1
|
Kim S, Kim S, Park YS, Park JO, Lim HY, Ahn JS, Lee J, Sun JM, Kang WK, Han R, Kim J, Ahn MJ. Phase I clinical trial of KML001 monotherapy in patients with advanced solid tumors. Expert Opin Investig Drugs 2020; 29:1059-1067. [PMID: 32735765 DOI: 10.1080/13543784.2020.1804855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND We evaluated the tolerability, pharmacokinetics (PK) and preliminary efficacy of KML001, an oral trivalent arsenical, as a monotherapy in patients with advanced solid tumors. RESEARCH DESIGN AND METHODS With a standard 3 + 3 design for dose-escalation stage, the planned dose levels of KML001 were 5, 7.5, 10, 12.5, and 15 mg/day for 28 days. Once the maximum tolerated dose was determined, 22 subjects were additionally enrolled for dose-expansion stage. PK analysis was performed in the 5, 10, and 15 mg/day cohort at the dose-escalation stage and also at the dose-expansion stage. Moreover, response was assessed using the standard RECIST 1.1. RESULTS A total of 45 Korean subjects were enrolled. No DLT was reported at the dose-escalation stage. Three DLTs, two cases of prolonged QTc interval and one of neutropenia, were reported in the 12.5 mg/day cohort at the dose-expansion stage. Higher total daily doses up to 12.5 mg/day of KML001 resulted in higher trough plasma concentrations. Among the 18 subjects who completed 2 cycles of therapy, 15 had progressive disease and 3 had stable disease. CONCLUSIONS Doses equal to or greater than 10 mg/day KML001 alone were tolerable and produced plasma concentrations higher than biologically relevant targets.
Collapse
Affiliation(s)
- Seokuee Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul, Republic of Korea
| | - Sujong Kim
- Pharmaceutical Division, Komipharm International Co., Ltd ., Siheung, Republic of Korea
| | - Young Suk Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Jong Mu Sun
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - RaeO Han
- Pharmaceutical Division, Komipharm International Co., Ltd ., Siheung, Republic of Korea
| | - Jungryul Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul, Republic of Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University , Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| |
Collapse
|
2
|
Ogłuszka M, te Pas MFW, Poławska E, Nawrocka A, Stepanow K, Pierzchała M. Omega-3 Alpha-Linolenic Fatty Acid Affects the Level of Telomere Binding Protein TRF1 in Porcine Skeletal Muscle. Animals (Basel) 2020; 10:ani10061090. [PMID: 32599751 PMCID: PMC7341232 DOI: 10.3390/ani10061090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023] Open
Abstract
Omega-3 fatty acids are health-promoting nutrients that contribute to the amelioration of age-related diseases. Recent studies have reported the role of these fatty acids in the aging process, explicitly impacting telomere biology. The shelterin protein complex, located at the extremities of chromosomes, ensures telomere protection and length regulation. Here, we analyzed the impact of dietary omega-3 alpha-linolenic fatty acid from linseed oil on skeletal muscle telomere biology using an animal model of female pigs. Fifteen animals were supplemented with linseed oil for nine weeks and an equal number of individuals were fed with a control diet. Linseed-oil-supplemented animals showed an increased level of alpha-linolenic acid in skeletal muscles compared to control animals. There was no difference between groups in the telomere length measured in leukocytes and muscles. However, muscles of the linseed-oil-supplemented pigs showed lower levels of the shelterin TRF1 protein compared to the control group. Our results suggest that omega-3 linolenic acid counteracts the elevation of TRF1 levels, which increase with age and due to the presence of reactive oxygen species in muscle. The observed effect may be due to attenuation of oxidative stress.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
- Correspondence:
| | - Marinus F. W. te Pas
- Animal Breeding and Genomics, Wageningen UR Livestock Research, 6700AH Wageningen, The Netherlands;
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Kamila Stepanow
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| |
Collapse
|
3
|
Wang QQ, Jiang Y, Naranmandura H. Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases. Metallomics 2020; 12:326-336. [PMID: 32163072 DOI: 10.1039/c9mt00308h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arsenic trioxide (ATO) has been recognized as a drug for the treatment of various diseases in traditional medicine for more than two thousand years. Although ATO has recently shown excellent efficacy for the treatment of acute promyelocytic leukemia (APL), it could not provide satisfactory outcomes as a single-agent for the management of non-APL leukemia or different solid tumors. Nevertheless, combination treatment strategies, e.g., ATO with other agents, have shown promising results against different diseases. Here, we introduce in depth the latest evidence and detailed insights into ATO-mediated cures for APL by targeting PML/RARα chimeric protein, followed by the preclinical and clinical efficacy of ATO on various non-APL malignancies and solid tumors. Likewise, the antiviral activity of ATO against human immunodeficiency virus (HIV) and hepatitis C virus (HCV) was also discussed briefly. Our review would provide a clear prospect for the combination of ATO with other agents for treatment of numerous neoplastic diseases, and open a new era in the clinically applicable range of arsenicals.
Collapse
Affiliation(s)
- Qian Qian Wang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
4
|
c-Myc activation promotes cofilin-mediated F-actin cytoskeleton remodeling and telomere homeostasis as a response to oxidant-based DNA damage in medulloblastoma cells. Redox Biol 2019; 24:101163. [PMID: 30901604 PMCID: PMC6429558 DOI: 10.1016/j.redox.2019.101163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023] Open
Abstract
Medulloblastoma (MB) is a common and highly aggressive pediatric brain tumor of a heterogeneous nature. According to transcriptome-based profiling, four molecular subgroups of MB have been revealed, namely WNT, SHH, Group 3 and Group 4. High MYC mRNA expression and MYC gene amplification in MB have been considered as indicators of poor prognosis. However, the role of c-Myc in MB biology is still not well established. In the present study, the effects of c-Myc activation in UW228-MycER MB cell line were investigated using 4-hydroxytamoxifen (4-OHT) induction system. Upon 4-OHT stimulation, an increase in metabolic activity, large-cell/anaplastic (LC/A) phenotype and oxidative stress-mediated DNA damage were observed. However, 53BP1 foci were not implicated in DNA damage response. Instead, cofilin nuclear translocation, changes in F-actin cytoskeleton and the levels of cytoskeletal proteins were shown. Moreover, the telomere length was found to be unaffected that may be associated with the upregulation of TRF proteins. Transcription of nascent RNA (synthesis of new rRNA) and the expression of RNA polymerase I-specific transcription initiation factor RRN3/TIF-IA were also elevated. Moreover, increased levels of DNMT2, a modulator of stress responses, were observed. A small fraction of cells responded differently as oncogene-induced senescence was also noticed. We postulate that c-Myc-mediated modulation of genetic stability of MB cells may trigger cellular heterogeneity and affect adaptive responses to changing environment.
Collapse
|
5
|
Møller P, Wils RS, Jensen DM, Andersen MHG, Roursgaard M. Telomere dynamics and cellular senescence: an emerging field in environmental and occupational toxicology. Crit Rev Toxicol 2018; 48:761-788. [DOI: 10.1080/10408444.2018.1538201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Wang H, Ni J, Guo X, Zhou T, Ma X, Xue J, Wang X. Shelterin differentially respond to oxidative stress induced by TiO 2-NPs and regulate telomere length in human hepatocytes and hepatocarcinoma cells in vitro. Biochem Biophys Res Commun 2018; 503:697-702. [PMID: 29909006 DOI: 10.1016/j.bbrc.2018.06.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) have raised serious attention for their widely use and potential adverse effects on human mainly due to producing ROS. However, the influence of TiO2-NPs on telomere maintaining has not been studied clearly. Shelterin plays core roles in telomere length (TL) regulation. Abnormal TL are associated with chromosome instability (CIN) and high risk of diseases. This study investigated whether TiO2-NPs affect TL to induce CIN through ROS generation and the possible mechanisms. Human hepatocyte L-02 and hepatocarcinoma cells QGY were exposed to TiO2-NPs (0, 40, 80 μg/mL) for 72 h. The intracellular hydrogen dioxide (H2O2) concentration were measured. The TL, Nrf-2, and three core shelterin components (TRF1, TRF2, and POT1) transcription level were determined by quantitative real-time PCR. CIN was measured by cytokinesis-block micronucleus assay. TiO2-NPs exposure increased intracellular H2O2 in both L-02 and QGY cells, and induced Nrf-2, TRF1, TRF2, POT1 downregulated transcription compared with control (P < 0.001) in L-02 but all upregulated (P < 0.05) in QGY. Significant TL shortening (P < 0.001) and CIN increase (P < 0.01) in L-02 cells were observed but not in QGY cells. The differentially responses of the tested components of shelterin and Nrf-2 to oxidative stress induced by TiO2-NPs led to the weakened telomere protection in normal cells and effective telomere maintenance in cancer cells, respectively. The upregulation of Nrf-2 and shelterin could protect TL and chromosome stability against TiO2-NPs exposure.
Collapse
Affiliation(s)
- Han Wang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, 650500, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, 650500, China
| | - Tao Zhou
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, 650500, China
| | - Xiaoling Ma
- Shanghai Sanyu China Gene Science & Technology CO., Ltd., Shanghai, 200433, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Wnuk M. Downregulation of methyltransferase Dnmt2 results in condition-dependent telomere shortening and senescence or apoptosis in mouse fibroblasts. J Cell Physiol 2017; 232:3714-3726. [PMID: 28177119 DOI: 10.1002/jcp.25848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Dnmt2 is a highly conserved methyltransferase of uncertain biological function(s). As Dnmt2 was considered as a driver of fruit fly longevity and a modulator of stress response, we decided to evaluate the role of Dnmt2 during stress-induced premature senescence in NIH3T3 mouse fibroblasts. Stable knockdown of Dnmt2 resulted in hydrogen peroxide-mediated sensitivity and apoptosis, whereas in the control conditions, senescence was induced. Cellular senescence was accompanied by elevated levels of p53 and p21, decreased telomere length and telomerase activity, increased production of reactive oxygen species and protein carbonylation, and DNA damage. Dnmt2 silencing also promoted global DNA and RNA hypermethylation, and upregulation of methyltransferases, namely Dnmt1, Dnmt3a, and Dnmt3b. Taken together, we show for the first time that Dnmt2 may promote lifespan in the control conditions and survival during stress conditions in mouse fibroblasts.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | | | - Ewa Kwasniewicz
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
8
|
Chen H, Gu S, Dai H, Li X, Zhang Z. Dihydroartemisinin Sensitizes Human Lung Adenocarcinoma A549 Cells to Arsenic Trioxide via Apoptosis. Biol Trace Elem Res 2017; 179:203-212. [PMID: 28261759 DOI: 10.1007/s12011-017-0975-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
Recent studies have shown that arsenic trioxide (ATO) is an effective anti-cancer drug for treatment of acute promyelocytic leukemia and other types of human cancer. However, we have found that lung cancer cells constantly develop a high level of resistance to ATO. In this study, we have explored a possibility of combination of dihydroartemisinin (DHA) and ATO treatments to reduce ATO resistance of lung cancer cells. We determined the combinatory effects of DHA and ATO on cytotoxicity of human lung adenocarcinoma (A549) cells. We showed that co-exposure to DHA and ATO of A549 cells synergistically increased the cytotoxicity and apoptotic cell death in the cells. We found that the synergistic effect of DHA and ATO in promoting apoptosis mainly resulted from increased cellular level of reactive oxygen species (ROS) and DNA damage. ATO alone only exerted moderate growth inhibitory effects on A549 cells. The results indicate that DHA can significantly sensitize ATO-induced cytotoxicity of A549 lung cancer cells through apoptosis mediated by ROS-induced DNA damage. Interestingly, we found that the combinatory treatment of DHA and ATO did not result in significant adverse effects in normal human bronchial epithelial (HBE) cells. Our results further provide evidence for the potential application of combinatory effects of DHA and ATO as a safe therapy for human lung cancer.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shiyan Gu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huangmei Dai
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
You D, Kim Y, Jang MJ, Lee C, Jeong IG, Cho YM, Hwang JJ, Hong JH, Ahn H, Kim CS. KML001 Induces Apoptosis and Autophagic Cell Death in Prostate Cancer Cells via Oxidative Stress Pathway. PLoS One 2015; 10:e0137589. [PMID: 26352139 PMCID: PMC4564181 DOI: 10.1371/journal.pone.0137589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022] Open
Abstract
We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.
Collapse
Affiliation(s)
- Dalsan You
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunlim Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myoung Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chunwoo Lee
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Hyuk Hong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Mytych J, Pacyk K, Pepek M, Zebrowski J, Lewinska A, Wnuk M. Nanoparticle-mediated decrease of lamin B1 pools promotes a TRF protein-based adaptive response in cultured cells. Biomaterials 2015; 53:107-16. [PMID: 25890711 DOI: 10.1016/j.biomaterials.2015.02.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/08/2015] [Accepted: 02/15/2015] [Indexed: 12/30/2022]
Abstract
In general, nanoparticle-based materials are promising candidates for use in biological systems for diagnostic and therapeutic approaches. However, these materials' actions at the molecular level remain poorly understood. Nanoparticle (silica, silver and diamond)-induced oxidative stress and activation of the NF-κB pathway lead to the depletion of lamin B1 pools, which, in turn, results in upregulation of telomeric repeat binding factor (TRF) protein expression and maintenance of telomere length. In cancer cells, the TRF-based response is independent of the p53 pathway. In fibroblasts with active p53/p21 signaling, the levels of p53 and p21 are elevated and stress-induced premature senescence is observed. These results suggest that nanoparticles promote a telomere-focused cell adaptive response.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Karolina Pacyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Monika Pepek
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland.
| |
Collapse
|
11
|
ANXA1 silencing increases the sensitivity of cancer cells to low-concentration arsenic trioxide treatment by inhibiting ERK MAPK activation. TUMORI JOURNAL 2015; 101:360-7. [PMID: 25983101 DOI: 10.5301/tj.5000315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 12/26/2022]
Abstract
AIMS AND BACKGROUND Arsenic trioxide (ATO), an antitumor agent, is widely used for treating acute promyelocytic leukemia (APL), in which it induces apoptosis. In most solid tumors, ATO disturbs the cell cycle instead of inducing apoptosis. We aimed to determine the exact mechanism underlying the different response of APL to ATO compared with the response of solid tumors. METHODS A proteomics-based screening was used to identify the ATO-associated proteins in the human esophageal squamous cell carcinoma cell line, Eca109. The expression levels of Annexin A1 (ANXA1) in 4 different types of cancer cells were determined by quantitative reverse transcription polymerase chain reaction and Western blotting. Human esophageal squamous cell carcinoma cell line Eca109 and pancreatic carcinoma cell line BxPC3 cells were transfected with siRNAs targeting ANXA1 and scrambled control siRNA. Cell proliferation was evaluated by methyl thiazolyl tetrazolium assay. RESULTS After verification of the mRNA and protein levels in 4 cancer cell lines, ANXA1 and lamin A/B were validated to have increased expression levels after low-concentration ATO treatment. Lower concentrations of ATO, which has no effect on proliferation of cancer cells, induced apoptosis after ANXA1 silencing. Furthermore, overexpression of ANXA1 induced by ATO resulted in activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), rendering cancer cells resistant to the agent. In addition, PD98059, a specific ERK inhibitor, increased the sensitivity of cancer cells to a lower concentration of ATO treatment. CONCLUSIONS Taken together, these data indicate that overexpression of ANXA1 induced by low-concentration ATO makes cancer cells more resistant to the agent via activated ERK MAPKs. Specific silencing of ANXA1 increased the sensitivity of cancer cells to ATO treatment.
Collapse
|
12
|
YOON JINSUN, KIM EUNSHIL, PARK BYEONGBAE, CHOI JUNGHYE, WON YOUNGWOONG, KIM SUJONG, LEE YOUNGYIUL. Anti-leukemic effect of sodium metaarsenite (KML001) in acute myeloid leukemia with breaking-down the resistance of cytosine arabinoside. Int J Oncol 2015; 46:1953-62. [DOI: 10.3892/ijo.2015.2899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/29/2014] [Indexed: 11/06/2022] Open
|
13
|
Chatterjee D, Bhattacharjee P, Sau TJ, Das JK, Sarma N, Bandyopadhyay AK, Roy SS, Giri AK. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India. Mol Carcinog 2014; 54:800-9. [PMID: 24665044 DOI: 10.1002/mc.22150] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Debmita Chatterjee
- Molecular and Human Genetics Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | | | - Tanmoy J. Sau
- Sir Nil Ratan Sircar Medical College and Hospital; Kolkata India
| | - Jayanta K. Das
- Department of Dermatology; West Bank Hospital; Howrah, West Bengal India
| | - Nilendu Sarma
- Sir Nil Ratan Sircar Medical College and Hospital; Kolkata India
| | - Apurba K. Bandyopadhyay
- Molecular and Human Genetics Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Ashok K. Giri
- Molecular and Human Genetics Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
14
|
Gao YH, Zhang HP, Yang SM, Yang Y, Ma YY, Zhang XY, Yang YM. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells. Oncol Rep 2014; 31:1645-52. [PMID: 24482137 DOI: 10.3892/or.2014.2994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 11/05/2022] Open
Abstract
Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells.
Collapse
Affiliation(s)
- Yan-Hui Gao
- The Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hao-Peng Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shu-Meng Yang
- Department of Outpatient Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yue Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yu-Yan Ma
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin-Yu Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Mei Yang
- Cancer Research Institute, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
15
|
Ludlow AT, Spangenburg EE, Chin ER, Cheng WH, Roth SM. Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci 2014; 69:821-30. [PMID: 24418792 DOI: 10.1093/gerona/glt211] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aging phenotypes are dictated by myriad cellular changes including telomere shortening. In most tissues, telomere shortening is accelerated during replication if unrepaired oxidative damage to telomere sequences is present. However, the effect of reactive oxygen species exposure on skeletal muscle telomeres is unknown. We sought to determine if oxidative stress shortens telomeres in isolated adult rodent skeletal muscle fibers. Flexor digitorum brevis muscles were dissected from male mice (C57BL/6, long telomere and CAST/Ei, wild-derived, short telomere) and dissociated into single fibers. Fibers were cultured at an oxygen tension of 2%-5% for 5 days in control, hydrogen peroxide (oxidant), or a combination of N-acetylcysteine (antioxidant) and oxidant containing media. Telomere length, telomerase enzyme activity, and protein content of TRF1 and TRF2 were subsequently measured. In both strains, oxidative stress resulted in significant telomere shortening in isolated skeletal muscle fibers, likely by different mechanisms. Telomerase activity was not altered by oxidative stress treatment but was significantly different between strains, with greater telomerase activity in long-telomere-bearing C57BL/6 mice. These results provide important insights into mechanisms by which oxidative stress could shorten skeletal muscle telomeres.
Collapse
Affiliation(s)
| | | | - Eva R Chin
- Department of Kinesiology, School of Public Health and
| | - Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park. Present address: Department of Food Science, Nutrition and Health Promotion, Mississippi State University
| | | |
Collapse
|
16
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
17
|
Hao SY, Yu JC. Shelterin complex and digestive system tumor. Shijie Huaren Xiaohua Zazhi 2012; 20:3124-3129. [DOI: 10.11569/wcjd.v20.i32.3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Shelterin complex is the crucial components of telomere binding proteins. The regulation of this complex, together with telomerase and the alterative lengthening of telomeres (ALT mechanism), plays a critical role in maintaining telomere functions. Telomeres are DNA-protein complexes that contain short repeat sequences added on to the ends of chromosome by the telomerase for protecting the ends of chromosome and preventing chromosome fusion. The loss of protective function of telomeres is closely related to genome instability, and this is the molecular basis for tumor development. Thus, telomeres play key roles in the process of malignant tumor development. Many studies have shown that telomere binding proteins are associated with gastric, colorectal and liver cancers, and other digestive system tumors. This review will focus on the role of the shelterin complex in digestive system neoplasms to provide an insight into prevention and targeted therapy of these malignancies.
Collapse
|
18
|
Hernández A, Sampayo-Reyes A, Marcos R. Identification of differentially expressed genes in the livers of chronically i-As-treated hamsters. Mutat Res 2011; 713:48-55. [PMID: 21658394 DOI: 10.1016/j.mrfmmm.2011.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/10/2011] [Accepted: 05/20/2011] [Indexed: 05/30/2023]
Abstract
Inorganic arsenic (i-As) is a human carcinogen causing skin, lung, urinary bladder, liver and kidney tumors. Chronic exposure to this naturally occurring contaminant, mainly via drinking water, is a significant worldwide environmental health concern. To explore the molecular mechanisms of arsenic hepatic injury, a differential display polymerase chain reaction (DD-PCR) screening was undertaken to identify genes with distinct expression patterns between the liver of low i-As-exposed and control animals. Golden Syrian hamsters (5-6 weeks of age) received drinking water containing 15 mg i-As/L as sodium arsenite, or unaltered water for 18 weeks. The in vivo MN test was carried out, and the frequency of micronucleated reticulocytes (MN-RETs) was scored as a measure of exposure and As-related genotoxic/carcinogenic risk. A total of 68 differentially expressed bands were identified in our initial screen, 41 of which could be assigned to specific genes. Differential level of expression of a selected number of genes was verified using real-time RT-PCR with gene-specific primers. Arsenic-altered gene expression included genes related to stress response, cellular metabolism, cell cycle regulation, telomere maintenance, cell-cell communication and signal transduction. Significant differences of MN-RET were found between treated (8.70 ± 0.02 MN/1000RETs) and control (2.5 ± 0.70 MN/1000RETs) groups (P<0.001), demonstrating both the exposure and the i-As genotoxic/carcinogenic risk. Overall, this paper reveals some possible networks involved in hepatic arsenic-related genotoxicity, carcinogenesis and diabetogenesis. Additional studies to explore further the potential implications of each candidate gene are of especial interest. The present work opens the door to new prospects for the study of i-As mechanisms taking place in the liver under chronic settings.
Collapse
Affiliation(s)
- Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
19
|
Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P. Oxidative stress induces senescence in chondrocytes. J Orthop Res 2011; 29:1114-20. [PMID: 21284033 DOI: 10.1002/jor.21348] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 12/09/2010] [Indexed: 02/04/2023]
Abstract
Cellular senescence is a program activated during diverse situations of cell stress. Chondrocytes differ from other somatic cells as articular cartilage is an avascular tissue. The effects of oxidative stress on chondrocytes are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of human osteoarthritic chondrocytes, subjected to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by RT-PCR. Sub-lethal doses of oxidative stress induced cell-cycle arrest, senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged oxidative treatment had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. The effects of sub-lethal oxidative stress regarding proliferation and telomere biology were more distinct in senescent cells. Acute oxidant insult caused up-regulation of p21 expression to levels comparable to senescent cells. TRF2 protects telomere ends and showed elevated expression levels. SIRT1 and XRCC5 enable cells to cope with unfavorable growing conditions. Both were up-regulated after oxidant insult, but expression levels decreased in aging cells. Taken together, oxidative stress considerably accelerated telomere shortening and cellular aging in chondrocytes. Senescent cells showed a reduced tolerance to oxidative stress.
Collapse
Affiliation(s)
- Anita Brandl
- Department of Anesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 2011; 317:1541-7. [DOI: 10.1016/j.yexcr.2011.02.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/15/2011] [Accepted: 02/25/2011] [Indexed: 12/27/2022]
|
21
|
Guo XF, Cao EH. Telomeric plasmid induces human cancer cell dysfunction depending on ATM activity. Cell Biochem Funct 2010; 28:381-6. [PMID: 20535839 DOI: 10.1002/cbf.1664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Telomeres are essential for chromosome stability and the regulation of the replicative life-span of somatic cells. Many studies showed that exogenous telomeric repeats could activate p53 protein. It is not known how cell dysfunction is induced by telomeric plasmids. A covalent closed circular (ccc) double-stranded plasmid containing (TTAGGG)(96) repeats (pRST5) was transiently transfected into the human gastric cancer MGC-803 cells. We first confirmed that the cell viabilities decreased by 27%, cell senescence increased by 62% and G2/M cycle arrested in pRST5 plasmid transfected cells. Compared to control groups, cells transfected with telomeric plasmids showed an ATM-dependent increasing of p53, TRF1, and TRF2 expression. Furthermore, telomere dysfunction-induced foci (TIF) were observed. In conclusion, telomeric plasmids can elicit endogenous telomere dysfunction and induce cell senescence by activating ATM-p53 pathway.
Collapse
Affiliation(s)
- Xiao-Fei Guo
- Institute of Biophysics, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Chaoyang District, Beijing, PR China
| | | |
Collapse
|
22
|
Sumi D, Shinkai Y, Kumagai Y. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol Appl Pharmacol 2010; 244:385-92. [PMID: 20193703 DOI: 10.1016/j.taap.2010.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/09/2010] [Accepted: 02/21/2010] [Indexed: 12/23/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As(2)O(3) affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As(2)O(3) to induce a complete remission in relapsed APL patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As(2)O(3) exposure in leukemia cells.
Collapse
Affiliation(s)
- Daigo Sumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180, Yamashiro-cho, Tokushima-city, Tokushima 770-8514, Japan.
| | | | | |
Collapse
|
23
|
Aguennouz M, Vita GL, Messina S, Cama A, Lanzano N, Ciranni A, Rodolico C, Di Giorgio RM, Vita G. Telomere shortening is associated to TRF1 and PARP1 overexpression in Duchenne muscular dystrophy. Neurobiol Aging 2010; 32:2190-7. [PMID: 20137830 DOI: 10.1016/j.neurobiolaging.2010.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/30/2009] [Accepted: 01/14/2010] [Indexed: 01/09/2023]
Abstract
Telomere shortening is thought to contribute to premature senescence of satellite cells in Duchenne muscular dystrophy (DMD) muscle. Telomeric repeat binding factor-1 (TRF1) and poly (ADP-ribose) polymerase-1 (PARP1) are proteins known to modulate telomerase reverse transcriptase (TERT) activity, which controls telomere elongation. Here we show that an age-dependent telomere shortening occurs in DMD muscles and is associated to overexpression of mRNA and protein levels of TRF1 and PARP1. TERT expression and activity are detectable in normal control muscles and they slightly increase in DMD. This is the first demonstration of TRF1 and PARP1 overexpression in DMD muscles. They can be directly involved in replicative senescence of satellite cells and/or in the pathogenetic cascade through a cross-talk with oxidative stress and inflammatory response. Modulation of these events by TRF1 or PARP1 inhibition might represent a novel strategy for treatment of DMD and other muscular dystrophies.
Collapse
Affiliation(s)
- M'Hammed Aguennouz
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, AOU Policlinico, Messina 98125, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Qu X, Qu J, Zhang Y, Liu J, Teng Y, Hu X, Hou K, Liu Y. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett 2009; 284:208-15. [PMID: 19457607 DOI: 10.1016/j.canlet.2009.04.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/23/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
Arsenic trioxide (ATO) strongly induces apoptosis in acute promyelocytic leukemia (APL), but it induces cell cycle arrest in most solid tumors. In this study, we investigated the mechanism of ATO action on APL-derived NB4 cells and gastric cancer cell lines. ATO decreased the viability of both cell lines, but gastric cancer cells were much less susceptible. ATO-induced G2/M phase arrest and p53 degradation in gastric cancer MGC803 cells. In contrast, ATO-induced apoptosis in NB4 cells without degradation of p53. Both processes were accompanied by transient activation of Akt. The PI3K/Akt inhibitor LY294002 significantly increased the amount of p53 protein and ATO-induced apoptosis in both cell lines and decreased G2/M phase arrest of MGC803 cells. In addition, ATO up-regulated the expression of Cbl proteins in both cell lines. Inhibition of Cbl with the proteasome inhibitor Ps341 decreased apoptosis in NB4 cells and increased the G2/M phase arrest of MGC803 cells, and it also prolonged the activation of PI3K/Akt by ATO. Consistent results with those in MGC803 cells were showed in gastric cancer cell BGC823 and SGC7901 after ATO treatment. These results demonstrate that inhibition of PI3K/Akt signaling by Cbl is involved in both ATO-induced apoptosis of NB4 cells and ATO-induced G2/M phase arrest of gastric cancer cells. Cbl achieved these effects probably via its regulating PI3K/Akt pathway, and thereby modulated p53 activation.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Medical Oncology, The First Hospital, China Medical University, Heping District, Shenyang City 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang X, Wang G, Dong D, Fu S, Yang B. Inhibition on LS-174T cell growth and activity of telomerase in vitro and in vivo by arsenic trioxide. ACTA ACUST UNITED AC 2008; 60:481-8. [DOI: 10.1016/j.etp.2008.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 04/21/2008] [Indexed: 01/02/2023]
|
26
|
Phatak P, Dai F, Butler M, Nandakumar M, Gutierrez PL, Edelman MJ, Hendriks H, Burger AM. KML001 Cytotoxic Activity Is Associated with Its Binding to Telomeric Sequences and Telomere Erosion in Prostate Cancer Cells. Clin Cancer Res 2008; 14:4593-602. [DOI: 10.1158/1078-0432.ccr-07-4572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 2008; 56:106-17. [PMID: 17963266 DOI: 10.1002/glia.20593] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional studies of brain changes in normal aging have concentrated on gray matter as the locus for cognitive dysfunction. However, there is accumulating evidence from studies of normal aging in the rhesus monkey that changes in white matter may be a more critical factor in cognitive decline. Such changes include ultrastructural and biochemical evidence of myelin breakdown with age, as well as more recent magnetic resonance imaging of global loss of forebrain white matter volume and magnetic resonance diffusion tension imaging evidence of increased diffusivity in white matter. Moreover, many of these white matter changes correlate with age-related cognitive dysfunction. Based on these diverse white matter findings, the present work utilized high-density oligonucleotide microarrays to assess gene profile changes associated with age in the white matter of the corpus callosum. This approach identified several classes of genes that were differentially expressed in aging. Broadly characterized, these genes were predominantly related to an increase in stress factors and a decrease in cell function. The cell function changes included increased cell cycle inhibition and proteolysis, as well as decreased mitochondrial function, signal transduction, and protein translation. While most of these categories have previously been reported in functional brain aging, this is the first time they have been associated directly with white matter. Microarray analysis has also enabled the identification of neuroprotective response pathways activated by age in white matter, as well as several genes implicated in lifespan. Of particular interest was the identification of Klotho, a multifunctional protein that regulates phosphate and calcium metabolism, as well as insulin resistance, and is known to defend against oxidative stress and apoptosis. Combining the findings from the microarray study enabled us to formulate a model of white matter aging where specific genes are suggested as primary factors in disrupting white matter function. In conclusion, the overall changes described in this study could provide an explanation for aging changes in white matter that might be initiated or enhanced by an altered expression of life span associated genes such as Klotho.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev 2007; 33:542-64. [PMID: 17624680 DOI: 10.1016/j.ctrv.2007.05.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/21/2007] [Accepted: 05/23/2007] [Indexed: 01/04/2023]
Abstract
Arsenic is a semi-metal or metalloid with two biologically important oxidation states, As(III) and As(V). As(III), in particular, reacts with closely spaced protein thiols, forming stable cyclic dithioarsinite complexes in which both sulfur atoms are bound to arsenic. It is this reaction that is mostly responsible for arsenics cytotoxicity. Arsenic compounds have been used as medicinal agents for many centuries for the treatment of diseases such as psoriasis, syphilis, and rheumatosis. From the 1700's until the introduction of and use of modern chemotherapy and radiation therapy in the mid 1900's, arsenic was a mainstay in the treatment of leukemia. Concerns about the toxicity of arsenical compounds led eventually to their abandonment for the treatment of cancer. The discovery in the 1980's that arsenic trioxide induces complete remission in a high percentage of patients with acute promyelocytic leukemia has awakened interest in this metalloid for the treatment of human disease. In particular, a new class or organoarsenicals are being trialed for the treatment of hematological malignancies and solid tumors. In this review, we discuss the arsenical-based compounds used in the past and present for the treatment of various forms of cancer. Mechanisms of action and selectivity and acute and chronic toxicities are discussed along with the prospects of this class of molecule.
Collapse
Affiliation(s)
- Pierre J Dilda
- UNSW Cancer Research Centre, University of New South Wales and Department of Haematology, Prince of Wales Hospital, Sydney 2052, Australia
| | | |
Collapse
|
29
|
Glaviano A, Nayak V, Cabuy E, Baird DM, Yin Z, Newson R, Ladon D, Rubio MA, Slijepcevic P, Lyng F, Mothersill C, Case CP. Effects of hTERT on metal ion-induced genomic instability. Oncogene 2006; 25:3424-35. [PMID: 16449970 DOI: 10.1038/sj.onc.1209399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is currently a great interest in delayed chromosomal and other damaging effects of low-dose exposure to a variety of pollutants which appear collectively to act through induction of stress-response pathways related to oxidative stress and ageing. These have been studied mostly in the radiation field but evidence is accumulating that the mechanisms can also be triggered by chemicals, especially heavy metals. Humans are exposed to metals, including chromium (Cr) (VI) and vanadium (V) (V), from the environment, industry and surgical implants. Thus, the impact of low-dose stress responses may be larger than expected from individual toxicity projections. In this study, a short (24 h) exposure of human fibroblasts to low doses of Cr (VI) and V (V) caused both acute chromosome damage and genomic instability in the progeny of exposed cells for at least 30 days after exposure. Acutely, Cr (VI) caused chromatid breaks without aneuploidy while V (V) caused aneuploidy without chromatid breaks. The longer-term genomic instability was similar but depended on hTERT positivity. In telomerase-negative hTERT- cells, Cr (VI) and V (V) caused a long lasting and transmissible induction of dicentric chromosomes, nucleoplasmic bridges, micronuclei and aneuploidy. There was also a long term and transmissible reduction of clonogenic survival, with an increased beta-galactosidase staining and apoptosis. This instability was not present in telomerase-positive hTERT+ cells. In contrast, in hTERT+ cells the metals caused a persistent induction of tetraploidy, which was not noted in hTERT- cells. The growth and survival of both metal-exposed hTERT+ and hTERT- cells differed if they were cultured at subconfluent levels or plated out as colonies. Genomic instability is considered to be a driving force towards cancer. This study suggests that the type of genomic instability in human cells may depend critically on whether they are telomerase-positive or -negative and that their sensitivities to metals could depend on whether they are clustered or diffuse.
Collapse
Affiliation(s)
- A Glaviano
- Bristol Implant Research Centre, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|