effects of 18:1. In conclusion, LPA reduces the organ injury caused by endotoxemia in the rat. Thus, LPA may be useful in the treatment of shock of various aetiologies. The mechanism of action is related to acyl chain saturation, with LPA 18:0 acting via G-protein-coupled receptors and LPA 18:1 acting via G-protein-coupled receptors and PPAR-gamma.
Collapse
Affiliation(s)
- Oliver Murch
- Centre for Experimental Medicine, Nephrology & Critical Care, The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary, University of London, United Kingdom
| | | | | |
Collapse
|
24
|
Collin M, Murch O, Thiemermann C. Peroxisome proliferator-activated receptor-gamma antagonists GW9662 and T0070907 reduce the protective effects of lipopolysaccharide preconditioning against organ failure caused by endotoxemia. Crit Care Med 2006; 34:1131-8. [PMID: 16484917 DOI: 10.1097/01.ccm.0000206472.63040.6d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE There is evidence that a) ligands of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-gamma and b) lipopolysaccharide preconditioning protect the organs against the multiple organ injury and dysfunction caused by endotoxemia. Here we investigate the hypothesis that the protective effects of lipopolysaccharide preconditioning are due to an enhanced formation of endogenous ligands of PPAR-gamma. DESIGN Prospective, randomized study. SETTING University-based research laboratory. SUBJECTS Ninety-nine anesthetized male Wistar rats. INTERVENTIONS Rats were pretreated with low-dose lipopolysaccharide (1 mg/kg intraperitoneally, 24 hrs before induction of endotoxemia) in the absence or presence of the selective PPAR-gamma antagonists GW9662 (1 mg/kg intraperitoneally) or T0070907 (1 mg/kg intraperitoneally) or the selective cyclooxygenase-2 inhibitor parecoxib (20 mg/kg intraperitoneally). At 24 hrs after preconditioning with low-dose lipopolysaccharide, the rats were subjected to acute severe endotoxemia (lipopolysaccharide 6 mg/kg intravenously). MEASUREMENTS AND MAIN RESULTS Lipopolysaccharide preconditioning significantly attenuated the development of renal dysfunction (serum creatinine), hepatocellular injury (serum alanine aminotransferase and aspartate aminotransferase), and circulatory failure (hypotension) as well as the increase in the plasma levels of interleukin-1beta caused by severe endotoxemia. All of these beneficial effects afforded by preconditioning with lipopolysaccharide were attenuated by the specific PPAR-gamma antagonists used. In contrast, the cyclooxygenase-2 inhibitor parecoxib did not affect the beneficial effects afforded by preconditioning with lipopolysaccharide. CONCLUSIONS We propose that endogenous ligands of PPAR-gamma contribute to the protection afforded by lipopolysaccharide preconditioning against the organ injury and dysfunction associated with severe endotoxemia in the rat.
Collapse
Affiliation(s)
- Marika Collin
- Centre for Experimental Medicine, Nephrology and Critical Care, the William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary-University of London, UK
| | | | | |
Collapse
|
25
|
Dugo L, Collin M, Allen DA, Murch O, Foster SJ, Yaqoob MM, Thiemermann C. Insulin reduces the multiple organ injury and dysfunction caused by coadministration of lipopolysaccharide and peptidoglycan independently of blood glucose: role of glycogen synthase kinase-3beta inhibition. Crit Care Med 2006; 34:1489-96. [PMID: 16557150 DOI: 10.1097/01.ccm.0000215457.83953.e3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Insulin reduces morbidity and mortality among critically ill patients, but the molecular mechanisms of its effect remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3, which may play an important role in systemic inflammation and shock. Here we investigate the role of blood glucose and glycogen synthase kinase-3beta inhibition in the protective effect of insulin on the organ injury/dysfunction associated with excessive systemic inflammation. DESIGN Prospective, randomized study. SETTING University-based research laboratory. SUBJECTS Eighty-five anesthetized Wistar rats. INTERVENTIONS Rats received Escherichia coli lipopolysaccharide (1 mg/kg) and Staphylococcus aureus peptidoglycan (0.3 mg/kg) or vehicle intravenously. Insulin (1.4 units/kg intravenously) was administered in the absence or presence of continuous glucose administration (4.5 mg/kg/hr intravenously) either prophylactically or therapeutically. The potent and selective glycogen synthase kinase-3beta inhibitor TDZD-8 (1 mg/kg intravenously) or vehicle (10% dimethyl sulfoxide) was administered either prophylactically or therapeutically. MEASUREMENTS AND MAIN RESULTS Coadministration of lipopolysaccharide and peptidoglycan resulted in increases in the serum levels of creatinine (indicator of renal dysfunction), alanine aminotransferase, and aspartate aminotransferase (indicators of liver injury) at 6 hrs. Insulin or TDZD-8 similarly attenuated the organ injury/dysfunction caused by lipopolysaccharide and peptidoglycan when given either prophylactically or therapeutically. Continuous glucose administration had no effect on blood glucose levels or organ injury/dysfunction at 6 hrs. Treatment with insulin or TDZD-8 reduced the plasma levels of the proinflammatory cytokine interleukin-1beta. In vitro, insulin or TDZD-8 caused similar reductions in the nuclear factor-kappaB p65 activity and similar increases in the phosphorylation of Ser9 of glycogen synthase kinase-3beta. CONCLUSIONS Therapy with insulin or the potent and selective glycogen synthase kinase-3beta inhibitor TDZD-8 reduced the organ injury/dysfunction caused by lipopolysaccharide and peptidoglycan in the rat. We propose that the inhibitory effect of insulin on the activity of glycogen synthase kinase-3beta contributes to the protective effect of insulin against the organ injury/dysfunction caused by excessive systemic inflammation independently of any effects on blood glucose.
Collapse
Affiliation(s)
- Laura Dugo
- Centre for Experimental Medicine, Nephrology and Critical Care Medicine, The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Hauser B, Kick J, Iványi Z, Asfar P, Ehrmann U, Muth CM, Albicini M, Wachter U, Vogt J, Bauer M, Brückner UB, Radermacher P, Bracht H. Effects of 15-deoxy-Δ12,14-prostaglandin-J2 during hyperdynamic porcine endotoxemia. Intensive Care Med 2006; 32:759-65. [PMID: 16534570 DOI: 10.1007/s00134-006-0107-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the hemodynamic and metabolic effects of the peroxisome proliferator-activated receptor (PPAR)-gamma ligand and nuclear-factor (NF)-kappa B inhibitor 15-deoxy-Delta12,14-prostaglandin-J2 (15d-PGJ2) during long-term, hyperdynamic porcine endotoxemia. DESIGN Prospective, randomized, controlled experimental study with repeated measures. SETTING Investigational animal laboratory. SUBJECTS 19 anesthetized, mechanically ventilated and instrumented pigs. INTERVENTIONS At 12 h of continuous intravenous endotoxin and hydroxyethylstarch to keep mean arterial pressure (MAP)>60 mmHg, swine randomly received vehicle (control group, n=10) or 15-deoxy-Delta12,14-prostaglandin-J2 (15d-PGJ2 group, n=9; 1 microg kg(-1) min(-1) loading dose during 1 h; thereafter,0.25 microg kg(-1) min(-1) for 11 h). MEASUREMENTS AND RESULTS Hemodynamic, metabolic and organ function parameters were assessed together with parameters of nitric oxide production and oxidative stress. 15d-PGJ2 prevented the endotoxin-induced progressive hypotension, due to a positive inotropic effect, which resulted in a significantly higher blood pressure during the treatment phase and prevented the rise in hepatic vein alanine-aminotransferase activity. It did not affect, however, any other parameter of organ function nor of nitric oxide production, proinflammatory cytokine release or lipid peroxidation (8-isoprostane). CONCLUSIONS 15d-PGJ2 stabilized systemic hemodynamics, due to improved myocardial performance, and resulted in an only transient effect on alanine-aminotransferase activity, without further beneficial effect on endotoxin-induced metabolic and organ function derangements. Low tissue 15d-PGJ2 concentrations and/or the delayed drug administration may explain these findings.
Collapse
Affiliation(s)
- Balázs Hauser
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Parkstrasse 11, 89073, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stamatakis K, Sánchez-Gómez FJ, Pérez-Sala D. Identification of novel protein targets for modification by 15-deoxy-Delta12,14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton. J Am Soc Nephrol 2005; 17:89-98. [PMID: 16291835 DOI: 10.1681/asn.2005030329] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The cyclopentenone prostaglandin 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2) has been shown to display protective effects against renal injury or inflammation. In cultured mesangial cells (MC), 15d-PGJ2 inhibits the expression of proinflammatory genes and modulates cell proliferation. Therefore, cyclopentenone prostaglandins (cyPG) have been envisaged as a promise in the treatment of renal disease. The effects of 15d-PGJ2 may be dependent on or independent from its role as a peroxisome proliferator-activated receptor agonist. It was shown recently that an important determinant for the peroxisome proliferator-activated receptor-independent effects of 15d-PGJ2 is the capacity to modify proteins covalently and alter their function. However, a limited number of protein targets have been identified to date. Herein is shown that a biotinylated derivative of 15d-PGJ2 recapitulates the effects of 15d-PGJ2 on the stress response and inhibition of inducible nitric oxide synthase levels and forms stable adducts with proteins in intact MC. Biotinylated 15d-PGJ2 was then used to identify proteins that potentially are involved in cyPG biologic effects. Extracts from biotinylated 15d-PGJ2-treated MC were separated by two-dimensional electrophoresis, and the spots of interest were analyzed by mass spectrometry. Identified targets include proteins that are regulated by oxidative stress, such as heat-shock protein 90 and nucleoside diphosphate kinase, as well as proteins that are involved in cytoskeletal organization, such as actin, tubulin, vimentin, and tropomyosin. Biotinylated 15d-PGJ2 binding to several targets was confirmed by avidin pull-down. Consistent with these findings, 15d-PGJ2 induced early reorganization of vimentin and tubulin in MC. The cyclopentenone moiety and the presence of cysteine were important for vimentin rearrangement. These studies may contribute to the understanding of the mechanism of action and therapeutic potential of cyPG.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
28
|
Dugo L, Collin M, Allen DA, Patel NSA, Bauer I, Mervaala EMA, Louhelainen M, Foster SJ, Yaqoob MM, Thiemermann C. GSK-3beta inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat. Crit Care Med 2005; 33:1903-12. [PMID: 16148458 DOI: 10.1097/01.ccm.0000178350.21839.44] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Serine-threonine protein kinase glycogen synthase kinase (GSK)-3 is involved in regulation of many cell functions, but its role in regulation of inflammatory response is unknown. Here we investigate the effects of GSK-3beta inhibition on organ injury/dysfunction caused by lipopolysaccharide or coadministration of lipopolysaccharide and peptidoglycan in the rat. DESIGN Prospective, randomized study. SETTING University-based research laboratory. SUBJECTS Ninety-nine anesthetized male Wistar rats. INTERVENTIONS Study 1: Rats received either intravenous Escherichia coli lipopolysaccharide (6 mg/kg) or vehicle (1 mL/kg; saline). Study 2: Rats received either intravenous E. coli lipopolysaccharide (1 mg/kg) and Staphylococcus aureus peptidoglycan (0.3 mg/kg) or vehicle. The potent and selective GSK-3beta inhibitors TDZD-8 (1 mg/kg intravenously), SB216763 (0.6 mg/kg intravenously), and SB415286 (1 mg/kg intravenously) or vehicle (10% dimethyl sulfoxide) was administered 30 mins before lipopolysaccharide or lipopolysaccharide and peptidoglycan. MEASUREMENTS AND MAIN RESULTS Endotoxemia resulted in increases in the serum levels of creatinine (indicator of renal dysfunction), aspartate aminotransferase, alanine aminotransferase (markers for hepatocellular injury), lipase (indicator of pancreatic injury), and creatine kinase (indicator of neuromuscular injury). Coadministration of lipopolysaccharide and peptidoglycan resulted in hepatocellular injury and renal dysfunction. All GSK-3beta inhibitors attenuated the organ injury/dysfunction caused by lipopolysaccharide or lipopolysaccharide and peptidoglycan. GSK-3beta inhibition reduced the Ser536 phosphorylation of nuclear factor-kappaB subunit p65 and the messenger RNA expression of nuclear factor-kappaB-dependent proinflammatory mediators but had no effect on the nuclear factor-kappaB/DNA binding activity in the lung. GSK-3beta inhibition reduced the increase in nuclear factor-kappaB p65 activity caused by interleukin-1 in human embryonic kidney cells in vitro. CONCLUSIONS The potent and selective GSK-3beta inhibitors TDZD-8, SB216763, and SB415286 reduced the organ injury/dysfunction caused by lipopolysaccharide or lipopolysaccharide and peptidoglycan in the rat. We propose that GSK-3beta inhibition may be useful in the therapy of the organ injury/dysfunction associated with sepsis, shock, and other diseases associated with local or systemic inflammation.
Collapse
Affiliation(s)
- Laura Dugo
- Centre for Experimental Medicine, Nephrology and Critical Care Medicine, The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|