1
|
Soltani D, Azizi B, Rahimi R, Talasaz AH, Rezaeizadeh H, Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 2022; 9:990063. [PMID: 36247473 PMCID: PMC9559844 DOI: 10.3389/fcvm.2022.990063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias, characterized by an irregular heartbeat, are associated with high mortality and morbidity. Because of the narrow therapeutic window of antiarrhythmic drugs (AADs), the management of arrhythmia is still challenging. Therefore, searching for new safe, and effective therapeutic options is unavoidable. In this study, the antiarrhythmic effects of medicinal plants and their active constituents were systematically reviewed to introduce some possible candidates for mechanism-based targeting of cardiac arrhythmias. PubMed, Embase, and Cochrane library were searched from inception to June 2021 to find the plant extracts, phytochemicals, and multi-component herbal preparations with antiarrhythmic activities. From 7337 identified results, 57 original studies consisting of 49 preclinical and eight clinical studies were finally included. Three plant extracts, eight multi-component herbal preparations, and 26 phytochemicals were found to have antiarrhythmic effects mostly mediated by affecting K+ channels, followed by modulating Ca2+ channels, upstream target pathways, Na v channels, gap junction channels, and autonomic receptors. The most investigated medicinal plants were Rhodiola crenulata and Vitis vinifera. Resveratrol, Oxymatrine, and Curcumin were the most studied phytochemicals found to have multiple mechanisms of antiarrhythmic action. This review emphasized the importance of research on the cardioprotective effect of medicinal plants and their bioactive compounds to guide the future development of new AADs. The most prevalent limitation of the studies was their unqualified methodology. Thus, future well-designed experimental and clinical studies are necessary to provide more reliable evidence.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Azita H. Talasaz
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Resveratrol Prevents Right Ventricle Dysfunction, Calcium Mishandling, and Energetic Failure via SIRT3 Stimulation in Pulmonary Arterial Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912434. [PMID: 34239697 PMCID: PMC8238598 DOI: 10.1155/2021/9912434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.
Collapse
|
3
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
4
|
Parijat P, Kondacs L, Alexandrovich A, Gautel M, Cobb AJA, Kampourakis T. High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chem Biol 2021; 16:225-235. [PMID: 33315370 DOI: 10.1021/acschembio.0c00908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current therapeutic interventions for both heart disease and heart failure are largely insufficient and associated with undesired side effects. Biomedical research has emphasized the role of sarcomeric protein function for the normal performance and energy efficiency of the heart, suggesting that directly targeting the contractile myofilaments themselves using small molecule effectors has therapeutic potential and will likely result in greater drug efficacy and selectivity. In this study, we developed a robust and highly reproducible fluorescence polarization-based high throughput screening (HTS) assay that directly targets the calcium-dependent interaction between cardiac troponin C (cTnC) and the switch region of cardiac troponin I (cTnISP), with the aim of identifying small molecule effectors of the cardiac thin filament activation pathway. We screened a commercially available small molecule library and identified several hit compounds with both inhibitory and activating effects. We used a range of biophysical and biochemical methods to characterize hit compounds and identified fingolimod, a sphingosin-1-phosphate receptor modulator, as a new troponin-based small molecule effector. Fingolimod decreased the ATPase activity and calcium sensitivity of demembranated cardiac muscle fibers in a dose-dependent manner, suggesting that the compound acts as a calcium desensitizer. We investigated fingolimod's mechanism of action using a combination of computational studies, biophysical methods, and synthetic chemistry, showing that fingolimod bound to cTnC repels cTnISP via mainly electrostatic repulsion of its positively charged tail. These results suggest that fingolimod is a potential new lead compound/scaffold for the development of troponin-directed heart failure therapeutics.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Laszlo Kondacs
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| |
Collapse
|
5
|
Shu FQ, Lu YG, Tang HP, Ye ZY, Huang YN, Wang M, Tang ZQ, Chen L. Resveratrol noncompetitively inhibits glycine receptor-mediated currents in neurons of rat central auditory neurons. Brain Res Bull 2021; 169:18-24. [PMID: 33400956 DOI: 10.1016/j.brainresbull.2020.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/17/2023]
Abstract
Resveratrol, a naturally occurring stilbene found in red wine, is known to modulate the activity of several types of ion channels and membrane receptors, including Ca2+, K+, and Na+ ion channels. However, little is known about the effects of resveratrol on some important receptors, such as glycine receptors and GABAA receptors, in the central nervous system (CNS). In the present study, the effects of resveratrol on glycine receptor or GABAA receptor-mediated currents in cultured rat inferior colliculus (IC) and auditory cortex (AC) neurons were studied using whole-cell voltage-clamp recordings. Resveratrol itself did not evoke any currents in IC neurons but it reversibly decreased the amplitude of glycine-induced current (IGly) in a concentration-dependent manner. Resveratrol did not change the reversal potential of IGly but it shifted the concentration-response relationship to the right without changing the Hill coefficient and with decreasing the maximum response of IGly. Interestingly, resveratrol inhibited the amplitude of IGly but not that of GABA-induced current (IGABA) in AC neurons. More importantly, resveratrol inhibited GlyR-mediated but not GABAAR-mediated inhibitory postsynaptic currents in IC neurons using brain slice recordings. Together, these results demonstrate that resveratrol noncompetitively inhibits IGly in auditory neurons by decreasing the affinity of glycine to its receptor. These findings suggest that the native glycine receptors but not GABAA receptors in central neurons are targets of resveratrol during clinical administrations.
Collapse
Affiliation(s)
- Fang-Qi Shu
- School of Life Sciences, Anhui University, Hefei, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, China
| | - Yun-Gang Lu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Hui-Ping Tang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Zeng-You Ye
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yi-Na Huang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Ming Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Zheng-Quan Tang
- School of Life Sciences, Anhui University, Hefei, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, China.
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
6
|
Okubo N, Ishikawa H, Sano R, Shimazu Y, Takeda M. Effect of resveratrol on the hyperexcitability of nociceptive neurons associated with ectopic hyperalgesia induced by experimental tooth movement. Eur J Oral Sci 2020; 128:275-283. [PMID: 33856731 DOI: 10.1111/eos.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
The present study investigated whether, under in vivo conditions, systemic administration of resveratrol attenuates the experimental tooth movement-induced ectopic hyperalgesia associated with hyperexcitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) neurons. The threshold of escape from mechanical stimulation applied to the ipsilateral whisker pad in rats exposed to experimental tooth movement was significantly lower than seen in control rats from day 1 to 3 following movement of the right maxillary first molar tooth. The lowered mechanical threshold in the rats exposed to experimental tooth movement had almost returned to the level of sham-treated naïve rats at day 3 following administration of resveratrol. The mean mechanical threshold of nociceptive SpVc neurons was significantly lower after experimental tooth movement but the lower threshold could be reversed by administration of resveratrol. The higher discharge frequency of nociceptive SpVc neurons for noxious mechanical stimuli observed in rats exposed to experimental tooth movement was statistically significantly lower following resveratrol administration. These results suggest that resveratrol attenuates experimental tooth movement-induced mechanical ectopic hyperalgesia via suppression of peripheral and/or central sensitization. These findings support the idea that resveratrol, a complementary alternative medicine, is a potential therapeutic agent for the prevention of experimental tooth movement-induced ectopic hyperalgesia.
Collapse
Affiliation(s)
- Nao Okubo
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Haruna Ishikawa
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Rena Sano
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
7
|
Takeda M, Shimazu Y. Modulatory mechanism underlying how dietary constituents attenuate orofacial pain. J Oral Sci 2020; 62:140-143. [DOI: 10.2334/josnusd.19-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University
| |
Collapse
|
8
|
Whitcomb V, Wauson E, Christian D, Clayton S, Giles J, Tran QK. Regulation of beta adrenoceptor-mediated myocardial contraction and calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem Pharmacol 2019; 171:113727. [PMID: 31759979 DOI: 10.1016/j.bcp.2019.113727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
The G protein-coupled estrogen receptor 1 (GPER) produces cardioprotective effects. However, the underlying mechanisms are not well understood. We aimed to investigate the role of GPER in β adrenoceptor-mediated cardiac contraction and myocardial signaling. In anesthetized animals, intrajugular administration of isoproterenol produces a rapid and sustained rise in left ventricular pressure (LVP) and increases ectopic contractions. Administration of the GPER agonist G-1 during the plateau phase of isoproterenol-induced LVP increase rapidly restores LVP to baseline levels and reduces the frequency of ectopic contractions. In freshly isolated cardiomyocytes, isoproterenol potentiates electrically induced peak currents of L-type Ca2+ channels (LTCC) and increases the potential sensitivity of their inactivation. Coadministration of G-1 prevents isoproterenol-induced potentiation of peak LTCC currents and makes channels more sensitive to being inactivated compared to isoproterenol alone. Isoproterenol treatment of cardiomyocytes without electrical stimulation triggers slow-rising Ca2+ signals that are inhibited by the β1AR antagonist metoprolol but not by β2AR antagonist ICI-118551. G-1 pretreatment dose-dependently suppresses isoproterenol-induced total Ca2+ signals and the amplitude and frequency of the intrinsic Ca2+ oscillatory deflections. Pretreatment with the GPER antagonist G-36 produces opposite effects, dose-dependently increasing these signals. ISO promotes robust phosphorylation of Cav1.2 channels at Ser1928. G-1 pretreatment inhibits isoproterenol-stimulated phosphorylation of Cav1.2 at Ser1928, while G-36 pretreatment enhances this signal. Our data indicate that GPER functions as an intrinsic component of β1AR signaling to moderate myocardial Ca2+ dynamics and contraction.
Collapse
Affiliation(s)
- Victoria Whitcomb
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Eric Wauson
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Daniel Christian
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States.
| |
Collapse
|
9
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
10
|
Saqib U, Kelley TT, Panguluri SK, Liu D, Savai R, Baig MS, Schürer SC. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Front Pharmacol 2018; 9:1201. [PMID: 30405416 PMCID: PMC6207623 DOI: 10.3389/fphar.2018.01201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/01/2018] [Indexed: 02/03/2023] Open
Abstract
Resveratrol (3, 4', 5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and has long been thought to be the answer to the "French Paradox." There is no shortage of preclinical and clinical studies investigating the broad therapeutic activity of resveratrol. However, in spite of many comprehensive reviews published on the bioactivity of resveratrol, there has yet to be a report focused on the variety and complexity of its structural binding properties, and its multi-targeted role. An improved understanding of disease mechanisms at the systems level has enabled targeted polypharmacology to mature into a rational drug discovery approach. Unlike traditional hit-to-lead campaigns that typically optimize activity and selectivity for a single target, polypharmacological drugs aim to selectively target multiple proteins, while avoiding critical off target interactions. This strategy bears promise of improved efficacy and reduced clinical attrition. This review seeks to investigate whether the bioactivity of resveratrol is due to a polypharmacological effect or promiscuity of the phenolic small molecule by examining the modes of binding with its diverse collection of protein targets. We focused on annotated targets, identified via the ChEMBL database, and matched these targets to a representative structure deposited in the Protein Data Bank (PDB), as crystal structures are most informative in understanding modes of binding at the atomic level. We discuss the structural aspects of resveratrol itself that permits binding to multiple proteins in various signaling pathways. Furthermore, we suggest that resveratrol's bioactivity is a result of scaffold promiscuity rather than polypharmacology, and the variety of binding modes across targets display little similarity in the pattern of target interaction.
Collapse
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Tanya T. Kelley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Siva K. Panguluri
- Department of Pharmaceutical Science, University of South Florida, Tampa, FL, United States
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Rajkumar Savai
- German Center for Lung Research (DZL), Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mirza S. Baig
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Computational Science, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
11
|
Resveratrol: an effective pharmacological agent to prevent inflammation-induced atrial fibrillation? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1163-1167. [PMID: 30238135 DOI: 10.1007/s00210-018-1566-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
12
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Food pyramid for subjects with chronic pain: foods and dietary constituents as anti-inflammatory and antioxidant agents. Nutr Res Rev 2018; 31:131-151. [PMID: 29679994 DOI: 10.1017/s0954422417000270] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging literature suggests that diet constituents may play a modulatory role in chronic pain (CP) through management of inflammation/oxidative stress, resulting in attenuation of pain. We performed a narrative review to evaluate the existing evidence regarding the optimum diet for the management of CP, and we built a food pyramid on this topic. The present review also describes the activities of various natural compounds contained in foods (i.e. phenolic compounds in extra-virgin olive oil (EVO)) listed on our pyramid, which have comparable effects to drug management therapy. This review included 172 eligible studies. The pyramid shows that carbohydrates with low glycaemic index should be consumed every day (three portions), together with fruits and vegetables (five portions), yogurt (125 ml), red wine (125 ml) and EVO; weekly: legumes and fish (four portions); white meat, eggs and fresh cheese (two portions); red or processed meats (once per week); sweets can be consumed occasionally. The food amounts are estimates based on nutritional and practical considerations. At the top of the pyramid there is a pennant: it means that CP subjects may need a specific customised supplementation (vitamin B12, vitamin D, n-3 fatty acids, fibre). The food pyramid proposal will serve to guide dietary intake with to the intent of alleviating pain in CP patients. Moreover, a targeted diet can also help to solve problems related to the drugs used to combat CP, i.e. constipation. However, this paper would be an early hypothetical proposal due to the limitations of the studies.
Collapse
|
14
|
Takehana S, Kubota Y, Uotsu N, Yui K, Iwata K, Shimazu Y, Takeda M. The dietary constituent resveratrol suppresses nociceptive neurotransmission via the NMDA receptor. Mol Pain 2017; 13:1744806917697010. [PMID: 28326937 PMCID: PMC5407661 DOI: 10.1177/1744806917697010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although we have previously reported that intravenous resveratrol administration inhibits the nociceptive neuronal activity of spinal trigeminal nucleus caudalis neurons, the site of the central effect remains unclear. The aim of the present study was to examine whether acute intravenous resveratrol administration in the rat attenuates central glutamatergic transmission of spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation in vivo, using extracellular single-unit recordings and microiontophoretic techniques. Results Extracellular single-unit recordings using multibarrel electrodes were made from the spinal trigeminal nucleus caudalis wide dynamic range neurons responding to orofacial mechanical stimulation in pentobarbital anesthetized rats. These neurons also responded to iontophoretic application of glutamate, and the evoked neuronal discharge frequency was significantly increased in a current-dependent and reversible manner. The mean firing frequency evoked by the iontophoretic application of glutamate (30, 50, and 70 nA) was mimicked by the application of 10 g, 60 g, and noxious pinch mechanical stimulation, respectively. The mean firing frequency of spinal trigeminal nucleus caudalis wide dynamic range neurons responding to iontophoretic application of glutamate and N-methyl-D-aspartate were also significantly inhibited by intravenous administration of resveratrol (2 mg/kg) and the maximal inhibition of discharge frequency was observed within 10 min. These inhibitory effects lasted approximately 20 min. The relative magnitude of inhibition by resveratrol of the glutamate-evoked spinal trigeminal nucleus caudalis wide dynamic range neuronal discharge frequency was similar to that for N-methyl-D-aspartate iontophoretic application. Conclusion These results suggest that resveratrol suppresses glutamatergic neurotransmission of the spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation via the N-methyl-D-aspartate receptor in vivo, and resveratrol may be useful as a complementary or alternative therapeutic agent for the treatment of trigeminal nociceptive pain.
Collapse
Affiliation(s)
- Shiori Takehana
- 1 Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Yoshiko Kubota
- 2 FANCL Health Science Research Center, Research Institute, FANCL Corporation, Kanagawa, Japan
| | - Nobuo Uotsu
- 2 FANCL Health Science Research Center, Research Institute, FANCL Corporation, Kanagawa, Japan
| | - Kei Yui
- 2 FANCL Health Science Research Center, Research Institute, FANCL Corporation, Kanagawa, Japan
| | - Koichi Iwata
- 3 Department of Physiology, School of Dentistry, Nihon University, Tokyo, Japan
| | - Yoshihito Shimazu
- 1 Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Mamoru Takeda
- 1 Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| |
Collapse
|
15
|
Liu W, Chen P, Deng J, Lv J, Liu J. Resveratrol and polydatin as modulators of Ca 2+ mobilization in the cardiovascular system. Ann N Y Acad Sci 2017; 1403:82-91. [PMID: 28665033 DOI: 10.1111/nyas.13386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022]
Abstract
In the cardiovascular system, Ca2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca2+ mobilization. The actions of Res and PD on Ca2+ signals delicately manipulated by multiple Ca2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Peiya Chen
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Endocrinology, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Endocrinology, Shenzhen No. 2 People's Hospital, Shenzhen, China
| | - Jingzhang Lv
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Takeda M, Takehana S, Sekiguchi K, Kubota Y, Shimazu Y. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol. Int J Mol Sci 2016; 17:ijms17101702. [PMID: 27727178 PMCID: PMC5085734 DOI: 10.3390/ijms17101702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022] Open
Abstract
Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM) candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Kenta Sekiguchi
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Yoshiko Kubota
- FANCL Health Science Research Center, Research Institute, FANCL corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan.
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
17
|
Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis. Brain Res Bull 2016; 124:262-8. [PMID: 27288246 DOI: 10.1016/j.brainresbull.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/28/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
Abstract
Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents.
Collapse
|
18
|
Sekiguchi K, Takehana S, Shibuya E, Matsuzawa N, Hidaka S, Kanai Y, Inoue M, Kubota Y, Shimazu Y, Takeda M. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Mol Pain 2016; 12:12/0/1744806916643082. [PMID: 27068286 PMCID: PMC4956177 DOI: 10.1177/1744806916643082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Background Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. Results Inflammation was induced by injection of complete Freund’s adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to whisker pad in inflamed rats was significantly lower than in control rats. The decreased mechanical threshold in inflamed rats was restored to control levels by daily systemic administration of resveratrol (2 mg/kg, i.p.). The mean discharge frequency of spinal trigeminal nucleus caudalis wide-dynamic range neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after resveratrol administration. In addition, the increased mean spontaneous discharge of spinal trigeminal nucleus caudalis wide-dynamic range neurons in inflamed rats was significantly decreased after resveratrol administration. Similarly, resveratrol significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, resveratrol restored the expanded mean size of the receptive field in inflamed rats to control levels. Conclusion These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron hyperexcitability via inhibition of both peripheral and central cyclooxygenase-2 cascade signaling pathways. These findings support the idea of resveratrol as a potential complementary and alternative medicine for the treatment of trigeminal inflammatory hyperalgesia without side effects.
Collapse
Affiliation(s)
- Kenta Sekiguchi
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Eri Shibuya
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Nichiwa Matsuzawa
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shiori Hidaka
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yurie Kanai
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Maki Inoue
- Laboratory of Physiology II, Department of Veterinary Science, School of Veterinary medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yoshiko Kubota
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, Yokohama, Kanagawa, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
19
|
Takehana S, Sekiguchi K, Inoue M, Kubota Y, Ito Y, Yui K, Shimazu Y, Takeda M. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats. Brain Res Bull 2016; 120:117-22. [DOI: 10.1016/j.brainresbull.2015.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022]
|
20
|
Meftahi G, Ghotbedin Z, Eslamizade MJ, Hosseinmardi N, Janahmadi M. Suppressive Effects of Resveratrol Treatment on The Intrinsic Evoked Excitability of CA1 Pyramidal Neurons. CELL JOURNAL 2015; 17:532-9. [PMID: 26464825 PMCID: PMC4601874 DOI: 10.22074/cellj.2015.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022]
Abstract
Objective Resveratrol, a phytoalexin, has a wide range of desirable biological actions.
Despite a growing body of evidence indicating that resveratrol induces changes in neu-
ronal function, little effort, if any, has been made to investigate the cellular effect of res-
veratrol treatment on intrinsic neuronal properties.
Materials and Methods This experimental study was performed to examine the
acute effects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cornu
Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp re-
cording under current clamp conditions.
Results Findings showed that resveratrol treatment caused dramatic changes in
evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05)
increase in the after hyperpolarization amplitude of the first evoked action potential.
Resveratrol-treated cells displayed a significantly broader action potential (AP) when
compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in
resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly
greater following resveratrol treatment. Neurons exhibited a significantly depolarized
voltage threshold when exposed to resveratrol.
Conclusion Results provide direct electrophysiological evidence for the inhibitory
effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked
neural activity.
Collapse
Affiliation(s)
- Gholamhossein Meftahi
- Neuroscience Research Center and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Neuroscience Research Center, Baqiyatallah (a.s.) University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Javad Eslamizade
- Shefa Neuroscience Research Center, Khatam Al Anbia Hospital, Tehran, Iran ; Department of Neuroscience, School of Advanced Medical Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Neuroscience Research Center and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1155-77. [DOI: 10.1016/j.bbadis.2014.10.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
|
22
|
Extracts and Fractions from Edible Roots of Sechium edule (Jacq.) Sw. with Antihypertensive Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:594326. [PMID: 24812568 PMCID: PMC4000635 DOI: 10.1155/2014/594326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/02/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022]
Abstract
Sechium edule is traditionally used in Mexico as a therapeutic resource against renal diseases and to control high blood pressure. The purpose of this work is to evaluate the antihypertensive effect of the hydroalcoholic extract obtained from the roots of this plant, including its fractions and subfractions, on different hypertension models induced with angiotensin II (AG II). The hydroalcoholic extract was tested on an in vitro study of isolated aorta rings denuded of endothelial cells, using AG II as the agonist; this assay proved the vasorelaxant effect of this extract. Vagotomized rats were administered different doses of AG II as well as the Hydroalcoholic extract, which reduced blood pressure in 30 mmHg approximately; subsequently this extract was separated into two fractions (acetone and methanol) which were evaluated in the acute hypertension mouse model induced with AG II, where the acetone fraction was identified as the most effective one and was subsequently subfractioned using an open chromatographic column packed with silica gel. The subfractions were also evaluated in the acute hypertension model. Finally, the extract, fraction, and active subfraction were analyzed by MS-PDA-HPLC, identifying cinnamic derivative compounds like cinnamic acid methyl ester.
Collapse
|
23
|
Effects of resveratrol and nebivolol on isolated vascular and cardiac tissues from young rats. Adv Pharmacol Sci 2014; 2014:720386. [PMID: 24696678 PMCID: PMC3950595 DOI: 10.1155/2014/720386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which resveratrol and nebivolol induce vasodilation are not clearly understood. It has been postulated that both agents stimulate the production of nitric oxide; however, this remains to be conclusively established. The major aim of this study was to examine the vasodilatory and antiarrhythmic effects of both resveratrol and nebivolol and to provide further insight into possible mechanisms of action. Cardiac and vascular tissues were isolated from healthy male rodents. Results indicate that resveratrol and nebivolol decrease the action potential duration and induce mild vasorelaxation in aortic and mesenteric segments. Relaxation induced by resveratrol was prevented by the addition of verapamil, N ω -nitro-L-arginine-methyl ester, and 4-aminopyridine. This suggests that nebivolol and resveratrol act as putative antiarrhythmic and vasodilatory agents in vitro through possible indirect nitric oxide mechanisms.
Collapse
|
24
|
Ferrara A, Fusi F, Gorelli B, Sgaragli G, Saponara S. Effects of freeze-dried red wine on cardiac function and ECG of the Langendorff-perfused rat heart. Can J Physiol Pharmacol 2014; 92:171-4. [DOI: 10.1139/cjpp-2013-0262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of freeze-dried red wine (FDRW) on cardiac function and electrocardiogram (ECG) in Langendorff-isolated rat hearts was investigated. FDRW significantly decreased left ventricular pressure and coronary perfusion pressure, the latter being dependent on the activation of both phosphatidylinositol 3-kinase and eNOS. FDRW did not affect the QRS and QT interval in the ECG, although at 56 μg of gallic acid equivalents/mL, it prolonged PQ interval and induced a second-degree atrioventricular block in 3 out of 6 hearts. This is the first study demonstrating that at concentrations resembling a moderate consumption of red wine, FDRW exhibited negative inotropic and coronary vasodilating activity leaving unaltered ECG, whereas at very high concentrations, it induced arrhythmogenic effects.
Collapse
Affiliation(s)
- Antonella Ferrara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Fabio Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Beatrice Gorelli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
- Accademia Italiana della Vite e del Vino, Via XXVIII Aprile, 26 Conegliano Treviso, Italy
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
25
|
Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. J Bioenerg Biomembr 2012; 44:281-96. [DOI: 10.1007/s10863-012-9429-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Pineda-Sanabria SE, Robertson IM, Sykes BD. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 2011; 50:1309-20. [PMID: 21226534 DOI: 10.1021/bi101985j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac troponin, a heterotrimeric protein complex that regulates heart contraction, represents an attractive target for the development of drugs for treating heart disease. Cardiovascular diseases are one of the chief causes of morbidity and mortality worldwide. In France, however, the death rate from heart disease is remarkably low relative to fat consumption. This so-called "French paradox" has been attributed to the high level of consumption of wine in France, and the antioxidant trans-resveratrol is thought to be the primary basis for wine's cardioprotective nature. It has been demonstrated that trans-resveratrol increases the myofilament Ca(2+) sensitivity of guinea pig myocytes [Liew, R., Stagg, M. A., MacLeod, K. T., and Collins, P. (2005) Eur. J. Pharmacol. 519, 1-8]; however, the specific mode of its action is unknown. In this study, the structure of trans-resveratrol free and bound to the calcium-binding protein, troponin C, was determined by nuclear magnetic resonance spectroscopy. The results indicate that trans-resveratrol undergoes a minor conformational change upon binding to the hydrophobic pocket of the C-domain of troponin C. The location occupied by trans-resveratrol coincides with the binding site of troponin I, troponin C's natural binding partner. This has been seen for other troponin C-targeting inotropes and implicates the modulation of the troponin C-troponin I interaction as a possible mechanism of action for trans-resveratrol.
Collapse
Affiliation(s)
- Sandra E Pineda-Sanabria
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
27
|
Zoechling A, Liebner F, Jungbauer A. Red wine: A source of potent ligands for peroxisome proliferator-activated receptor γ. Food Funct 2011; 2:28-38. [DOI: 10.1039/c0fo00086h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
|
29
|
Abstract
Biological sex plays an important role in normal cardiac physiology as well as in the heart's response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this sex difference is lost when comparing postmenopausal women with age-matched men. Animal models of cardiac disease mirror what is seen in humans. Sex steroid hormones contribute significantly to sex-based differences in cardiac disease outcomes. Estrogen is generally considered to be cardioprotective, whereas testosterone is thought to be detrimental to heart function. Environmental estrogen-like molecules, such as phytoestrogens, can also affect cardiac physiology in both a positive and a negative manner.
Collapse
Affiliation(s)
- Elizabeth D Luczak
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
30
|
Szkudelska K, Nogowski L, Szkudelski T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 2009; 113:17-24. [PMID: 19041941 DOI: 10.1016/j.jsbmb.2008.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 10/29/2008] [Accepted: 11/05/2008] [Indexed: 12/18/2022]
Abstract
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 microM resveratrol (but not with 62.5 microM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO(2) release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol. In adipocytes incubated for 90 min with epinephrine, 10 and 100 microM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 microM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 microM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine. Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, University of Life Sciences in Poznan, 60-637 Wolynska 35, Poznan, Poland.
| | | | | |
Collapse
|
31
|
Cardioprotective and Antiarrhythmic Effects of Resveratrol—a Modern Perspective on an Old Treatment. Cardiovasc Drugs Ther 2008; 22:427-8. [DOI: 10.1007/s10557-008-6145-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/29/2008] [Indexed: 11/30/2022]
|
32
|
Chen YR, Yi FF, Li XY, Wang CY, Chen L, Yang XC, Su PX, Cai J. Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction. Cardiovasc Drugs Ther 2008; 22:479-85. [PMID: 18853243 DOI: 10.1007/s10557-008-6141-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/18/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The effects of resveratrol treatment on ventricular arrhythmia, survival, and late cardiac remodeling were evaluated in rats with myocardial infarction (MI). METHODS Three groups of rats (S: ham-operated, MI, and MI pre-treated with resveratrol) were treated in an in vivo MI model by ligation of left anterior descending coronary artery. The electrocardiogram signals were monitored and recorded for 24 h using an implanted telemetry transmitter. The incidence of ventricular arrhythmias during the first 24-h after MI was also evaluated. Meanwhile, invasive in vivo electrophysiology with pacing in the right ventricle was performed in each group to assess the inducibility of ventricular arrhythmias. RESULTS Administration of resveratrol significantly suppressed the MI-induced ventricular tachycardia and ventricular fibrillation (0.4 +/- 0.2 in Resv group vs. 7.1 +/- 2.2 in MI group episodes per hour per rat, P < 0.01). Data also showed that the incidence of inducible ventricular tachycardia was lower in the Resv group than the MI group (46% vs. 81%, P < 0.01). The infarct size and mortality in the Resv group at 14 weeks were reduced by 20% and 33%, respectively, compared with the MI groups. Results from patch clamp recording revealed that resveratrol inhibited L-type calcium current (I (Ca-L)), and selectively enhanced ATP-sensitive K(+) current (I (K,ATP)) in a concentration-dependent manner. CONCLUSION These results suggested that the emerging anti-arrhythmic character induced by resveratrol treatment in rat hearts could be mainly accounted for by inhibition of I (Ca-L) and enhancement of I (K,ATP). Administration of resveratrol also improved the long-term survival by suppressing left ventricular remodeling.
Collapse
Affiliation(s)
- You-Ren Chen
- Department of Cardiology, The Second Affiliated Hospital to Medical College, Shantou University, Shantou 515041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bertelli AAE. Wine, research and cardiovascular disease: Instructions for use. Atherosclerosis 2007; 195:242-7. [PMID: 17531243 DOI: 10.1016/j.atherosclerosis.2007.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/19/2007] [Accepted: 04/10/2007] [Indexed: 01/04/2023]
Abstract
The results of studies on the role of appropriate wine consumption in the prevention of cardiovascular disease are inconsistent, suggesting that the general approach to the issue needs to be revisited before further research is conducted. A number of points for consideration are raised: (1) the necessity to characterize wine analytically, as the content in important components of wine, such as resveratrol, is influenced considerably by regional factors, such as climate and local oenological procedures; (2) the bioavailability of the components of wine, which appears to be adequate as a broad range of biological effects have been documented at low concentrations that can be achieved by moderate chronic wine consumption; (3) the lack of importance of wine color, as also white wine consumption affords benefit, thanks to its content in the antioxidants caffeic acid, tyrosol and hydroxytyrosol, which are also found in olive oil; (4) the recommendation by WHO to "investigate the possible protective effects of ingredients other than alcohol in alcoholic beverages".
Collapse
|
34
|
Szkudelski T. Resveratrol-induced inhibition of insulin secretion from rat pancreatic islets: evidence for pivotal role of metabolic disturbances. Am J Physiol Endocrinol Metab 2007; 293:E901-7. [PMID: 17578889 DOI: 10.1152/ajpendo.00564.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resveratrol is a stilbene present in different plant species and exerting numerous beneficial effects, including prevention of diabetes and attenuation of some diabetic complications. Its inhibitory effect on insulin secretion was recently documented, but the exact mechanism underlying this action remains unknown. Experiments employing diazoxide and a high concentration of K(+) revealed that, in depolarized pancreatic islets incubated for 90 min with resveratrol (1, 10, and 100 microM), insulin secretion stimulated by glucose and leucine was impaired. The attenuation of the insulin secretory response to 6.7 mM glucose was not abrogated by blockade of intracellular estrogen receptors and was found to be accompanied by diminished islet glucose oxidation, enhanced lactate production, and reduced ATP levels. Glucose-induced hyperpolarization of the mitochondrial membrane was also reduced in the presence of resveratrol. Moreover, in depolarized islets incubated with 2.8 mM glucose, activation of protein kinase C or protein kinase A potentiated insulin release; however, under these conditions, resveratrol was ineffective. Further studies also revealed that, under conditions of blocked voltage-dependent calcium channels, the stilbene reduced insulin secretion induced by a combination of glucose with forskolin. These data demonstrate that resveratrol 1) inhibits the amplifying pathway of insulin secretion, 2) exerts an insulin-suppressive effect independently of its estrogenic/anti-estrogenic activity, 3) shifts islet glucose metabolism from mitochondrial oxidation to anaerobic,4) fails to abrogate insulin release promoted without metabolic events, and 5) does not suppress hormone secretion as a result of the direct inhibition of Ca(2+) influx through voltage-dependent calcium channels.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Dept. of Animal Physiology and Biochemistry, August Cieszkowski Univ. of Agriculture, 60-637 Wolynska 35, Poznan, Poland.
| |
Collapse
|
35
|
Buluc M, Ayaz M, Turan B, Demirel-Yilmaz E. Resveratrol-induced depression of the mechanical and electrical activities of the rat heart is reversed by glyburide: evidence for possible K(ATP) channels activation. Arch Pharm Res 2007; 30:603-7. [PMID: 17615680 DOI: 10.1007/bf02977655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Resveratrol, a natural phytoalexin found in wine, has been suggested to have benefits in preventing cardiovascular diseases. However, the direct effects of resveratrol on the activity of cardiac tissues and its mechanism of action have not been determined. This study examined the effects of resveratrol on the right and left atrium and left papillary muscle isolated from the rat heart. The contractile responses of the right atrium and papillary muscle and the action potential from the left atrium were recorded and the effects of resveratrol on these responses were observed. The resting force of the isolated right atrium and the peak developed force of the left papillary muscle were depressed by resveratrol (0.1 nM - 0.1 mM). Exposure to the K(ATP) channel blocker glyburide (3 microM) prevented significantly the resveratrol-induced decrease. Resveratrol (0.1 mM) shortened the repolarization phase of action potential recorded from the left atrium and this effect of resveratrol was reversed by glyburide (3 microM). These results indicated that resveratrol depressed cardiac muscle contraction and shortened action potential duration probably due to the activation of K(ATP) channels in the rat heart.
Collapse
Affiliation(s)
- Mesut Buluc
- Department of Pharmacology and Clinical Pharmacology, Ankara University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | | | | | | |
Collapse
|
36
|
Moritz A, Gust R, Pertz HH. Characterization of the relaxant response to N,N'-dipropyl-1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine in porcine coronary arteries. J Pharmacol Exp Ther 2007; 321:699-706. [PMID: 17322023 DOI: 10.1124/jpet.107.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N,N'-Dialkyl-1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamines show structural analogy with estrogens and selective estrogen receptor modulators. Because the vasodilator properties of these compounds are unknown, we investigated their potential to relax porcine coronary arteries and determined the mechanism(s) of relaxation. Isolated porcine coronary arterial rings were suspended in organ chambers, precontracted with KCl (30 mM), and the relaxant response was determined by measurement of changes in isometric force. Dependent on the chemical structure, the drugs induced concentration-dependent relaxation in rings with and without endothelium. N,N'-Dipropyl-1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine (8) was most potent and showed a 12- to 15-fold higher vasodilatory effect than 17beta-estradiol (E2). The vasorelaxation was independent of endothelium. Calcium concentration-dependent contractions in high-potassium depolarizing medium were insurmountably inhibited by 8. The effect of the L-type Ca2+ channel activator (S)-(-)-Bay K 8644 [(S)-(-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridine-carboxylic acid methyl ester], which induced a leftward shift of Ca2+ contraction, was blocked by 8. The relaxant response to 8 was unaffected by the estrogen receptor antagonist ICI 182,780 (7alpha-[9-[(4,4,5,5,5-pentafluoropentyl]-sulfinyl]nonyl]-estra-1,3,5(10)-triene-3,17beta-diol) and K+ channel blockers, i.e., TEA, glibenclamide, and 4-aminopyridine. Furthermore, the vasodilatory effect of 8 was unaffected by the adenylyl cyclase inhibitor SQ 22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine], the guanylyl cyclase inhibitor ODQ [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one], the protein kinase A inhibitor KT 5720 [(9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg: 3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester], the protein kinase G inhibitor KT 5823 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], and the p38 mitogen-activated protein kinase (MAPK) inhibitor SB 203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]. Western blot analysis demonstrated that 8, unlike E2, raloxifene, and tamoxifen, failed to stimulate p38 MAPK. It is concluded that N,N'-dipropyl-1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine induces endothelium-independent relaxation of coronary arteries; the mechanism apparently involves inhibition of L-type Ca2+ channels. The drug may be protective against cardiovascular diseases.
Collapse
Affiliation(s)
- Alkje Moritz
- Institute of Pharmacy, Free University of Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | | | | |
Collapse
|
37
|
Szkudelski T. Resveratrol inhibits insulin secretion from rat pancreatic islets. Eur J Pharmacol 2006; 552:176-81. [PMID: 17069794 DOI: 10.1016/j.ejphar.2006.09.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 09/13/2006] [Accepted: 09/18/2006] [Indexed: 02/06/2023]
Abstract
Resveratrol is a naturally occurring phytoalexin exerting cardioprotective, anticancer and antioxidant action. The most recent investigations have demonstrated that this compound plays a beneficial role alleviating some diabetic complications. However, resveratrols' influence on the endocrine function of the pancreas is unknown. The objective of the present study was to determine whether resveratrol affects insulin secretion from freshly isolated rat pancreatic islets. Incubations of pancreatic islets with resveratrol (1-100 microM, 90 min) revealed that the release of insulin induced by 6.6 and 16.6 mM glucose was substantially restricted by this compound in a concentration-dependent manner. This effect was not permanent and disappeared after resveratrol withdrawal from the buffer. However, the proper hormone secretion was not restored when glucose was replaced by other secretagogues - leucine with glutamine - indicating that disturbances other than the inhibition of glucose transport and glycolysis were responsible for the resveratrol-evoked reduction in insulin secretion. Glucose-induced insulin release tested in the presence of the sulfonylurea glibenclamide was also found to be reduced by resveratrol. Moreover, the activation of adenylyl cyclase by forskolin did not restrict the inhibitory effect of resveratrol on glucose-induced insulin release. In contrast, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, suppressed completely the inhibitory effect of 1 and 10 microM resveratrol on insulin release. However, this compound at the highest concentration tested diminished its secretion even in the presence of PMA. The perifusion studies revealed that the depression of insulin release caused by resveratrol began a few minutes after its addition to the medium. Results obtained in the present investigations demonstrate that resveratrol is a compound exerting a clear-cut, but reversible inhibitory effect on insulin secretion from isolated pancreatic islets.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, August Cieszkowski University of Agriculture, 60-637 Wolynska 35, Poznan, Poland.
| |
Collapse
|
38
|
Wallace CHR, Baczkó I, Jones L, Fercho M, Light PE. Inhibition of cardiac voltage-gated sodium channels by grape polyphenols. Br J Pharmacol 2006; 149:657-65. [PMID: 17016511 PMCID: PMC2014645 DOI: 10.1038/sj.bjp.0706897] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The cardiovascular benefits of red wine consumption are often attributed to the antioxidant effects of its polyphenolic constituents, including quercetin, catechin and resveratrol. Inhibition of cardiac voltage-gated sodium channels (VGSCs) is antiarrhythmic and cardioprotective. As polyphenols may also modulate ion channels, and possess structural similarities to several antiarrhythmic VGSC inhibitors, we hypothesised that VGSC inhibition may contribute to cardioprotection by these polyphenols. EXPERIMENTAL APPROACH The whole-cell voltage-clamp technique was used to record peak and late VGSC currents (INa) from recombinant human heart NaV1.5 channels expressed in tsA201 cells. Right ventricular myocytes from rat heart were isolated and single myocytes were field-stimulated. Either calcium transients or contractility were measured using the calcium-sensitive dye Calcium-Green 1AM or video edge detection, respectively. KEY RESULTS The red grape polyphenols quercetin, catechin and resveratrol blocked peak INa with IC50s of 19.4 microM, 76.8 microM and 77.3 microM, respectively. In contrast to lidocaine, resveratrol did not exhibit any frequency-dependence of peak INa block. Late INa induced by the VGSC long QT mutant R1623Q was reduced by resveratrol and quercetin. Resveratrol and quercetin also blocked late INa induced by the toxin, ATX II, with IC50s of 26.1 microM and 24.9 microM, respectively. In field-stimulated myocytes, ATXII-induced increases in diastolic calcium were prevented and reversed by resveratrol. ATXII-induced contractile dysfunction was delayed and reduced by resveratrol. CONCLUSIONS AND IMPLICATIONS Our results indicate that several red grape polyphenols inhibit cardiac VGSCs and that this effect may contribute to the documented cardioprotective efficacy of red grape products.
Collapse
Affiliation(s)
- C H R Wallace
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - I Baczkó
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical Center, University of Szeged Szeged, Hungary
| | - L Jones
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - M Fercho
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - P E Light
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
39
|
Gao ZB, Chen XQ, Hu GY. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res 2006; 1111:41-7. [PMID: 16876771 DOI: 10.1016/j.brainres.2006.06.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 06/20/2006] [Accepted: 06/27/2006] [Indexed: 02/05/2023]
Abstract
The red wine polyphenol trans-resveratrol has been found to exert potent protective actions in a variety of cerebral ischemia models. The neuroprotection by trans-resveratrol thus far is mainly attributed to its intrinsic antioxidant properties. In the present study, the effects of the red wine polyphenol on excitatory synaptic transmission were investigated in the CA1 region of rat hippocampal slices. Perfusion with trans-resveratrol (10-100 microM) caused a concentration-dependent inhibition on the filed excitatory postsynaptic potentials (the field EPSPs) without detectable effect on the presynaptic volleys. The inhibition had a slow onset and was reversible. Trans-resveratrol (30 microM) did not change the ratios of paired-pulse facilitation of the field EPSPs tested at intervals of 20, 40 and 80 ms, nor did it alter the membrane properties of postsynaptic CA1 pyramidal neurons. However, trans-resveratrol (30 microM) significantly suppressed glutamate-induced currents in postsynaptic CA1 pyramidal neurons. In dissociated hippocampal neurons, the IC(50) value of trans-resveratrol in inhibition of glutamate-induced currents was 53.3+/-9.4 microM. Kainite and NMDA receptors were more sensitive to the red wine polyphenol than AMPA receptors. The present study for the first time demonstrates that trans-resveratrol inhibits the postsynaptic glutamate receptors, which probably works in concert with its antioxidant action for ameliorating the brain ischemic injury. The findings also support the future use of trans-resveratrol in the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Shanghai 201203, PR China
| | | | | |
Collapse
|