1
|
Wang H, Liu J, Wang M, Yang C, Wang G, Hu T. The adverse effect of anticancer drug toremifene on vascular smooth muscle cells is an important aspect of its tumor growth inhibition. J Cancer Res Clin Oncol 2023; 149:7837-7848. [PMID: 37036506 DOI: 10.1007/s00432-023-04744-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE Toremifene (TOR) is widely used as an antineoplastic drug and has an inhibitory effect on angiogenesis in mesenteric desmoid tumors and vascular intracranial solitary fibrous tumors. However, no study has investigated the direct effect of TOR on vascular cells. This study aimed at exploring the effect of TOR on the behaviors of vascular smooth muscle cells (VSMCs). METHODS Human aortic umbilical vascular smooth muscle cells (HAVSMCs) were treated by TOR. Cell morphology, migration, adhesion, and proliferation assay were investigated. The cell cycle, apoptosis, mitochondrial membrane potential, and reactive oxygen species were assessed using flow cytometry. Caspase-3 and 9 activities were assayed using Caspase-3 and Caspase-9 Activity Assay kits, respectively. Immunofluorescence and Western blot assays were carried out to characterize protein expressions of PCNA, p53, and Rho/ROCK signaling pathway. RESULTS TOR damaged cytoskeleton, inhibited VSMC proliferation, migration, and adhesion, and induced abnormal cell morphology and apoptosis. The antiproliferative activity of TOR was associated with the induction of G0/G1 phase arrest, blocking the cell cycle. TOR disrupted intracellular reactive oxygen species and mitochondrial membrane potential, and enhanced p53 expression and the activities of caspase-3 and caspase-9. Thus, TOR-induced apoptosis by the mitochondrial signaling pathway. Additionally, TOR induced decreased Rho, ROCK, MLC, and pMLC proteins. Collectively, TOR may affect multiple behaviors of VSMCs by damaging cytoskeleton through the Rho/ROCK pathway. CONCLUSION The adverse effect of TOR on VSMCs could be considered as an important aspect of tumor growth inhibition.
Collapse
Affiliation(s)
- Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Chun Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
2
|
Zhu P, Chen G, Liu Y, Wang Q, Wang M, Hu T. Microcystin-leucine arginine exhibits adverse effects on human aortic vascular smooth muscle cells in vitro. Toxicol In Vitro 2022; 84:105450. [PMID: 35905885 DOI: 10.1016/j.tiv.2022.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacteria, which can do harm to human and livestock health. MC-LR can easily enter tissues and organs through the blood circulation and accumulate in certain target organs. Vessels are prone to contact with MC-LR during growth and development. Previous study had demonstrated that MC-LR had potential vascular toxicity. However, it is not clear whether MC-LR has adverse effects on vascular smooth muscle cells. In this study, we evaluated the cytotoxicity of MC-LR exposure (0.01, 0.05, 0.1, 0.5, and 1 μM) on human aortic vascular smooth muscle cells (HAVSMCs) in vitro. The data showed that MC-LR exposure inhibited the HAVSMC proliferation and migration, induced HAVSMC apoptosis, cytoskeleton destruction, S-phase arrest, mitochondrial transmembrane potential (MMP) loss, and reactive oxygen species (ROS) production. In addition, MC-LR exposure resulted in the imbalance between oxidants and antioxidants, increased the caspase-3 and caspase-9 activities, and down-regulated the gene expressions (integrin β1, Rho, ROCK, MLC). Taken together, MC-LR could induce the generation of ROS in HAVSMCs, leading to apoptosis by the mitochondrial signaling pathway. MC-LR could also induce cytoskeletal disruption by integrin-mediated FAK/ROCK signaling pathway, leading to cell cycle arrest and the inhibition of HAVSMCs proliferation and migration. The current findings facilitate an understanding of the mechanism of MC-LR toxicity involved in angiocardiopathy.
Collapse
Affiliation(s)
- Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuanli Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qilong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
3
|
Bakar SAA, Ali AM, Noor SNFM, Hamid SBS, Azhar NA, Mohamad NM, Ahmad NH. Combination of Goniothalamin and Sol-Gel-Derived Bioactive Glass 45S5 Enhances Growth Inhibitory Activity via Apoptosis Induction and Cell Cycle Arrest in Breast Cancer Cells MCF-7. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5653136. [PMID: 35872839 PMCID: PMC9303150 DOI: 10.1155/2022/5653136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Combination of natural products with chemically synthesised biomaterials as cancer therapy has attracted great interest lately. Hence, this study is aimed at investigating the combined effects of goniothalamin and bioactive glass 45S5 (GTN-BG) and evaluating their anticancer properties on human breast cancer cells MCF-7. METHODS The BG 45S5 was prepared using the sol-gel process followed by characterisation using PSA, BET, SEM/EDS, XRD, and FTIR. The effects of GTN-BG on the proliferation of MCF-7 were assessed by MTT, PrestoBlue, and scratch wound assays. The cell cycle analysis, Annexin-FITC assay, and activation of caspase-3/7, caspase-8, and caspase-9 assays were determined to further explore its mechanism of action. RESULTS The synthesised BG 45S5 was classified as a fine powder, having a rough surface, and contains mesopores of 12.6 nm. EDS analysis revealed that silica and calcium elements are the primary components of BG powders. Both crystalline and amorphous structures were detected with 73% and 27% similarity to Na2Ca2(Si2O7) and hydroxyapatite, respectively. The combination of GTN-BG was more potent than GTN in inhibiting the proliferation of MCF-7 cells. G0/G1 and G2/M phases of the cell cycle were arrested by GTN and GTN-BG. The percentage of viable cells in GTN-BG treatment was significantly lower than that in GTN. In terms of activation of initiator caspases for both extrinsic and intrinsic apoptosis pathways, caspase-8 and caspase-9 were found more effective in response to GTN-BG than GTN. CONCLUSION The anticancer effect of GTN in MCF-7 cells was improved when combined with BG. The findings provide significant insight into the mechanism of GTN-BG against MCF-7 cells, which can potentially be used as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Siti Aishah Abu Bakar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Department of Dental Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Asna Azhar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Noor Muzamil Mohamad
- Centralised Laboratory Management Center, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
4
|
de Souza KFS, Tófoli D, Pereira IC, Filippin KJ, Guerrero ATG, Paredes-Gamero EJ, de Fatima Cepa Matos M, Garcez WS, Garcez FR, Perdomo RT. A styrylpyrone dimer isolated from Aniba heringeri causes apoptosis in MDA-MB-231 triple-negative breast cancer cells. Bioorg Med Chem 2021; 32:115994. [PMID: 33477019 DOI: 10.1016/j.bmc.2021.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/11/2023]
Abstract
The styrylpyrone dehydrogoniothalamin (1) and two of its dimers (2 and 3) were isolated from the leaves of Aniba heringeri (Lauraceae). Compound 3 is new, while 1 and 2 are being reported for the first time in this species. Structures were determined by 1D- and 2D-NMR spectroscopy, mass spectrometry, and optical rotation data. Cytotoxic effects and selectivity indices were evaluated in five neoplastic cell lines-PC-3 (prostate), 786-0 (renal), HT-29 (colon), MCF-7, and MDA-MB-231 (breast)-and a non-neoplastic cell line, (NIH/3T3, murine fibroblast). Compound 1 inhibited cell growth by 50% (GI50) at concentrations in the 90.4-175.7 μM range, while 2 proved active against MCF-7 and MDA-MB-231 breast cells (GI50 = 12.24, and 34.22 μM, respectively). Compound 3 showed strong cytotoxicity (GI50 = 4.4 μM) against MDA-MB-231 (an established basal triple-negative breast carcinoma (TNBC) cell line), with a high selective index of 35. This compound was subsequently evaluated for apoptosis induction in MDA-MB-231 cells, using GI50 and 50% lethal concentrations (LC50). Flow cytometry analysis showed that at LC50 compound 3 induced cell death with phosphatidylserine externalization and caspase-3 activation. Apoptotic genes were measured by RT-qPCR, revealing an upregulation of BAX, with an increase in expression of the BAX/BCL2 ratio in treated cells. Fluorescence microscopy disclosed morphological changes related to apoptosis. Overall, these findings showed compound 3 to be a promising prototype against TNBC cells that tend to respond poorly to conventional therapies.
Collapse
Affiliation(s)
- Kamylla Fernanda Souza de Souza
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Danilo Tófoli
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Indiara Correia Pereira
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Kelly Juliana Filippin
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria de Fatima Cepa Matos
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Walmir Silva Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Renata Trentin Perdomo
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
5
|
Çetinkaya H, Yıldız MS, Kutluer M, Alkan A, Ozan Otaş H, Çağır A. Novel 2'-alkoxymethyl substituted klavuzon derivatives as inhibitors of Topo I and CRM1. Bioorg Chem 2020; 103:104162. [PMID: 32890988 DOI: 10.1016/j.bioorg.2020.104162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/04/2020] [Accepted: 08/02/2020] [Indexed: 11/28/2022]
Abstract
In this work, 2'-alkoxymethyl substituted klavuzon derivatives were prepared starting from 2-methyl-1-naphthoic acid in eight steps. Anticancer potencies of the synthesized compounds were evaluated by performing MTT cell viability test over cancerous and healthy pancreatic cell lines, along with CRM1 inhibitory properties in HeLa cells by immunostaining and Topo I inhibition properties by supercoiled DNA relaxation assay. Their cytotoxic activities were also presented in hepatocellular carcinoma cells (HuH-7) derived 3D spheroids. Among the tested klavuzon derivatives, isobutoxymethyl substituted klavuzon showed the highest selectivity of cytotoxic activity against pancreatic cancer cell line. They showed potent Topo I inhibition while their CRM1 inhibitory properties somehow diminished compared to 4'-alkylsubstituted klavuzons. The most cytotoxic 2'-methoxymethyl derivative inhibited the growth of the spheroids derived from HuH-7 cell lines and PI staining exhibited time and concentration dependent cell death in 3D spheroids.
Collapse
Affiliation(s)
- Hakkı Çetinkaya
- İzmir Institute of Technology, Faculty of Science, Department of Chemistry, Urla 35430, İzmir, Turkey
| | - Mehmet S Yıldız
- İzmir Institute of Technology, Biotechnology and Bioengineering Graduate Program, Urla 35430, İzmir, Turkey
| | - Meltem Kutluer
- İzmir Institute of Technology, Biotechnology and Bioengineering Graduate Program, Urla 35430, İzmir, Turkey
| | - Aylin Alkan
- İzmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Urla 35430, İzmir, Turkey
| | - Hasan Ozan Otaş
- İzmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Urla 35430, İzmir, Turkey
| | - Ali Çağır
- İzmir Institute of Technology, Faculty of Science, Department of Chemistry, Urla 35430, İzmir, Turkey.
| |
Collapse
|
6
|
Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, Ornelas C, Pilli RA. Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater Sci Eng 2020; 6:2929-2942. [PMID: 33463303 DOI: 10.1021/acsbiomaterials.0c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Goniothalamin (GTN), a natural compound isolated from Goniothalamus species, has previously demonstrated cytotoxic activity against several cancer cell lines. However, similarly to many natural and synthetic anticancer compounds, GTN presents toxicity toward some healthy cells and low aqueous solubility, decreasing its bioavailability and precluding its application as an antineoplastic drug. In our efforts to improve the pharmacokinetic behavior and selectivity of GTN against cancer cells, we developed a polymeric nanosystem, in which rac-GTN was encapsulated in pH-responsive acetalated dextran (Ac-Dex) nanoparticles (NPs) with high loadings of the bioactive compound. Dynamic light scattering (DLS) analysis showed that the nanoparticles obtained presented a narrow size distribution of around 100 nm in diameter, whereas electron microscopy (EM) images showed nanoparticles with a regular spherical morphology in agreement with the size range obtained by DLS. Stability and release studies indicated that the GTN@Ac-Dex NPs presented high stability under physiological conditions (pH 7.4) and disassembled under slightly acidic conditions (pH 5.5), releasing the rac-GTN in a sustained manner. In vitro assays showed that GTN@Ac-Dex NPs significantly increased cytotoxicity and selectivity against cancer cells when compared with the empty Ac-Dex NPs and the free rac-GNT. Cellular uptake and morphology studies using MCF-7 cells demonstrated that GTN@Ac-Dex NPs are rapidly internalized into the cancer cells, causing cell death. In vivo investigation confirmed the efficient release of rac-GTN from GTN@Ac-Dex NPs, resulting in the delay of prostate cancer progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Furthermore, liver histopathology evaluation after treatment with GTN@Ac-Dex NPs showed no evidence of toxicity. Therefore, the in vitro and in vivo findings suggest that the Ac-Dex NPs are a promising nanosystem for the sustained delivery of rac-GTN into tumors.
Collapse
Affiliation(s)
- Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Larissa A Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Ellen N Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Celina A Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells. Int J Mol Sci 2019; 20:ijms20163953. [PMID: 31416203 PMCID: PMC6720804 DOI: 10.3390/ijms20163953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 01/14/2023] Open
Abstract
Goniothalamin (GTN) is toxic to several types of cancer cells in vitro. However, its effects on non-apoptotic cell death induction of human cancer cells have been poorly documented. Here, an investigation of the anti-cancer activity of GTN and the molecular signaling pathways of non-apoptotic cell death in the invasive human breast cancer MDA-MB-231 cell line were undertaken. Apoptotic cell death was suppressed by using a pan-caspase inhibitor (Benzyloxycarbonyl-Val-Ala-Asp-[O-methyl]-fluoromethylketone), z-VAD-fmk) as a model to study whether GTN induced caspase-independent cell death. In the anoikis study, MDA-MB-231 cells were cultured on poly-(2-hydroxyethyl methacrylate)- or poly-HEMA- coated plates to mimic anoikis-resistance growth and determine whether GTN induced cell death and the mechanisms involved. GTN and z-VAD-fmk induced human breast cancer MDA-MB-231 cells to undergo necroptosis via endoplasmic reticulum (ER) and oxidative stresses, with increased expressions of necroptotic genes such as rip1, rip3, and mlkl. GTN induced MDA-MB-231 cells to undergo anoikis via reversed epithelial-mesenchymal transition (EMT) protein expressions, inhibited the EGFR/FAK/Src survival signaling pathway, and decreased matrix metalloproteinase secretion.
Collapse
|
8
|
Histological, Biochemical, and Hematological Effects of Goniothalamin on Selective Internal Organs of Male Sprague-Dawley Rats. J Toxicol 2019; 2019:6493286. [PMID: 31178909 PMCID: PMC6507267 DOI: 10.1155/2019/6493286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Goniothalamin (GTN) is an isolated compound from several plants of the genus Goniothalamus, and its anticancer effect against several cancers was reported. However, there is no scientific data about effects of its higher doses on internal organs. Accordingly, this study aimed to evaluate the acute and subacute effects of higher doses of GTN on the hematology, biochemistry, and histology of selected internal organs of male Sprague-Dawley rats. In acute study, 35 rats were distributed in 5 groups (n=7) which were intraperitoneally (IP) injected with a single dose of either 100, 200, 300, 400, or 500 mg/kg of GTN, while extra 7 rats serve as a normal control. In subacute study, 7 rats were IP-injected with a daily dose of 42 mg/kg of GTN for 14 days, while another 7 rats serve as a normal control group. The normal controls in both studies were IP-injected simultaneously with 2 ml/kg of 10% DMSO in PBS. At the end of both tests, rats were sacrificed to collect blood for hematology and biochemistry and harvest livers, kidneys, lungs, hearts, spleens, and brains for histology. During acute and subacute exposure, no abnormal changes were observed in the hematology, biochemistry, and histology of the internal organs. However, the 300, 400, and 500 mg/kg of GTN during acute exposure were associated with morbidities and mortalities. Ultimately, GTN could be safe up to the dose of 200 mg/kg, and the dose of 42 mg/kg of GTN was tolerated well.
Collapse
|
9
|
Addada RR, Regalla VR, Gangireddy Venkata SR, Vema VN, Anna VR. An Alternative Approach to the Synthesis of Parvistone C. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramakrishnam Raju Addada
- Department of ChemistryKoneru Lakshmaiah Education Foundation Green fields, Vaddeswaram, Guntur Andhra Pradesh 522502 India
- Medicinal Chemistry DivisionGVK Biosciences Private Limited 28A, Nacharam Hyderabad Telangana 500076 India
| | - Venkata Reddy Regalla
- Department of ChemistryKoneru Lakshmaiah Education Foundation Green fields, Vaddeswaram, Guntur Andhra Pradesh 522502 India
- Medicinal Chemistry DivisionGVK Biosciences Private Limited 28A, Nacharam Hyderabad Telangana 500076 India
| | | | - Venkata Naresh Vema
- Medicinal Chemistry DivisionGVK Biosciences Private Limited 28A, Nacharam Hyderabad Telangana 500076 India
| | - Venkateswara Rao Anna
- Department of ChemistryKoneru Lakshmaiah Education Foundation Green fields, Vaddeswaram, Guntur Andhra Pradesh 522502 India
| |
Collapse
|
10
|
Wang Q, Liu Y, Guo J, Lin S, Wang Y, Yin T, Gregersen H, Hu T, Wang G. Microcystin-LR induces angiodysplasia and vascular dysfunction through promoting cell apoptosis by the mitochondrial signaling pathway. CHEMOSPHERE 2019; 218:438-448. [PMID: 30485828 DOI: 10.1016/j.chemosphere.2018.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The harmful algal blooms are becoming increasingly problematic in the regions that drinking water production depends on surface waters. With a global occurrence, microcystins are toxic peptides produced by multiple cyanobacterial genera in the harmful algal blooms. In this study, we examined the effects of microcystin-LR (MC-LR), a representative toxin of the microcystin family, on vascular development in zebrafish and the apoptosis of human umbilical vein endothelial cells (HUVECs). In zebrafish larvae, MC-LR induced angiodysplasia, damaged vascular structures and reduced lumen size at 0.1 μM and 1 μM, leading to the decrease of the blood flow area in the blood vessels and brain hemorrhage, which showed that MC-LR could dose-dependently inhibit vascular development and cause vascular dysfunction. In MC-LR treated HUVECs, the proportion of early apoptosis and late apoptosis cells increased in a concentration-dependent manner. Different concentrations of MC-LR could also activate caspase 3/9 in HUVECs, increase the level of mitochondrial ROS and reduce mitochondrial membrane potential. Additionally, MC-LR could promote the expression of p53 and inhibit the expression of PCNA. The findings showed that MC-LR could promote apoptosis of HUVECs through the mitochondrial signaling pathway. Combined with these results, MC-LR may promote vascular endothelial cell apoptosis through mitochondrial signaling pathway, leading to angiodysplasia and vascular dysfunction.
Collapse
Affiliation(s)
- Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuanli Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jingsong Guo
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Song Lin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Hans Gregersen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
11
|
Apoptosis Induction via ATM Phosphorylation, Cell Cycle Arrest, and ER Stress by Goniothalamin and Chemodrugs Combined Effects on Breast Cancer-Derived MDA-MB-231 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7049053. [PMID: 30598998 PMCID: PMC6287143 DOI: 10.1155/2018/7049053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/17/2018] [Accepted: 11/10/2018] [Indexed: 12/17/2022]
Abstract
Goniothalamin (GTN), a styryl-lactone, exhibits inhibitory effects on many kinds of cancer cells in vitro. The objectives of this study were to investigate the anticancer activities of GTN and molecular signaling pathways associated with cell death in human breast cancer MDA-MB-231 cell line. GTN inhibited the growth of MDA-MB-231 cells. Apoptosis was confirmed by annexin V-FITC and PI staining, and apoptotic morphology was observed by microscopy. Reduction of mitochondrial transmembrane potential and enhanced caspases activities were found in GTN-treated MDA-MB-231 cells. GTN significantly altered apoptosis-related protein expressions, including Noxa, PUMA, Bax, Bim, Bad, Bcl-2, Bcl-xL, and DIABLO, which was related to the gene expression levels. Mitochondrial calcium released to the cytosol and ER stress related proteins increased, which correlated with increases in ER stress gene expression levels. GTN induced hydrogen peroxide and superoxide anion radicals in MDA-MB-231 cells associated with cell cycle arrest in G2/M phase, which was induced by phosphorylation and ATM gene expression. Moreover, GTN had synergistic effects when combined with cyclophosphamide, 5-fluorouracil, paclitaxel, and vinblastine, and additive effect with methotrexate through caspases enzyme-acceleration. In conclusion, goniothalamin-induced MDA-MB-231 cell apoptosis occurred via intrinsic and extrinsic pathways, along with ER stress. These pathways provide new targeted drug strategies for advancements in anticancer medicine.
Collapse
|
12
|
Tangchirakhaphan S, Innajak S, Nilwarangkoon S, Tanjapatkul N, Mahabusrakum W, Watanapokasin R. Mechanism of apoptosis induction associated with ERK1/2 upregulation via goniothalamin in melanoma cells. Exp Ther Med 2018; 15:3052-3058. [PMID: 29456710 DOI: 10.3892/etm.2018.5762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/11/2018] [Indexed: 01/28/2023] Open
Abstract
The present study aimed to investigate the effect of goniothalamin on apoptosis induction in the A375 melanoma cell line. Melanoma is a type of skin cancer with increased prevalence and no potential standard treatment. Goniothalamin is a plant, bioactive styrly-lactone, which has various bioactivities including anti-microbial, anti-inflammatory and anti-cancer. Apoptosis induction by goniothalamin has been studied in numerous cancer cell lines, however not in the melanoma cell line A375. The results of the MTT assay demonstrated that goniothalamin induced anti-proliferation in a dose dependent manner. Hoechst staining assay demonstrated that goniothalamin induced chromatin condensation and apoptotic bodies in A375 treated cells, and JC-1 staining revealed that goniothalamin induced mitochondrial membrane dysfunction in A375 cells. In addition, goniothalamin decreased the level of anti-apoptotic proteins myeloid cell leukemia 1, B cell lymphoma (Bcl)-2 and Bcl-extra large, whereas it increased the level of pro-apoptotic proteins, Bcl-2 Associated X, apoptosis regulator, t-BID and Bim in A375 treated cells. In addition, goniothalamin also increased active caspase-9, -7 and cleaved-poly (ADP-ribose) polymerase expression in A375 treated cells. Furthermore, phosphorylated (p)-pyruvate dehydrogenase kinase (PDK) 1 (Ser241) and p-RAC-alpha serine/threonine-protein kinase (Akt; Ser473) were decreased, however c-Jun and p-extracellular signal-regulated kinase (ERK)1/2 were increased upon goniothalamin treatment. These results suggest that goniothalamin has an effect, as anti-proliferation and apoptosis induction in A375 cells were associated with upregulated p-ERK1/2, c-Jun and downregulated p-PDK1 (Ser241), p-Akt (Ser473) in A375 cells. Therefore, goniothalamin may be a potential candidate for anti-cancer drug development for melanoma treatment.
Collapse
Affiliation(s)
| | - Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sirinun Nilwarangkoon
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Nudjaree Tanjapatkul
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusrakum
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
13
|
Raitz I, de Souza Filho RY, de Andrade LP, Correa JR, Neto BAD, Pilli RA. Preferential Mitochondrial Localization of a Goniothalamin Fluorescent Derivative. ACS OMEGA 2017; 2:3774-3784. [PMID: 30023703 PMCID: PMC6044949 DOI: 10.1021/acsomega.7b00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 05/23/2023]
Abstract
A fluorescent 2,1,3-benzothiadiazole-containing goniothalamin derivative, BTD-GTN (1), has been synthesized and successfully tested in bioimaging experiments in live cells. The fluorescent compound proved to be capable of transposing the cell membranes, indicating its subcellular localization. The use of the benzothiadiazole core as the fluorophore revealed the favored localization of the GTN analogue 1 in the cytoplasm of live cells, preferentially in the mitochondria, in line with previous results that indicated the loss of mitochondrial transmembrane potential upon treatment with GTN. The results described herein highlight the potential of the BTD-GTN hybrid structures for future studies regarding the cellular mechanism of action of this family of compounds.
Collapse
Affiliation(s)
- Ismael Raitz
- Institute
of Chemistry, University of Campinas, Cidade Universitária Zeferino
Vaz, 13083-970 Campinas, SP, Brazil
| | - Roberto Y. de Souza Filho
- Laboratory
of Medicinal and Technological Chemistry, Institute of Chemistry, University of Brasília, Campus Universitário Darcy Ribeiro, 70904-970 Brasília, DF, Brazil
| | - Lorena P. de Andrade
- Laboratory
of Medicinal and Technological Chemistry, Institute of Chemistry, University of Brasília, Campus Universitário Darcy Ribeiro, 70904-970 Brasília, DF, Brazil
| | - Jose R. Correa
- Laboratory
of Microscopy and Microanalysis, Institute of Biological Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Brenno A. D. Neto
- Laboratory
of Medicinal and Technological Chemistry, Institute of Chemistry, University of Brasília, Campus Universitário Darcy Ribeiro, 70904-970 Brasília, DF, Brazil
| | - Ronaldo A. Pilli
- Institute
of Chemistry, University of Campinas, Cidade Universitária Zeferino
Vaz, 13083-970 Campinas, SP, Brazil
- Obesity
and Comorbidities Research Center, University
of Campinas, Cidade Universitária
Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
14
|
Gupta E, Kaushik S, Purwar S, Sharma R, Balapure AK, Sundaram S. Anticancer Potential of Steviol in MCF-7 Human Breast Cancer Cells. Pharmacogn Mag 2017; 13:345-350. [PMID: 28839355 PMCID: PMC5551348 DOI: 10.4103/pm.pm_29_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Indexed: 01/10/2023] Open
Abstract
Objective: This study aimed to investigate the cytotoxicity, apoptosis induction, and mechanism of action of steviol on human breast cancer cells (Michigan Cancer Foundation-7 [MCF-7]). Materials and Methods: Sulforhodamine-B assay was performed to analyze cytotoxic potential of Steviol whereas flow cytometer was used to analyze cell cycle, apoptosis, and reactive oxygen species generation. Results: Studying the viability of cells confirms the IC50 of Steviol in MCF-7 cells which was 185 μM. The data obtained from fluorescence-activated cell sorter analysis reveal Steviol-mediated G2/M-phase arrest (P < 0.05) in addition to the presence of evident sub-G0/G1 peak (P < 0.05) in the MCF-7 cells, signifying the ongoing apoptosis. Conclusion: Thus, results suggest that induction of apoptosis in MCF-7 cells was due to dose-dependent effect of Steviol. Our first in vitro findings indicate Steviol as a promising candidate for the treatment of breast cancer. SUMMARY Steviol remarkably inhibited the growth MCF-7 HBCCs in a dose dependent manner It abolishes cell cycle progression by arresting cells at G2/M phase Steviol induces the cells to undergo apoptosis Steviol induces the cells to generate reactive oxygen species (ROS).
Abbreviations used: MCF-7: Michigan Cancer Foundation-7; SRB: Sulforhodamine-B assay; FACS: Fluorescence-activated cell sorter; ROS: Reactive oxygen species; DNA: Deoxyribonucleic acid.
Collapse
Affiliation(s)
- Ena Gupta
- Centre of Biotechnology, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Shweta Kaushik
- Division of Biochemistry, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Shalini Purwar
- Centre of Biotechnology, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Ramesh Sharma
- Division of Biochemistry, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anil K Balapure
- Division of Biochemistry, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Mathew C, Ghildyal R. CRM1 Inhibitors for Antiviral Therapy. Front Microbiol 2017; 8:1171. [PMID: 28702009 PMCID: PMC5487384 DOI: 10.3389/fmicb.2017.01171] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1) is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB) is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review.
Collapse
Affiliation(s)
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Health Research Institute, University of CanberraCanberra, ACT, Australia
| |
Collapse
|
16
|
Sophonnithiprasert T, Mahabusarakam W, Nakamura Y, Watanapokasin R. Goniothalamin induces mitochondria-mediated apoptosis associated with endoplasmic reticulum stress-induced activation of JNK in HeLa cells. Oncol Lett 2016; 13:119-128. [PMID: 28123531 PMCID: PMC5245090 DOI: 10.3892/ol.2016.5381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
Goniothalamin, a natural occurring styryl-lactone isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus, can trigger cancer cell death in various types of cancer cell. The present study focused on elucidation of the mitochondria-mediated apoptosis associated with endoplasmic reticulum (ER) stress-induced activation of c-Jun NH2-terminal kinase (JNK) by goniothalamin in HeLa cervical cancer cells. Cell viability was determined using an MTT assay, and DNA condensation and loss of mitochondrial membrane potential were determined using Hoechst 33342 and JC-1 staining, respectively. Flow cytometry was used for cell cycle and phosphatidyl-serine exposure analyses. Apoptotic-associated ER stress signaling pathways were determined using immunoblotting, reverse transcription-polymerase chain reaction (RT-PCR) and RT-quantitative PCR analyses. The results suggested that goniothalamin suppressed cell proliferation in a time- and dose-dependent manner. The induction of apoptosis was confirmed by increased DNA condensation, loss of mitochondrial membrane potential and cell surface phosphatidyl-serine presentation. The cell cycle analysis demonstrated that the goniothalamin-treated HeLa cells were in G2/M arrest. Determination of the caspase cascade and apoptotic proteins indicated the induction of apoptosis through the intrinsic pathway. In addition, the levels of phosphorylated JNK and the transcription factor, C/EBP homologous protein (CHOP), an ER stress-associated apoptotic molecule, were increased in the goniothalamin-treated cells. These data indicated that goniothalamin exerted a cytotoxic effect against HeLa cells via the induction of mitochondria-mediated apoptosis, associated with ER stress-induced activation of JNK.
Collapse
Affiliation(s)
- Thanet Sophonnithiprasert
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusarakam
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
17
|
Boonmuen N, Thongon N, Chairoungdua A, Suksen K, Pompimon W, Tuchinda P, Reutrakul V, Piyachaturawat P. 5-Acetyl goniothalamin suppresses proliferation of breast cancer cells via Wnt/β-catenin signaling. Eur J Pharmacol 2016; 791:455-464. [PMID: 27640746 DOI: 10.1016/j.ejphar.2016.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Abstract
Styryl lactones are plant-derived compounds from genus Goniothalamus with promising anti-proliferation and anticancer properties. However, the exact mechanism and the target for their activities remained unclear. In the present study, we investigated the effect of 5-acetyl goniothalamin (5GTN) from Goniothalamus marcanii on Wnt/β-catenin signaling pathway which is a key regulator in controlling cell proliferation in breast cancer cells (MCF-7 and MDA-MB-231). 5GTN, a naturally occurring derivative of goniothalamin (GTN) mediated the toxicity to MCF-7 and MDA-MB-231 cells in a dose- and time- related manner, and was more potent than that of GTN. 5GTN strongly inhibited cell proliferation and markedly suppressed transcriptional activity induced by β-catenin in luciferase reporter gene assay. In consistent with this view, the expression of Wnt/β-catenin signaling target genes including c-Myc, cyclin D1 and Axin2 in MCF-7 and MDA-MB-231 cells were suppressed after treatment with 5GTN. It was concomitant with cell cycle arrest at G1 phase and cell apoptosis in MCF-7 cells. In addition, 5GTN enhanced glycogen synthase kinase (GSK-3β) activity and therefore reduced the expression of active form of β-catenin protein in MCF-7 and MDA-MB-231 cells. Taken together, 5GTN exhibited a promising anticancer effect against breast cancer cells through an inhibition of Wnt/β-catenin signaling. This pathway may be served as a potential chemotherapeutic target for breast cancer by 5GTN.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natthakan Thongon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wilart Pompimon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
18
|
Affiliation(s)
- Perla Ramesh
- Natural Products Chemistry Division; Indian Institute of Chemical Technology; Uppal Road Hyderabad- 500007 India
| |
Collapse
|
19
|
Wang W, Liu Y, Zhao Z, Xie C, Xu Y, Hu Y, Quan H, Lou L. Y-632 inhibits heat shock protein 90 (Hsp90) function by disrupting the interaction between Hsp90 and Hsp70/Hsp90 organizing protein, and exerts antitumor activity in vitro and in vivo. Cancer Sci 2016; 107:782-90. [PMID: 27002306 PMCID: PMC4968598 DOI: 10.1111/cas.12934] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Heat shock protein 90 (Hsp90) stabilizes a variety of proteins required for cancer cell survival and has been identified as a promising drug target for cancer treatment. To date, several Hsp90 inhibitors have entered into clinical trials, but none has been approved for cancer therapy yet. Thus, exploring new Hsp90 inhibitors with novel mechanisms of action is urgent. In the present study, we show that Y-632, a novel pyrimidine derivative, inhibited Hsp90 in a different way from the conventional Hsp90 inhibitor geldanamycin. Y-632 induced degradation of diverse Hsp90 client proteins through the ubiquitin-proteasome pathway, as geldanamycin did; however, it neither directly bound to Hsp90 nor inhibited Hsp90 ATPase activity. Y-632 inhibited Hsp90 function mainly through inducing intracellular thiol oxidation, which led to disruption of the Hsp90-Hsp70/Hsp90 organizing protein complex and further induced cell adhesion inhibition, G0 /G1 cell cycle arrest, and apoptosis. Moreover, Y-632 efficiently overcame imatinib resistance mediated by Bcr-Abl point mutations both in vitro and in vivo. We believe that Y-632, acting as a novel small-molecule inhibitor of the Hsp90-Hsp70/Hsp90 organizing protein complex, has great potential to be a promising Hsp90 inhibitor for cancer therapy, such as for imatinib-resistant leukemia.
Collapse
Affiliation(s)
- Wenqian Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhixin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youhong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Innajak S, Mahabusrakum W, Watanapokasin R. Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells. Oncol Rep 2016; 35:2851-8. [PMID: 26987063 DOI: 10.3892/or.2016.4655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Goniothalamin, a plant bioactive styrly-lactone, possesses many biological activities. In the present study, the anticancer effect of goniothalamin on human breast cancer cell line SK-BR-3 was investigated. The results showed that goniothalamin induced nuclear condensation, DNA fragmentation, apoptotic bodies and mitochondrial dysfunction as determined by JC-1 staining. Goniothalamin also increased the Bax/Bcl-2 ratio and expression of cleaved caspase-7, cleaved caspase-9 and cleaved PARP, but decreased Bcl-2 expression. In addition, goniothalamin induced apoptosis via p-JNK1/2 and p-p38 upregulation and inhibited cell survival via p-ERK1/2 and p-Akt downregulation. Notably, goniothalamin induced autophagy through upregulation of Atg7, Atg12-Atg5 conjugation and LC3II. The increased p-p38 and p-JNK1/2 and decreased p-Akt may lead to autophagy induction. Therefore, goniothalamin promoted apoptosis associated with autophagy induction in SK-BR-3 cells through p-p38 and p-JNK1/2 upregulation and p-Akt downregulation. The present study indicated that goniothalamin may be further used as a potential therapeutic candidate or may offer an alternative treatment for breast cancer.
Collapse
Affiliation(s)
- Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusrakum
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
21
|
Li LK, Rola AS, Kaid FA, Ali AM, Alabsi AM. Goniothalamin induces cell cycle arrest and apoptosis in H400 human oral squamous cell carcinoma: A caspase-dependent mitochondrial-mediated pathway with downregulation of NF-κβ. Arch Oral Biol 2015; 64:28-38. [PMID: 26752226 DOI: 10.1016/j.archoralbio.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 01/01/2023]
Abstract
Goniothalamin is a natural occurring styryl-lactone compound isolated from Goniothalamus macrophyllus. It had been demonstrated to process promising anticancer activity on various cancer cell lines. However, little study has been carried out on oral cancer. The aim of this study was to determine the cytotoxic effects of goniothalamin against H400 oral cancer cells and its underlying molecular pathways. Results from MTT assay demonstrated that goniothalamin exhibited selective cytotoxicity as well as inhibited cells growth of H400 in dose and time-dependent manner. This was achieved primarily via apoptosis where apoptotic bodies and membrane blebbing were observed using AO/PI and DAPI/Annexin V-FITC fluorescence double staining. In order to understand the apoptosis mechanisms induced by goniothalamin, apoptosis assessment based on mitochondrial membrane potential assay and cytochrome c enzyme-linked immunosorbent assay were carried out. Results demonstrated that the depolarization of mitochondrial transmembrane potential facilitated the release of mitochondrial cytochrome c into cytosol. Caspases assays revealed the activation of initiator caspase-9 and executioner caspase-3/7 in dose-dependent manners. This form of apoptosis was closely associated with the regulation on Bcl-2 family proteins, cell cycle arrest at S phase and inhibition of NF-κβ translocation from cytoplasm to nucleus. Conclusion, goniothalamin has the potential to act as an anticancer agent against human oral squamous cell carcinoma (H400 cells).
Collapse
Affiliation(s)
- Lim K Li
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ali-Saeed Rola
- Faculty of Bioresource & Food Industry, University Sultan Zainal Abidin, 22200, Terengganu, Malaysia
| | - Fahme A Kaid
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresource & Food Industry, University Sultan Zainal Abidin, 22200, Terengganu, Malaysia
| | - Aied M Alabsi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Oral Cancer Research and Coordinating Centre,Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Semprebon SC, Marques LA, D'Epiro GFR, de Camargo EA, da Silva GN, Niwa AM, Macedo Junior F, Mantovani MS. Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells. Toxicol In Vitro 2015; 30:250-63. [PMID: 26522230 DOI: 10.1016/j.tiv.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Abstract
(R)-goniothalamin (R-GNT) is a styryl lactone that exhibits antiproliferative property against several tumor cell lines. (S)-goniothalamin (S-GNT) is the synthetic enantiomer of R-GNT, and their biological properties are poorly understood. The aim of this study was to evaluate the antiproliferative mechanisms of (R)-goniothalamin and (S)-goniothalamin in MCF-7 breast cancer cells and HB4a epithelial mammary cells. To determine the mechanisms of cell growth inhibition, we analyzed the ability of R-GNT and S-GNT to induce DNA damage, cell cycle arrest and apoptosis. Moreover, the gene expression of cell cycle components, including cyclin, CDKs and CKIs, as well as of genes involved in apoptosis and the DNA damage response were evaluated. The natural enantiomer R-GNT proved more effective in both cell lines than did the synthetic enantiomer S-GNT, inhibiting cell proliferation via cell cycle arrest and apoptosis induction, likely in response to DNA damage. The cell cycle inhibition caused by R-GNT was mediated through the upregulation of CIP/KIP cyclin-kinase inhibitors and through the downregulation of cyclins and CDKs. S-GNT, in turn, was able to cause G0/G1 cell cycle arrest and DNA damage in MCF-7 cells and apoptosis induction only in HB4a cells. Therefore, goniothalamin presents potent antiproliferative activity to breast cancer cells MCF-7. However, exposure to goniothalamin brings some undesirable effects to non-tumor cells HB4a, including genotoxicity and apoptosis induction.
Collapse
Affiliation(s)
| | - Lilian Areal Marques
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | - Glenda Nicioli da Silva
- Departamento de Patologia, Universidade Estadual Paulista Júlio Mesquita Filho, Botucatu, SP, Brazil
| | - Andressa Megumi Niwa
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | |
Collapse
|
23
|
SOPHONNITHIPRASERT THANET, NILWARANGKOON SIRINUN, NAKAMURA YUKIO, WATANAPOKASIN RAMIDA. Goniothalamin enhances TRAIL-induced apoptosis in colorectal cancer cells through DR5 upregulation and cFLIP downregulation. Int J Oncol 2015; 47:2188-96. [DOI: 10.3892/ijo.2015.3204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
|
24
|
Dickmanns A, Monecke T, Ficner R. Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells 2015; 4:538-68. [PMID: 26402707 PMCID: PMC4588050 DOI: 10.3390/cells4030538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| |
Collapse
|
25
|
Raj KG, Sambantham S, Manikanadan R, Arulvasu C, Pandi M. Fungal taxol extracted from Cladosporium oxysporum induces apoptosis in T47D human breast cancer cell line. Asian Pac J Cancer Prev 2015; 15:6627-32. [PMID: 25169499 DOI: 10.7314/apjcp.2014.15.16.6627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. MATERIALS AND METHODS Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. RESULTS Our results showed inhibition of T47D cell proliferation with an IC50 value of 2.5 μM/ml after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-?B, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. CONCLUSIONS We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Kathamuthu Gokul Raj
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India E-mail : ,
| | | | | | | | | |
Collapse
|
26
|
Wasano N, Takemura T, Ismil R, Bakar B, Fujii Y. Transcriptomic Evaluation of Plant Growth Inhibitory Activity of Goniothalamin from the Malaysian Medicinal Plant Goniothalamus andersonii. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Goniothalamin produced by the Malaysian medicinal plant, Goniothalamus andersonii J. Sinclair, strongly inhibits plant growth. However, its mode of action has not been characterized at the gene expression level. We conducted DNA microarray assay to analyze the changes in early gene responses of Arabidopsis thaliana seedlings. After a 6-h exposure to goniothalamin, we observed an upregulation of genes highly associated with heat response, and 22 heat shock protein ( AtHSP) genes were upregulated more than 50 fold. Together with these genes, we observed upregulation of the genes related to oxidative stress and protein folding. Also, the genes related to cell wall modification and cell growth, expansin ( AtEXPA) genes, were significantly downregulated. The results suggested that goniothalamin induces oxidative stresses and inhibits the expression of cell wall-associated proteins resulting in growth inhibition of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Naoya Wasano
- Department of International Environmental Agricultural Science, Tokyo University of Agriculture & Technology, 3-5-8 Saiwai-chou, Fuchu City, Tokyo 183-8509, Japan
| | - Tomoko Takemura
- Biodiversity Division, National Institute for Agro-Environmental Sciences, 3–1–3 Kan-nondai, Tsukuba, Ibaraki, 305–8604, Japan
| | - Raihan Ismil
- Biodiversity Division, National Institute for Agro-Environmental Sciences, 3–1–3 Kan-nondai, Tsukuba, Ibaraki, 305–8604, Japan
| | - Baki Bakar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoshiharu Fujii
- Department of International Environmental Agricultural Science, Tokyo University of Agriculture & Technology, 3-5-8 Saiwai-chou, Fuchu City, Tokyo 183-8509, Japan
| |
Collapse
|
27
|
Alabsi AM, Ali R, Ali AM, Harun H, Al-Dubai SAR, Ganasegeran K, Alshagga MA, Salem SD, Abu Kasim NHB. Induction of caspase-9, biochemical assessment and morphological changes caused by apoptosis in cancer cells treated with goniothalamin extracted from Goniothalamus macrophyllus. Asian Pac J Cancer Prev 2015; 14:6273-80. [PMID: 24377517 DOI: 10.7314/apjcp.2013.14.11.6273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Goniothalamin, a natural compound extracted from Goniothalamus sp. belonging to the Annonacae family, possesses anticancer properties towards several tumor cell lines. This study focused on apoptosis induction by goniothalamin (GTN) in the Hela cervical cancer cell line. Cell growth inhibition was measured by MTT assay and the IC50 value of goniothalamin was 3.2 ± 0.72 μg/ml. Morphological changes and biochemical processes associated with apoptosis were evident on phase contrast microscopy and fluorescence microscopy. DNA fragmentation, DNA damage, caspase-9 activation and a large increase in the sub-G1 and S cell cycle phases confirmed the occurrence of apoptosis in a time-dependent manner. It could be concluded that goniothalamin show a promising cytotoxicity effect against cervical cancer cells (Hela) and the cell death mode induced by goniothalamin was apoptosis.
Collapse
Affiliation(s)
- Aied Mohammed Alabsi
- Dental Research and Training Unit, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Petsophonsakul P, Pompimon W, Banjerdpongchai R. Apoptosis induction in human leukemic promyelocytic HL-60 and monocytic U937 cell lines by goniothalamin. Asian Pac J Cancer Prev 2015; 14:2885-9. [PMID: 23803048 DOI: 10.7314/apjcp.2013.14.5.2885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.
Collapse
|
29
|
Liou JR, Wu TY, Thang TD, Hwang TL, Wu CC, Cheng YB, Chiang MY, Lan YH, El-Shazly M, Wu SL, Beerhues L, Yuan SS, Hou MF, Chen SL, Chang FR, Wu YC. Bioactive 6S-styryllactone constituents of Polyalthia parviflora. JOURNAL OF NATURAL PRODUCTS 2014; 77:2626-32. [PMID: 25419616 DOI: 10.1021/np5004577] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Parvistones A-E (1-5), five new styryllactones possessing a rare α,β-lactone moiety and a 6S configuration, were isolated from a methanolic extract of Polyalthia parviflora leaves. The structures and the absolute configuration of the isolates were elucidated using NMR spectroscopy, specific rotation, circular dichroism, and X-ray single-crystal analysis. Compounds 8, 9, 11, and 12 were isolated for the first time. The results were supported by comparing the data measured to those of 6R-styryllactones. Moreover, a plausible biogenetic pathway of the isolated compounds was proposed. The structure-activity relationship of the compounds in an in vitro anti-inflammatory assay revealed the 6S-styryllactones to be more potent than the 6R derivatives. However, the effect was opposite regarding their cytotoxic activity. In addition, 6S-styrylpyrones isolated showed more potent anti-inflammatory and cytotoxic activity when compared to the 1S-phenylpyranopyrones obtained.
Collapse
Affiliation(s)
- Jing-Ru Liou
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barcelos RC, Pastre JC, Vendramini-Costa DB, Caixeta V, Longato GB, Monteiro PA, de Carvalho JE, Pilli RA. Design and synthesis of N-acylated aza-goniothalamin derivatives and evaluation of their in vitro and in vivo antitumor activity. ChemMedChem 2014; 9:2725-43. [PMID: 25263285 DOI: 10.1002/cmdc.201402292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 01/24/2023]
Abstract
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.
Collapse
Affiliation(s)
- Rosimeire Coura Barcelos
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970, Campinas, SP (Brazil)
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation. Molecules 2014; 19:14649-66. [PMID: 25230121 PMCID: PMC6270735 DOI: 10.3390/molecules190914649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK) signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.
Collapse
|
32
|
Emerging anticancer potentials of goniothalamin and its molecular mechanisms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:536508. [PMID: 25247178 PMCID: PMC4163372 DOI: 10.1155/2014/536508] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN) or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2), a natural occurring styryl-lactone. Therefore, it includes (i) the source of GTN and other metabolites; (ii) isolation, purification, and (iii) the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans.
Collapse
|
33
|
Yen HK, Fauzi AR, Din LB, McKelvey-Martin VJ, Meng CK, Inayat-Hussain SH, Rajab NF. Involvement of Seladin-1 in goniothalamin-induced apoptosis in urinary bladder cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:295. [PMID: 25107315 PMCID: PMC4150971 DOI: 10.1186/1472-6882-14-295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/15/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Selective Alzheimer Disease Indicator-1 (or Seladin-1) is a multifunctional protein first discovered by downregulation of its expression in Alzheimer's disease. Interestingly, the expression of this protein is upregulated in several cancers, including primary bladder cancer. However, its role in cancer formation has yet to be discovered. Goniothalamin is a natural product that has been demonstrated to induce apoptosis in various cancer cell lines. In this study, we have elucidated the role of Seladin-1 in goniothalamin-induced cytotoxicity towards human urinary bladder cancer cell line RT4. METHODS The cytotoxicity of goniothalamin in human urinary bladder cancer cell line RT4 was assessed using MTT assay and the mode of cell death was determined by Annexin V-FITC/PI labeling assay. Finally, the expression of Seladin-1 protein in goniothalamin-treated RT4 cells was determined by Western blot. RESULTS MTT assay showed that the cytotoxicity of goniothalamin on RT4 cells was concentration and time dependent with IC50 values of 61 μM (24 hr), 38 μM (48 hr) and 31 μM for 72 hr, respectively. Cell death induced was confirmed through apoptosis; as assessed using the Annexin V-FITC/PI labeling assay. Furthermore, the involvement of Seladin-1 in goniothalamin-induced apoptosis was evidenced through the cleavage of 60 kDa protein to 40 kDa and 20 kDa. This was followed by a gradual increase of 20 kDa fragment suggesting the involvement of Seladin-1 in goniothalamin-induced apoptosis on RT4 cells. CONCLUSION This study demonstrates that goniothalamin induce cytotoxicity and apoptosis on RT4 cells. The involvement of Seladin-1 in goniothalamin-induced apoptosis further suggested that Seladin-1 may play a role in the formation of primary bladder cancer.
Collapse
|
34
|
Goh SH, Alitheen NBM, Yusoff FM, Yap SK, Loh SP. Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces Apoptosis in MDA-MB-231 breast cancer cells. Pharmacogn Mag 2014; 10:1-8. [PMID: 24696543 PMCID: PMC3969653 DOI: 10.4103/0973-1296.126650] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/13/2013] [Accepted: 02/07/2014] [Indexed: 12/30/2022] Open
Abstract
Background: Marine brown diatom Chaetoceros calcitrans and green microalga Nannochloropsis oculata are beneficial materials for various applications in the food, nutraceutical, pharmaceutical and cosmeceutical industries. Objective: This study investigated cytotoxicity of different crude solvent extracts from C. calcitrans and N. oculata against various cancer cell lines. Materials and Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was carried out to screen the cytotoxic effects of hexane (Hex), dichloromethane (DCM), ethyl acetate, and methanol extract from C. calcitrans and N. oculata toward various cancer cell lines. Flow cytometry cell cycle was used to determine the cell cycle arrest while the mode of cell death was investigated through acridine orange/propidium iodide (AOPI) staining, Annexin V-Fluorescein Isothiocyanate (FITC) and Terminal deoxynucleotidyl transferase-mediated d-UTP Nick End Labeling (TUNEL) assays. Expression profile of apoptotic and proliferative-related genes was then determined using the multiplex gene expression profiler (GeXP). Results: Crude ethyl acetate (CEA) extract of C. calcitrans inhibited growth of MDA-MB-231 cells, with IC50 of 60 μg/mL after 72 h of treatment. Further studies were conducted to determine the mode of cell death at various concentrations of this extract: 30, 60 and 120 μg/mL. The mode of cell death was mainly apoptosis as shown through apoptosis determination test. The expression data from GeXP showed that caspase-4 was upregulated while B-cell leukemia/lymphoma 2(Bcl-2) was down regulated. Thus, caspase-4 induction endoplasmic reticulum death pathway is believed to be one of the mechanisms underlying the induction of apoptosis while Bcl-2 induced S and G2/M cell cycle phase arrest in MDA-MB-231 cells. Conclusion: CEA extract of C. calcitrans showed the highest cytotoxicity on MDA-MB-231 via apoptosis.
Collapse
Affiliation(s)
- Su Hua Goh
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Laboratory of Marine Science and Aquaculture, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Swee Keong Yap
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Su Peng Loh
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia ; Department of Nutrition and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Sabitha G, Rao AS, Sandeep A, Yadav JS. The First Stereoselective Total Synthesis of (-)-Synrotolide. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Chen JL, You ZW, Qing FL. Total synthesis of γ-trifluoromethylated analogs of goniothalamin and their derivatives. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Styryl-lactone goniothalamin inhibits TNF-α-induced NF-κB activation. Food Chem Toxicol 2013; 59:572-8. [PMID: 23845509 DOI: 10.1016/j.fct.2013.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/22/2013] [Accepted: 06/26/2013] [Indexed: 01/01/2023]
Abstract
(R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.
Collapse
|
38
|
Semprebon SC, de Fátima Â, Lepri SR, Sartori D, Ribeiro LR, Mantovani MS. (S)-Goniothalamin induces DNA damage, apoptosis, and decrease in BIRC5 messenger RNA levels in NCI-H460 cells. Hum Exp Toxicol 2013; 33:3-13. [PMID: 23749456 DOI: 10.1177/0960327113491506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
(R)-Goniothalamin (R-GNT) is a secondary metabolite isolated from the plants of the genus Goniothalamus. This molecule has attracted the attention of researchers because of its selective cytotoxicity against tumor cells and its ability to induce apoptosis. (S)-Goniothalamin (S-GNT) is a synthetic enantiomer of R-GNT, and its mechanism of action is largely unknown. In this study, we investigated the activity of S-GNT in a human non-small cell lung cancer NCI-H460 cells. We observed that the cells exposed to this compound exhibited cytotoxicity in a concentration-dependent manner. Based on the data obtained through the assessment of apoptosis induction in situ and the comet assay, we suggest that this cytotoxicity occurs due to the potential ability of this molecule to induce DNA damage with the consequent induction of cell death via apoptosis. A significant reduction in the messenger RNA levels of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) gene that encodes the survivin protein was found. This novel finding may explain the inhibition of cell proliferation and induction of apoptosis in tumor cells caused by this compound.
Collapse
Affiliation(s)
- S C Semprebon
- 1Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Design, synthesis, in vitro cytotoxicity evaluation and structure–activity relationship of Goniothalamin analogs. Arch Pharm Res 2013; 36:812-31. [DOI: 10.1007/s12272-013-0099-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
|
40
|
Alabsi AM, Ali R, Ali AM, Al-Dubai SAR, Harun H, Kasim NHA, Alsalahi A. Apoptosis Induction, Cell Cycle Arrest and in Vitro Anticancer Activity of Gonothalamin in a Cancer Cell Lines. Asian Pac J Cancer Prev 2012; 13:5131-6. [DOI: 10.7314/apjcp.2012.13.10.5131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Yen CY, Chiu CC, Haung RW, Yeh CC, Huang KJ, Chang KF, Hseu YC, Chang FR, Chang HW, Wu YC. Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat Res 2012; 747:253-8. [PMID: 22721813 DOI: 10.1016/j.mrgentox.2012.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 06/05/2012] [Accepted: 06/10/2012] [Indexed: 01/10/2023]
Abstract
Goniothalamin (GTN), a plant bioactive styryl-lactone, is a natural product with potent anti-tumorigenesis effects for several types of cancer. Nonetheless, the anticancer effect of GTN has not been examined in oral cancer. The present study was designed to evaluate its potential anticancer effects in an oral squamous cell carcinoma (OSCC) model and to determine the possible mechanisms with respect to apoptosis, DNA damage, reactive oxygen species (ROS) induction, and mitochondrial membrane potential. Our data demonstrated that cell proliferation was significantly inhibited by GTN in Ca9-22 OSCC cancer cells in concentration- and time-dependent manners (p<0.05). For cell cycle and apoptotic effects of GTN-treated Ca9-22 cancer cells, the sub-G1 population and annexin V-intensity significantly increased in a concentration-dependent manner (p<0.001). For the analysis of DNA double strand breaks, γH2AX intensity significantly increased in GTN-treated Ca9-22 cancer cells in concentration-response relationship (p<0.05). Moreover, GTN significantly induced intracellular ROS levels in Ca9-22 cancer cells in a concentration- and time-dependent manner (p<0.05). For membrane depolarization of mitochondria, the DiOC(2)(3) (3,3'-diethyloxacarbocyanine iodide) intensity of GTN-treated Ca9-22 cancer cells was significantly decreased in concentration- and time-dependent relationships (p<0.001). Taken together, these results suggest that the anticancer effect of GTN against oral cancer cells is valid and GTN-induced growth inhibition and apoptosis influence the downstream cascade including ROS induction, DNA damage, and mitochondria membrane depolarization. Therefore, GTN has potential as a chemotherapeutic agent against oral cancer.
Collapse
Affiliation(s)
- Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bio-functional constituents from the stems of Liriodendron tulipifera. Molecules 2012; 17:4357-72. [PMID: 22491683 PMCID: PMC6268983 DOI: 10.3390/molecules17044357] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 11/17/2022] Open
Abstract
Four known compounds have been isolated from the stems of Liriodendron tulipifera, and the structures of these pure constituents were determined using spectroscopic analysis. Isolated compounds were screened for free radical scavenging ability, metal chelating power assay and ferric reducing antioxidant power assay (FRAP). The anti-tyrosinase effects of L. tulipifera compounds were calculated the inhibition of hydroxylation of L-tyrosine to L-dopa according to an in vitro mushroom tyrosinase assay. The study also examined the bio-effects of the four compounds on the human melanoma A375.S2, and showed that liriodenine (1) and (-)-norglaucine (4) significantly inhibited the proliferation of melanoma cells in the cell viability assay. Wound healing results indicated that liriodenine (1), (-)-glaucine (3) and (-)-norglaucine (4) exerted anti-migration potential. Interestingly, (-)-glaucine (3), neither liriodenine (1) nor (-)-norglaucine (4) showed promising anti-migration potential without inducing significant cytotoxicity. Furthermore, a dramatically increased level of intracellular reactive oxygen species (ROS) was detected from (-)-glaucine (3). The cell cycle assessment demonstrated a moderate G2/M accumulation by (-)-glaucine (3). The above results revealed the anti-cancer effects of L. tulipifera compounds, especially on the anti-migration ability indicating the promising chemopreventive agents to human skin melanoma cells.
Collapse
|
43
|
Kuo KK, Chen YL, Chen LR, Li CF, Lan YH, Chang FR, Wu YC, Shiue YL. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells. Toxicol Appl Pharmacol 2011; 256:8-23. [PMID: 21810437 DOI: 10.1016/j.taap.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 01/09/2023]
Abstract
The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Department of Surgery, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen JL, Zheng F, Huang Y, Qing FL. Synthesis of γ-Monofluorinated Goniothalamin Analogues via Regio- and Stereoselective Ring-Opening Hydrofluorination of Epoxide. J Org Chem 2011; 76:6525-33. [DOI: 10.1021/jo200611w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Ling Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Feng Zheng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Feng-Ling Qing
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
45
|
Chiu CC, Liu PL, Huang KJ, Wang HM, Chang KF, Chou CK, Chang FR, Chong IW, Fang K, Chen JS, Chang HW, Wu YC. Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4288-93. [PMID: 21391609 DOI: 10.1021/jf200566a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We evaluated the possible anticancer performance of a natural compound, goniothalamin (GTN), against human lung cancer using as a non-small cell lung cancer (NSCLC) cell line, H1299, as the model system. Cellular proliferation was significantly inhibited by GTN. Using an improved alkaline comet-nuclear extract (comet-NE) assay, GTN was found to induce a significant increase in the tail DNA. Wound healing and zymography assays showed that GTN attenuated cell migration and caused a reduction in the activity level of two major migration-associated matrix metalloproteinases, MMP-2 and MMP-9. It can be concluded that the DNA-damaging effect of GTN against lung cancer cells leads to growth inhibition as well as a depression in migration ability. Therefore, GTN has potential as a chemotherapeutic agent against lung cancer.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Al-Qubaisi M, Rozita R, Yeap SK, Omar AR, Ali AM, Alitheen NB. Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells. Molecules 2011; 16:2944-59. [PMID: 21471934 PMCID: PMC6260619 DOI: 10.3390/molecules16042944] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/16/2022] Open
Abstract
Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC50 = 4.6 (±0.23) µM in the MTT assay; IC50 = 5.20 (±0.01) µM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC50 = 35.0 (±0.09) µM for MTT assay; IC50 = 32.5 (±0.04) µM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC50 after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 µL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.
Collapse
Affiliation(s)
- Mothanna Al-Qubaisi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Rosli Rozita
- Department of Obstetric and Gynaecology, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Swee-Keong Yeap
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Abdul-Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Abdul-Manaf Ali
- Faculty of Agriculture and Biotechnology, University Sultan Zainal Abidin (UniSZA), Kampus Kota, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia
| | - Noorjahan B. Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Author to whom correspondence should be addressed; E-Mails: or ; Tel.: +603-8946 7471; Fax: +603-8946 7510
| |
Collapse
|
47
|
Chen WY, Hsieh YA, Tsai CI, Kang YF, Chang FR, Wu YC, Wu CC. Protoapigenone, a natural derivative of apigenin, induces mitogen-activated protein kinase-dependent apoptosis in human breast cancer cells associated with induction of oxidative stress and inhibition of glutathione S-transferase π. Invest New Drugs 2010; 29:1347-59. [DOI: 10.1007/s10637-010-9497-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/13/2010] [Indexed: 11/24/2022]
|
48
|
Vendramini-Costa DB, de Castro IBD, Ruiz ALTG, Marquissolo C, Pilli RA, de Carvalho JE. Effect of goniothalamin on the development of Ehrlich solid tumor in mice. Bioorg Med Chem 2010; 18:6742-7. [PMID: 20729093 DOI: 10.1016/j.bmc.2010.07.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022]
Abstract
In this work the antiproliferative activity of goniothalamin (1), both in racemic and in its enantiomeric pure forms, in a solid tumor experimental model using laboratory animals is described. The antiedematogenic activity displayed by racemic 1 in the carrageenan edema model in mice together with the reduction of Ehrlich solid tumor model suggest a relationship between anticancer and antiinflammatory activities with the antiinflammatory activity favoring the antiproliferative activity itself.
Collapse
Affiliation(s)
- Débora Barbosa Vendramini-Costa
- Programa de Pós-graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Chan KM, Rajab NF, Siegel D, Din LB, Ross D, Inayat-Hussain SH. Goniothalamin induces coronary artery smooth muscle cells apoptosis: the p53-dependent caspase-2 activation pathway. Toxicol Sci 2010; 116:533-48. [PMID: 20498002 DOI: 10.1093/toxsci/kfq151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Goniothalamin (GN), a styryl-lactone isolated from Goniothalamus andersonii, has been demonstrated to possess antirestenostic properties by inducing apoptosis on coronary artery smooth muscle cells (CASMCs). In this study, the molecular mechanisms of GN-induced CASMCs apoptosis were further elucidated. Apoptosis assessment based on the externalization of phosphatidylserine demonstrated that GN induces CASMCs apoptosis in a concentration-dependent manner. The GN-induced DNA damage occurred with concomitant elevation of p53 as early as 2 h, demonstrating an upstream signal for apoptosis. However, the p53 elevation in GN-treated CASMCs was independent of NAD(P)H: quinone oxidoreductase 1 and Mdm-2 expression. An increase in hydrogen peroxide and reduction in free thiols confirmed the role for oxidative stress in GN treatment. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK) that significantly abrogated GN-induced CASMCs apoptosis suggested the involvement of caspase(s). The role of apical caspase-2, -8, and -9 was then investigated, and sequential activation of caspase-2 and -9 but not caspase-8 leading to downstream caspase-3 cleavage was observed in GN-treated CASMCs. Reduction of ATP level and decrease in oxygen consumption further confirmed the role of mitochondria in GN-induced apoptosis in CASMCs. The mitochondrial release of cytochrome c was seen without mitochondrial membrane potential loss and was independent of cardiolipin. These data provide insight into the mechanisms of GN-induced apoptosis, which may have important implications in the development of drug-eluting stents.
Collapse
Affiliation(s)
- Kok Meng Chan
- Department of Biomedical Science, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | | | | | | | | | | |
Collapse
|
50
|
Wach JY, Güttinger S, Kutay U, Gademann K. The cytotoxic styryl lactone goniothalamin is an inhibitor of nucleocytoplasmic transport. Bioorg Med Chem Lett 2010; 20:2843-6. [PMID: 20381347 DOI: 10.1016/j.bmcl.2010.03.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 11/28/2022]
Abstract
An in vivo nuclear export assay (immunostaining of Rio2 in HeLa cells) demonstrated that (R)-goniothalamin is an inhibitor of nucleocytoplasmic transport above 500 nM, which was rationalized also by molecular modeling. The cytotoxic styryl lactone natural product was prepared via an enantioselective Cr(III) catalyzed hetero Diels-Alder reaction and a Sonogashira coupling. A series of analogs was synthesized and only the oxidized goniothalamin derivative featuring an alkyne spacer was found active. Unsaturated lactones of natural origin other than leptomycin (LMB) are thus suggested to operate via a similar mechanism targeting the CRM1 nuclear receptor.
Collapse
Affiliation(s)
- Jean-Yves Wach
- Swiss Federal Institute of Technology (EPFL), Chemical Synthesis Laboratory (SB-ISIC-LSYNC), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|