1
|
Yin L, Guan Z, Xu J, Yu X, Wen Y, Wang S, Liu W. Assessment of hyperbaric hyperoxic lung injury in rats. Med Gas Res 2025; 15:129-131. [PMID: 39436182 PMCID: PMC11515070 DOI: 10.4103/mgr.medgasres-d-24-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Lijun Yin
- Department of Anesthesiology, Ningbo Women’s and Children’s Hospital, Ningbo, Zhejiang Province, China
| | - Zhenbiao Guan
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Shifeng Wang
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| |
Collapse
|
2
|
Ni W, Wei F, Sun C, Yao J, Zhang X, Zhang G. Inhibitory Effect of Jingfang Mixture on Staphylococcus aureus α-Hemolysin. Microb Pathog 2024:106840. [PMID: 39153577 DOI: 10.1016/j.micpath.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Staphylococcus aureus (S. aureus) is a kind of gram-positive bacteria, and its virulence factors can cause many kinds of infections. Traditional antibiotics can not only kill bacteria, but also easily lead to bacterial resistance. Jingfang Mixture (JFM) is commonly used in clinic to prevent and treat epidemic diseases and infectious diseases. The main purpose of this study is to explore the inhibitory effect of JFM on alpha-hemolysin (Hla) of S. aureus and to alleviate the damage caused by Hla. We found that JFM could inhibit the hemolytic activity, gene and protein level and neutralizing activity of Hla in a dose-dependent manner at the concentrations of 125, 250 and 500 μg/mL, without affecting the growth of bacteria. In addition, JFM reduced the damage of Hla to A549 cells and the release of lactate dehydrogenase (LDH). We also observed that in the S. aureus - induced pneumonia mouse model, JFM could significantly prolong the life of mice, reduce the bacterial load in the lungs, significantly improve the pathological state of the lungs and alleviate the damage caused by inflammatory factors, and the pathogenicity of gene deletion strain DU 1090 of S. aureus to pneumonia mice was also significantly reduced. In conclusion, this study proved that JFM is a potential drug against S. aureus infection, and this study provided a preliminary study for better guidance of clinical drug use.
Collapse
Affiliation(s)
- Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Fangjiao Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Jingchun Yao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| | - Guimin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| |
Collapse
|
3
|
Ni W, Tang H, Sun C, Yao J, Zhang X, Zhang G. Inhibitory effect of Jingfang mixture on Staphylococcus aureus α-hemolysin. World J Microbiol Biotechnol 2024; 40:286. [PMID: 39083107 DOI: 10.1007/s11274-024-04073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/11/2024]
Abstract
Staphylococcus aureus is a gram-positive bacteria, and its virulence factors can cause many kinds of infections, such as pneumonia, sepsis, enteritis and osteomyelitis. Traditional antibiotics can not only kill bacteria, but also easily lead to bacterial resistance. Jingfang Mixture (JFM) has the effects of inducing sweating and relieving the exterior, dispelling wind and eliminating dampness, and is commonly used in clinic to prevent and treat epidemic diseases and infectious diseases. The main purpose of this study is to explore the inhibitory effect of JFM on alpha-hemolysin (Hla) of S. aureus and to alleviate the damage caused by Hla. We found that JFM could inhibit the hemolytic activity, transcription level and neutralizing activity of Hla in a dose-dependent manner at the concentrations of 125, 250 and 500 µg/mL, without affecting the growth of bacteria. In addition, JFM reduced the damage of Hla to A549 cells and the release of lactate dehydrogenase (LDH). We also observed that in the S. aureus - induced pneumonia mouse model, JFM could significantly prolong the life of mice, reduce the bacterial load in the lungs, significantly improve the pathological state of the lungs and alleviate the damage caused by inflammatory factors, and the pathogenicity of gene deletion strain DU 1090 of S. aureus to pneumonia mice was also significantly reduced. In conclusion, this study proved that JFM is a potential drug against S. aureus infection, and this study provided a preliminary study for better guidance of clinical drug use.
Collapse
Affiliation(s)
- Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China
| | - Hongguang Tang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| | - Guimin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, 273400, China.
| |
Collapse
|
4
|
Liu SD, Timur Y, Xu L, Meng WX, Sun B, Qiu DY. Inhibiting the ROCK Pathway Ameliorates Acute Lung Injury in Mice following Myocardial Ischemia/reperfusion. Immunol Invest 2021; 51:931-946. [PMID: 33655821 DOI: 10.1080/08820139.2021.1887887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To clarify the role of Y-27632, a selective inhibitor of Rho-associated coiled-coil forming protein kinase (ROCK), in acute lung injury (ALI) induced by myocardial ischemia/reperfusion (I/R). Mice were randomized into Sham, I/R, and Y-27632 (10, 20 or 30 mg/kg) + I/R groups, and hemodynamics, infarcted area, the protein concentration, neutrophils in bronchoalveolar lavage fluid (BALF), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels were assessed. Pathological changes were evaluated by hematoxylin-eosin (HE) staining; protein and gene expression were measured by Western blotting, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR); and apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining. ROCK1 and ROCK2 expression was up-regulated in lung tissues of I/R mice compared to sham mice. Y-27632 decreased the protein concentration and the neutrophils in BALF in I/R mice, improved hemodynamics and reduced infarct size (IS)/area at risk (AAR) ratio. In addition, pathological changes in lung tissues of Y-27632-treated mice were mitigated, and these alterations were accompanied by decreases in MDA levels in lung tissues and increases in SOD and GSH-Px levels. Moreover, in I/R group, the number of apoptotic cells in lung tissue was higher than that in sham group, and p53, Caspase-3 and Bax expression was up-regulated; however, following treatment with Y-27632 (10, 20 and 30 mg/kg), these changes were reversed. Inhibition of ROCK pathway by Y-27632 ameliorated ALI in myocardial I/R mice by mitigating oxidative stress, inflammation and cell apoptosis.
Collapse
Affiliation(s)
- Shang-Dian Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yagudin Timur
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Department of Pharmacology, Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russian Federation
| | - Lei Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei-Xin Meng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dong-Yun Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Zhao Y, Ge X, Yu H, Kuil LE, Alves MM, Tian D, Huang Q, Chen X, Hofstra RMW, Gao Y. Inhibition of ROCK signaling pathway accelerates enteric neural crest cell-based therapy after transplantation in a rat hypoganglionic model. Neurogastroenterol Motil 2020; 32:e13895. [PMID: 32515097 DOI: 10.1111/nmo.13895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital gastrointestinal disorder, characterized by enteric ganglia absence in part or entire of the colon, due to abnormal colonization and migration of enteric neural crest cells (ENCCs) during development. Currently, besides surgery which is the main therapy for HSCR, the potential of stem cell-based transplantation was investigated as an alternative option. Although promising, it has limitations, including poor survival, differentiation, and migration of the grafted cells. We hypothesized that modulation of extracellular factors during transplantation could promote ENCCs proliferation and migration, leading to increased transplantation efficiency. Considering that the RhoA/ROCK pathway is highly involved in cytoskeletal dynamics and neurite growth, our study explored the effect of inhibition of this pathway to improve the success of ENCCs transplantation. METHODS Enteric neural crest cells were isolated from rat embryos and labeled with a GFP-tag. Cell viability, apoptosis, differentiation, and migration assays were performed with and without RhoA/ROCK inhibition. Labeled ENCCs were transplanted into the muscle layer of an induced hypoganglionic rat model followed by intraperitoneal injections of ROCK inhibitor. The transplanted segments were collected 3 weeks after for histological analysis. KEY RESULTS Our results showed that inhibition of ROCK increased viable cell number, differentiation, and migration of ENCCs in vitro. Moreover, transplantation of labeled ENCCs into the hypoganglionic model showed enhanced distribution of grafted ENCCs, upon treatment with ROCK inhibitor. CONCLUSIONS AND INFERENCES ROCK inhibitors influence ENCCs growth and migration in vitro and in vivo, and should be considered to improve the efficiency of ENCCs transplantation.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Xin Ge
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Yu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Donghao Tian
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiang Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Effect of oleanolic acid for prevention of acute lung injury and apoptosis. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 27:532-539. [PMID: 32082922 DOI: 10.5606/tgkdc.dergisi.2019.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/01/2019] [Indexed: 11/21/2022]
Abstract
Background This study aims to evaluate the efficiency of oleanolic acid on acute lung injury and acute respiratory distress syndrome. Methods The study included 70 female Wistar albino rats (weighing 180 to 200 g). We created seven groups, each consisting of 10 rats. Then, we generated acute lung injuries by intra-tracheal peroxynitrite injection in every group except for the control group. We investigated the effect of oleanolic acid. For this purpose, we measured the levels of malondialdehyde, interleukin 1 beta, interleukin 4, interleukin 10 and tumor necrosis factor alpha in the collected blood samples from the rats. In addition, we examined the lung tissue samples histopathologically and assessed the rate of apoptosis. Results Peroxynitrite injected groups at 24 and 48 h showed a statistically significant increase in interleukin 1 beta, tumor necrosis factor alpha, interleukin 4, interleukin 10 and malondialdehyde levels, which are accepted as mediators of the inflammatory process, compared to the control group. When peroxynitrite injected groups at 24 and 48 h were compared to the treatment groups of the same hour, a statistically significant decrease was detected. According to histopathological examination, peroxynitrite injected groups at 24 and 48 h showed a significant increase of tissue injury scores compared to the control group. However, the groups that were treated with oleanolic acid showed a significant decrease compared to the peroxynitrite groups (p<0.001 for tumor necrosis factor alpha and apoptosis results at 48 h). Conclusion In this study, we confirmed that oleanolic acid can be an effective agent for the prevention of acute lung injury generated via peroxynitrite.
Collapse
|
9
|
Li W, Wu F, Chen L, Li Q, Ma J, Li M, Shi Y. Carbon Monoxide Attenuates Lipopolysaccharides (LPS)-Induced Acute Lung Injury in Neonatal Rats via Downregulation of Cx43 to Reduce Necroptosis. Med Sci Monit 2019; 25:6255-6263. [PMID: 31429423 PMCID: PMC6713028 DOI: 10.12659/msm.917751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Acute lung injury (ALI) is one of major causes of death in newborns, making it urgent to improve therapy. Administration of low dose carbon monoxide (CO) plays a protective role in ALI but the mechanisms are not fully understood. This study was designed to test the therapeutic effect of monoxide-releasing molecule 3 (MORM3) in lipopolysaccharide (LPS) induced neonatal ALI and the possibly associated molecular mechanisms. Material/Methods For this study, 3- to 8-day old Newborn Sprague-Dawley rats were subjected to intraperitoneal injection of 3 mg/kg LPS to induce ALI. Then animals received intraperitoneal injection of carbon monoxide-releasing molecules 3 (CORM3) (8 mg/kg) or inactive CORM3 (iCORM3) for 7 consecutive days. Lung tissues were collected for histological examination and total cell counts and protein content in bronchoalveolar lavage fluid (BALF) were measured. Expression of Cx43 and necroptosis-related markers were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results LPS exposure induced significant lung injury indicated by histological damage, increased lung wet/dry weight ratio (W/D) and increased total cell counts and protein concentration in BALF. These changes were significantly ameliorated by administration of CORM3 but not iCORM3. LPS also increased necroptosis-related markers RIP1, RIP3, and MLKL and their elevation was blocked by CORM3. CORM3 administration ameliorated LPS induced elevation of Cx43 expression and adenoviral overexpression of Cx43 abolished lung protective effect of CORM3. CORM3 administration attenuated LPS induced activation of extracellular-signal-regulated kinase (ERK) and its protection against necroptosis was abolished by ERK inhibitor U0126. Conclusions CORM3 attenuates LPS-Induced ALI in neonatal rats and its lung protective effect might be through downregulation of Cx43 to attenuate ERK signaling and ameliorate necroptosis, suggesting CORM3 as a potential therapeutic drug for ALI in neonates.
Collapse
Affiliation(s)
- Wanwei Li
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Fang Wu
- Department of Neonatology, Chongqing Angel Women's and Children's Hospital, Chongqing, China (mainland)
| | - Long Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Qian Li
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Juan Ma
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Mengchun Li
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Yuan Shi
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| |
Collapse
|
10
|
Suppressive effect of Rho-kinase inhibitors Y-27632 and fasudil on spike-and-wave discharges in genetic absence epilepsy rats from Strasbourg (GAERS). Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1275-1283. [PMID: 30073384 DOI: 10.1007/s00210-018-1546-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Rho/Rho-kinase (ROCK) signaling contributes to neuroinflammation, epileptogenesis, and seizures in convulsive-type epilepsies. However, this pathway has not been investigated in absence epilepsy. We investigated RhoA activity in genetic absence epilepsy rats from Strasburg (GAERS) and the effects of ROCK inhibitors Y-27632 and fasudil on spike-and-wave discharges (SWDs) of GAERS. ROCK level and activity were measured by Western blot analysis in the brain areas involved in absence seizures (i.e., cortex and thalamus) and hippocampus. Male GAERS were stereotaxically implanted with bilateral cortical electrodes for electroencephalogram (EEG) recordings and/or guide cannula into the right ventricle. ROCK inhibitors were administered by intraperitoneal injection (1-10 mg/kg for Y-27632 or fasudil) or intracerebroventricular injection (7-20 nmol/5 μl for Y-27632 or 10-100 nmol/5 μl for fasudil). EEG was recorded under freely moving conditions. Compared with Wistar rats, GAERS exhibited increased RhoA activity in the somatosensory cortex but not in the thalamus or hippocampus. The single systemic administration of Y-27632 and fasudil partially suppressed the duration and frequency of absence seizure, respectively. However, local brain administration caused a widespread suppressive effect on the total seizure duration, number of seizures, and the average individual seizure length. In summary, Rho/ROCK signaling may be involved in the pathophysiology of absence epilepsy. Furthermore, ROCK inhibitors can control the expression of absence seizure in GAERS, thus indicating that Y-27632 and fasudil have the potential to be used as novel anti-absence drugs.
Collapse
|
11
|
Han CH, Guan ZB, Zhang PX, Fang HL, Li L, Zhang HM, Zhou FJ, Mao YF, Liu WW. Oxidative stress induced necroptosis activation is involved in the pathogenesis of hyperoxic acute lung injury. Biochem Biophys Res Commun 2017; 495:2178-2183. [PMID: 29269294 DOI: 10.1016/j.bbrc.2017.12.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 01/24/2023]
Abstract
Necroptosis has been found to be involved in the pathogenesis of some lung diseases, but its role in hyperoxic acute lung injury (HALI) is still unclear. This study aimed to investigate contribution of necroptosis to the pathogenesis of HALI induced by hyperbaric hyperoxia exposure in a rat model. Rats were divided into control group, HALI group, Nec-1 (necroptosis inhibitor) group and edaravone group. Rats were exposed to pure oxygen at 250 kPa for 6 h to induce HALI. At 30 min before hyperoxia exposure, rats were intraperitoneally injected with Nec-1 or edaravone, and sacrificed at 24 h after hyperoxia exposure. Lung injury was evaluated by histology, lung water to dry ratio (W/D) and bronchoalveolar lavage fluid (BALF) biochemistry; the serum and plasma oxidative stress, expression of RIP1, RIP3 and MLKL, and interaction between RIP1 and RIP3 were determined. Results showed hyperoxia exposure significantly caused damage to lung and increased necroptotic cells and the expression of RIP1, RIP3 and MLKL. Edaravone pre-treatment not only inhibited the oxidative stress in HALI, but also reduced necroptotic cells, decreased the expression of RIP1, RIP3 and MLKL and improved lung pathology. Nec-1 pretreatment inhibited necroptosis and improved lung pathology, but had little influence on oxidative stress. This study suggests hyperoxia exposure induces oxidative stress may activate necroptosis, involving in the pathology of HALI, and strategies targeting necroptosis may become promising treatments for HALI.
Collapse
Affiliation(s)
- C H Han
- Department of Pathology, The First Hospital of Jining City, Jining City, Shandong Province, 272011, China
| | - Z B Guan
- Department of Respiratory Diseases, The 411th Hospital of People's Liberation Army, Shanghai, 200081, China
| | - P X Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Jining City, Jining City, Shandong Province, 272011, China
| | - H L Fang
- Department of Pathology, The First Hospital of Jining City, Jining City, Shandong Province, 272011, China
| | - L Li
- Department of Pathology, The First Hospital of Jining City, Jining City, Shandong Province, 272011, China
| | - H M Zhang
- Department of Pathology, The First Hospital of Jining City, Jining City, Shandong Province, 272011, China
| | - F J Zhou
- Department of Pathology, The First Hospital of Jining City, Jining City, Shandong Province, 272011, China
| | - Y F Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - W W Liu
- Department of Diving and Hyperbaric Medicine, The Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Kaya G, Sivasli E, Oztuzcu S, Melekoglu NA, Ozkara E, Sarikabadayi U, Demiryürek AT. Association of Rho-kinase Gene Polymorphisms with Respiratory Distress Syndrome in Preterm Neonates. Pediatr Neonatol 2017; 58:36-42. [PMID: 27269648 DOI: 10.1016/j.pedneo.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Respiratory distress syndrome (RDS) of the newborn is one of the most common causes of morbidity and mortality in preterm infants. Our objective was to determine the association between Rho-kinase (ROCK1 and ROCK2) gene polymorphisms and RDS in preterm neonates. METHODS A total of 193 preterm infants with RDS and 186 preterm infants without respiratory problems were included in this study. Polymorphisms were analyzed in genomic DNA using a BioMark 96.96 dynamic array system. RESULTS We observed that ROCK1 gene rs2271255 (Lys222Glu) and rs35996865 polymorphisms, and ROCK2 gene rs726843, rs2290156, rs10178332, and rs35768389 (Asp601Val) polymorphisms were associated with RDS. However, no associations were found with rs73963110, rs1515219, rs965665, rs2230774 (Thr431Asn), rs6755196, and rs10929732 polymorphisms. Additionally, 12 haplotypes (6 in ROCK1 and 6 in ROCK2) were found to be markedly associated with RDS. CONCLUSION This is the first study to examine the involvement of ROCK gene variation in the risk of incident RDS. The results strongly suggest that ROCK gene polymorphisms may modify individual susceptibility to RDS in the Turkish population.
Collapse
Affiliation(s)
- Gül Kaya
- Department of Pediatrics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Ercan Sivasli
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Nuriye A Melekoglu
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Esma Ozkara
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Unal Sarikabadayi
- Department of Pediatrics, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
13
|
Pan L, Yao DC, Yu YZ, Li SJ, Chen BJ, Hu GH, Xi C, Wang ZH, Wang HY, Li JH, Tu YS. Necrostatin-1 protects against oleic acid-induced acute respiratory distress syndrome in rats. Biochem Biophys Res Commun 2016; 478:1602-8. [PMID: 27586277 DOI: 10.1016/j.bbrc.2016.08.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/03/2023]
Abstract
Necroptosis is a recently discovered necrotic cell death which is regulated by receptor interacting protein kinase 1 (RIPK1) and RIPK3 under the stimulus of death signal and can be inhibited by necrostatin-1 (Nec-1) specifically. Therefore, the aim was to investigate the role of necroptosis in a rat model of acute respiratory distress syndrome (ARDS) induced by oleic acid (OA) and assess the effect of Nec-1 on lung injury in ARDS. Our results found that RIPK1, RIPK3 and mixed lineage kinase domain-like protein (MLKL) were abundantly expressed in rat lung tissues of OA-induced ARDS. Nec-1 pretreatment improved pulmonary function and attenuated lung edema dramatically in OA-induced ARDS rats. Furthermore, Nec-1 reduced RIPK1-RIPK3 interaction and down-regulated RIPK1-RIPK3-MLKL signal pathway, and inhibited inflammatory response by reducing neutrophil infiltration and protein leakage into lung tissue in OA-induced ARDS. Collectively, our study proves the intervention of necroptosis in OA-induced ARDS. Moreover, our findings imply that Nec-1 plays an important role in the treatment of ARDS via inhibiting necroptosis and inflammation.
Collapse
Affiliation(s)
- Long Pan
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Third Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Dun-Chen Yao
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Third Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu-Zhong Yu
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Third Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng-Jie Li
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The First Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Bing-Jun Chen
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Third Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Gui-He Hu
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Third Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Chang Xi
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Third Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Zi-Hui Wang
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Second Clinical Medical College, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong-Yan Wang
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jian-Hua Li
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong-Sheng Tu
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
14
|
Hong J, Li D, Cao W. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells. PLoS One 2016; 11:e0149735. [PMID: 26901778 PMCID: PMC4764682 DOI: 10.1371/journal.pone.0149735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.
Collapse
Affiliation(s)
- Jie Hong
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Dan Li
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Weibiao Cao
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
15
|
Effects of 17β-estradiol and progesterone on the production of adipokines in differentiating 3T3-L1 adipocytes: Role of Rho-kinase. Cytokine 2015; 72:130-4. [DOI: 10.1016/j.cyto.2014.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/08/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
|
16
|
Abstract
BACKGROUND Rho-kinases (ROCKs), a family of small GTP-dependent enzymes, are involved in a range of pain models, and their inhibition typically leads to antinociceptive effects. OBJECTIVES To study the effects of inhibiting ROCKs using two known inhibitors, Y27632 and HA1077 (fasudil), administered locally, on nociception and paw edema in rats. METHODS A range of doses of Y27632 or HA1077 (2.5 μg to 1000 μg) were injected locally into rat paws alone or in combination with carrageenan, a known proinflammatory stimulus. Nociceptive responses to mechanical stimuli and increased paw volume, reflecting edema formation, were measured at 2 h and 3 h, using a Randall-Selitto apparatus and a hydroplethysmometer, respectively. RESULTS Animals treated with either ROCK inhibitor showed biphasic nociceptive effects, with lower doses being associated with pronociceptive, and higher doses with antinociceptive responses. In contrast, a monophasic dose-dependent increase in edema was observed in the same animals. Local injection of 8-bromo-cyclic (c)GMP, an activator of the nitric oxide⁄cGMP⁄protein kinase G pathway, also produced biphasic effects on nociceptive responses in rat paws; however, low doses were antinociceptive and high doses were pronociceptive. Local administration of cytochalasin B, an inhibitor of actin polymerization and a downstream mediator of ROCK activity, reversed the antinociceptive effect of Y27632. CONCLUSIONS The results of the present study suggest that ROCKs participate in the local mechanisms associated with nociception⁄antinociception and inflammation, with a possible involvement of the nitric oxide⁄cGMP⁄protein kinase G pathway. Also, drug effects following local administration may differ markedly from the effects following systemic administration. Finally, separate treatment of pain and edema may be needed to maximize clinical benefit in inflammatory pain.
Collapse
|
17
|
Sari AN, Kacan M, Unsal D, Sahan Firat S, Kemal Buharalioglu C, Vezir O, Korkmaz B, Cuez T, Canacankatan N, Sucu N, Ayaz L, Tamer Gumus L, Gorur A, Tunctan B. Contribution of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway to ischemia/reperfusion-induced oxidative/nitrosative stress and inflammation leading to distant and target organ injury in rats. Eur J Pharmacol 2013; 723:234-45. [PMID: 24296316 DOI: 10.1016/j.ejphar.2013.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/26/2022]
Abstract
The small G protein RhoA and its downstream effector Rho-kinase play an important role in various physiopathological processes including ischemia/reperfusion (I/R) injury. Reactive oxygen and nitrogen species produced by iNOS and NADPH oxidase are important mediators of inflammation and organ injury following an initial localized I/R event. The aim of this study was to determine whether RhoA/Rho-kinase signaling pathway increases the expression and activity of MEK1, ERK1/2, iNOS, gp91(phox), and p47(phox), and peroxynitrite formation which result in oxidative/nitrosative stress and inflammation leading to hindlimb I/R-induced injury in kidney as a distant organ and gastrocnemius muscle as a target organ. I/R-induced distant and target organ injury was performed by using the rat hindlimb tourniquet model. I/R caused an increase in the expression and/or activity of RhoA, MEK1, ERK1/2, iNOS, gp91(phox), p47(phox), and 3-nitrotyrosine and nitrotyrosine levels in the tissues. Although Rho-kinase activity was increased by I/R in the kidney, its activity was decreased in the muscle. Serum and tissue MDA levels and MPO activity were increased following I/R. I/R also caused an increase in SOD and catalase activities associated with decreased GSH levels in the tissues. Y-27632, a selective Rho-kinase inhibitor, (100µg/kg, i.p.; 1h before reperfusion) prevented the I/R-induced changes except Rho-kinase activity in the muscle. These results suggest that activation of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway associated with oxidative/nitrosative stress and inflammation contributes to hindlimb I/R-induced distant organ injury in rats. It also seems that hindlimb I/R induces target organ injury via upregulation of RhoA/MEK1/ERK1/2/iNOS pathway associated with decreased Rho-kinase activity.
Collapse
Affiliation(s)
- A Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Meltem Kacan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Demet Unsal
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Seyhan Sahan Firat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - C Kemal Buharalioglu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Ozden Vezir
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Belma Korkmaz
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Tuba Cuez
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Necmiye Canacankatan
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lokman Ayaz
- Department of Medicinal Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lulufer Tamer Gumus
- Department of Medicinal Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Aysegul Gorur
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey.
| |
Collapse
|
18
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
19
|
The effect of Rho kinase inhibitor Y-27632 on endotoxemia-induced intestinal apoptosis in infant rats. J Mol Histol 2011; 43:81-7. [DOI: 10.1007/s10735-011-9379-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/24/2011] [Indexed: 12/19/2022]
|
20
|
Shen Q, Wu MH, Yuan SY. Endothelial contractile cytoskeleton and microvascular permeability. ACTA ACUST UNITED AC 2009; 2009:43-50. [PMID: 20871798 DOI: 10.2147/chc.s5118] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microvascular barrier dysfunction represents a significant problem in clinical conditions associated with trauma, burn, sepsis, acute respiratory distress syndrome, ischemia-reperfusion injury, and diabetic retinopathy. An important cellular mechanism underlying microvascular leakage is the generation of contractile force from the endothelial cytoskeleton, which counteracts cell-cell and cell-matrix adhesions leading to paracellular hyperpermeability. In this review, we present recent experimental evidence supporting the critical role of MLCK-activated, RhoA/ROCK-regulated contractile cytoskeleton in endothelial permeability response to inflammatory and thrombotic stimuli arising from thermal injury, activated neutrophils, vascular endothelial growth factor, and fibrinogen degradation products. Further understanding the molecular basis of microvascular barrier structure and function would contribute to the development of novel therapeutic targets for treating circulatory disorders and vascular injury.
Collapse
Affiliation(s)
- Qiang Shen
- Division of Research, Department, of Surgery, University of California, at Davis School of Medicine, Sacramento, CA, USA
| | | | | |
Collapse
|
21
|
Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2009; 11:e19. [PMID: 19563700 DOI: 10.1017/s1462399409001112] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial hyperpermeability is a significant problem in vascular inflammation associated with trauma, ischaemia-reperfusion injury, sepsis, adult respiratory distress syndrome, diabetes, thrombosis and cancer. An important mechanism underlying this process is increased paracellular leakage of plasma fluid and protein. Inflammatory stimuli such as histamine, thrombin, vascular endothelial growth factor and activated neutrophils can cause dissociation of cell-cell junctions between endothelial cells as well as cytoskeleton contraction, leading to a widened intercellular space that facilitates transendothelial flux. Such structural changes initiate with agonist-receptor binding, followed by activation of intracellular signalling molecules including calcium, protein kinase C, tyrosine kinases, myosin light chain kinase, and small Rho-GTPases; these kinases and GTPases then phosphorylate or alter the conformation of different subcellular components that control cell-cell adhesion, resulting in paracellular hypermeability. Targeting key signalling molecules that mediate endothelial-junction-cytoskeleton dissociation demonstrates a therapeutic potential to improve vascular barrier function during inflammatory injury.
Collapse
|
22
|
Thomas RA, Norman JC, Huynh TT, Williams B, Bolton SJ, Wardlaw AJ. Mechanical stretch has contrasting effects on mediator release from bronchial epithelial cells, with a rho-kinase-dependent component to the mechanotransduction pathway. Respir Med 2006; 100:1588-97. [PMID: 16469490 DOI: 10.1016/j.rmed.2005.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
INTRODUCTION In vivo, the airway epithelium stretches and relaxes with each respiratory cycle, but little is known about the effect this pattern of elongation and relaxation has on bronchial epithelial cells. We have used a model of cell deformation to measure the effect of stretch on inflammatory cytokine release by the BEAS 2B cell line, and to examine the method of mechanotransduction in these cells. METHODS BEAS 2B cells were cyclically stretched using the Flexercell system. IL-8 and RANTES protein and RNA levels were measured after different elongations, rates and duration of stretch. An inhibitor of Rho (Ras Homologous)-associated kinases was used, to assess the effect of blocking downstream of integrin signalling. Immunofluorescent staining of paxillin was used to study the effect of stretch on the distribution of focal contacts and the organisation of the actin cytoskeleton. RESULTS IL-8 release by BEAS 2B cells was increased by cytokine stimulation and stretch, whereas RANTES levels in the cell supernatant decreased after stretch in a dose-, time- and rate-dependent manner. Thirty percent elongation at 20 cycles/min for 24h increased IL-8 levels by over 100% (P < 0.01). Blocking rho kinase using Y-27632 inhibited the effect of stretch on IL-8 release by the BEAS 2B cells. Immunofluorescent staining demonstrated that stretch caused dramatic disassembly of focal adhesions and resulted in the redistribution of paxillin to the peri-nuclear region. CONCLUSION This study demonstrates a marked effect of stretch on bronchial epithelial cell function. We propose that stretch modulates epithelial cell function via the activation of rho kinases. The observation that stretch promotes focal adhesion disassembly suggests a mechanism whereby focal adhesion turnover (coordination of assembly and disassembly) is essential for mechanotransduction in bronchial epithelial cells.
Collapse
Affiliation(s)
- R A Thomas
- Institute for Lung Health, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|
23
|
Büyükafşar K, Yalçin I, Kurt AH, Tiftik RN, Sahan-Firat S, Aksu F. Rho-kinase inhibitor, Y-27632, has an antinociceptive effect in mice. Eur J Pharmacol 2006; 541:49-52. [PMID: 16750189 DOI: 10.1016/j.ejphar.2006.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/04/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
The possible antinociceptive effect of a Rho-kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632), was investigated in mice by using the hot-plate and abdominal constriction response (writhing) tests. In addition, the expression of Rho-kinase protein (ROCK-2) was studied in the mouse brain and spinal cord by Western blotting. Male balb/c mice (n=8, for each group) were used in the experiment. Hot-plate latency and the number of writhes were recorded in control and in Y-27632-treated (1-5 mg/kg, i.p.) groups. Y-27632 (1 mg/kg) did not affect hot-plate latency; however, it considerably diminished the number of writhes, from 89+/-12 in control to 30+/-6 in the mice treated with 1 mg/kg Y-27632 (P=0.001). At a higher dose (5 mg/kg), Y-27632 prolonged the hot-plate latency from 8.7+/-1.0 s to 14.4+/-1.7 s (P=0.005) and decreased the number of writhes from 80+/-8 to 24+/-7 (P=0.002). Western blot analysis revealed that mouse spinal cord and brain homogenates expressed ROCK-2 protein. These results indicate that Rho-kinase may be involved in nociception and that its inhibitors, such as Y-27632, may represent a new type of antinociceptive drug.
Collapse
Affiliation(s)
- Kansu Büyükafşar
- Department of Pharmacology, Medical Faculty, Mersin University, Campus Yenişehir 33169, Mersin, Turkey.
| | | | | | | | | | | |
Collapse
|
24
|
Tahimic CGT, Tomimatsu N, Nishigaki R, Fukuhara A, Toda T, Kaibuchi K, Shiota G, Oshimura M, Kurimasa A. Evidence for a role of Collapsin response mediator protein-2 in signaling pathways that regulate the proliferation of non-neuronal cells. Biochem Biophys Res Commun 2006; 340:1244-50. [PMID: 16414354 DOI: 10.1016/j.bbrc.2005.12.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/18/2005] [Indexed: 11/23/2022]
Abstract
Collapsin response mediator protein-2 or Crmp-2 plays a critical role in the establishment of neuronal polarity. In this study, we present evidence that apart from its functions in neurodevelopment, Crmp-2 is also involved in pathways that regulate the proliferation of non-neuronal cells through its phosphorylation by regulatory proteins. We show that Crmp-2 undergoes dynamic phosphorylation changes in response to contact inhibition-induced quiescence and that hyperphosphorylation of Crmp-2 occurs in a tumor. We further suggest that de-regulation of Crmp-2 phosphorylation levels at certain amino acid residues may lead to aberrant cell proliferation and consequently, tumorigenesis.
Collapse
Affiliation(s)
- Candice Ginn T Tahimic
- Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|