1
|
Omidkhah N, Hadizadeh F, Ghodsi R, Kesharwani P, Sahebkar A. In silico Evaluation of NO-Sartans against SARS-CoV-2. Curr Drug Discov Technol 2024; 21:e050324227669. [PMID: 38445698 DOI: 10.2174/0115701638279362240223070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2. METHOD Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE. RESULTS Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations. CONCLUSION Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Li P, Peng Y, Ma Q, Li Z, Zhang X. Study on the Formation of Antihypertensive Twin Drugs by Caffeic Acid and Ferulic Acid with Telmisartan. Drug Des Devel Ther 2020; 14:977-992. [PMID: 32184567 PMCID: PMC7062412 DOI: 10.2147/dddt.s225705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/10/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE This study aimed to synthesize twin drugs from cinnamic acid compounds, caffeic acid (CFA) and ferulic acid (FLA), which can antagonize endothelin-1 (ET-1) with telmisartan through ester bonds. Moreover, the antihypertensive effect of telmisartan and its influence on blood pressure variability (BPV) were enhanced, and the bioavailability of caffeic acid and ferulic acid was improved. METHODS Six twin drugs, which were the target compounds, were synthesized. Hypertensive rats (SHR) and conscious sinoaortic-denervated (SAD) rats were spontaneously used as models for pharmacodynamic research to study the antihypertensive efficacy of these twin drugs. Wistar rats were employed as pharmacokinetic research models to investigate the pharmacokinetics of the target compounds via intragastric administration. Cellular pharmacodynamic research was also conducted on the antagonistic action on Ang II-AT1, ETA and ETB receptor. RESULTS Compound 1a was determined as the best antihypertensive twin drug and thus was further studied for its effect on BPV. Compared with that of telmisartan, the antihypertensive effect of compound 1a was improved (p<0.05), and the BPV was reduced (p<0.05). The bioavailability of caffeic acid and ferulic acid after hydrolysis from twin drugs could be increased to varying degrees, and the differences of the main pharmacokinetic parameters among the different forms of caffeic acid and ferulic acid were statistically significant (p<0.05 or p<0.01). Compound 1a had the best antagonistic effect on the Ang II-AT1 receptor. However, the IC50 of Lps-2 was still two orders of magnitude higher than that of the positive drug telmisartan. Hence, the twin drugs worked by metabolizing and regenerating telmisartan and caffeic acid or ferulic acid in the body. CONCLUSION The synthesized twin drugs improved telmisartan's antihypertensive effects, significantly decreased BPV in SAD rats and increased the bioavailability of caffeic acid and ferulic acid. This study serves as a basis for the development of new angiotensin receptor blocker (ARB) in the future and a reference for the development of new drugs to antagonize ET-1.
Collapse
Affiliation(s)
- Pengshou Li
- Department of Food Science and Engineering, School of Food and Drug, Luoyang Normal University, Luoyang471934, People’s Republic of China
| | - Yingying Peng
- Department of Food Science and Engineering, School of Food and Drug, Luoyang Normal University, Luoyang471934, People’s Republic of China
| | - Qixiang Ma
- Cancer Institute, Fudan University Cancer Hospital and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai200032, People’s Republic of China
| | - Ziyong Li
- Department of Food Science and Engineering, School of Food and Drug, Luoyang Normal University, Luoyang471934, People’s Republic of China
| | - Xiaohua Zhang
- Department of Traditional Chinese Medicine and Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing100102, People’s Republic of China
| |
Collapse
|
3
|
Therapeutic role of nitric oxide as emerging molecule. Biomed Pharmacother 2017; 85:182-201. [DOI: 10.1016/j.biopha.2016.11.125] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 01/21/2023] Open
|
4
|
Winiecka I, Jaworski P, Mazurek AP, Marszałek D, Goldnik A, Sokulski D. Novel renin inhibitors containing derivatives of N-alkylleucyl-β-hydroxy-γ-amino acids. J Pept Sci 2016; 22:106-15. [PMID: 26780837 DOI: 10.1002/psc.2846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/17/2015] [Accepted: 11/22/2015] [Indexed: 12/19/2022]
Abstract
In search for new drugs lowering arterial blood pressure, which could be applied in anti-hypertensive therapy, research concerning agents blocking of renin-angiotensin-aldosteron system has been conducted. Despite many years of research conducted at many research centers around the world, aliskiren is the only one renin inhibitor, which is used up to now. Four novel potential renin inhibitors, having structure based on the peptide fragment 8-13 of human angiotensinogen, a natural substrate for renin, were designed and synthesized. All these inhibitors contain unnatural moieties that are derivatives of N-methylleucyl-β-hydroxy-γ-amino acids at the P2-P1' position: 4-[N-(N-methylleucyl)-amino]-3-hydroxy-7-(3-nitroguanidino)-heptanoic acid (AHGHA), 4-[N-(N-methylleucyl)-amino]-3-hydroxy-5-phenyl-pentanoic acid (AHPPA) or 4-[N-(N-methylleucyl)-amino]-8-benzyloxycarbonylamino-3-hydroxyoctanoic acid (AAHOA). The previously listed synthetic β-hydroxy-γ-amino acids constitute pseudodipeptidic units that correspond to the P1-P1' position of the inhibitor molecule. An unnatural amino acid, 4-methoxyphenylalanin (Phe(4-OMe)), was introduced at the P3 position of the obtained compounds. Three of these compounds contain isoamylamide of 6-aminohexanoic acid (ε-Ahx-Iaa) at the P2'-P3' position. The proposed modifications of the selected human angiotensinogen fragment are intended to increase bioactivity, bioavailability, and stability of the inhibitor molecule in body fluids and tissues. The inhibitor Boc-Phe(4-OMe)-MeLeu-AHGHA-OEt was obtained in the form of an ethyl ester. The hydrophobicity coefficient, expressed as log P varied between 3.95 and 8.17. In vitro renin inhibitory activity of all obtained compounds was contained within the range 10(-6)-10(-9) M. The compound Boc-Phe(4-OMe)-MeLeu-AHPPA-Ahx-Iaa proved to be the most active (IC50 = 1.05 × 10(-9) M). The compounds Boc-Phe(4-OMe)-MeLeu-AHGHA-Ahx-Iaa and Boc-Phe(4-OMe)-MeLeu-AHPPA-Ahx-Iaa are resistant to chymotrypsin.
Collapse
Affiliation(s)
- Iwona Winiecka
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02 - 097, Warsaw, Poland
| | - Paweł Jaworski
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02 - 097, Warsaw, Poland
| | | | - Dorota Marszałek
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02 - 097, Warsaw, Poland
| | - Anna Goldnik
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02 - 097, Warsaw, Poland
| | - Daniel Sokulski
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02 - 097, Warsaw, Poland
| |
Collapse
|
5
|
He Q, Li JK, Li F, Li RG, Zhan GQ, Li G, Du WX, Tan HB. Mechanism of action of gypenosides on type 2 diabetes and non-alcoholic fatty liver disease in rats. World J Gastroenterol 2015; 21:2058-2066. [PMID: 25717238 PMCID: PMC4326140 DOI: 10.3748/wjg.v21.i7.2058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/03/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism of action of gypenosides (GPs) on type 2 diabetes mellitus and non-alcoholic fatty liver disease (T2DM-NAFLD) in rats.
METHODS: Sixty rats were randomly divided into a healthy group, an untreated disease model group and GP-treatment groups. The study involved the evaluation of biochemical parameters, including serum aspartate transaminase (AST), alanine transferase (ALT), blood glucose (BG), triglycerides (TG) and total cholesterol (TC). Additionally, the protective effect of the treatments were confirmed histopathologically and the expression of TNF-α and NF-κB in the rat liver was analyzed using immunohistochemistry. The expression of proliferator-activated receptor gamma (PPARγ) and cytochrome P450 (CYP450) 1A1 mRNA was determined by quantitative RT-PCR.
RESULTS: GP treatments at oral doses of 200, 400, and 800 mg/kg per day significantly decreased the levels of serum AST and ALT (P < 0.05, P < 0.01), especially at the dose of 800 mg/kg per day. To a similar extent, GP at 800 mg/kg per day reduced the levels of BG (4.19 ± 0.47, P < 0.01), TG (80.08 ± 10.05, P < 0.01), TC (134.38 ± 16.39, P < 0.01) and serum insulin (42.01 ± 5.04, P < 0.01). The expression of TNF-α and NF-κB measured by immunohistochemistry was significantly reduced by GPs in a dose-dependent manner, and the expression of PPARγ and CYP4501A1 mRNA, as measured using quantitative real-time PCR, were significantly down-regulated by GPs. Moreover, GPs decreased the infiltration of liver fats and reversed the histopathological changes in a dose-dependent manner.
CONCLUSION: This study suggests that GPs have a protective effect against T2DM-NAFLD by down-regulating the expression of TNF-α and NF-κB proteins, and PPARγ and CYP4501A1 mRNAs.
Collapse
|
6
|
Zhang Y, Xu J, Li Y, Yao H, Wu X. Design, Synthesis and Pharmacological Evaluation of Novel NO-Releasing Benzimidazole Hybrids as Potential Antihypertensive Candidate. Chem Biol Drug Des 2014; 85:541-8. [DOI: 10.1111/cbdd.12442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Yanchun Zhang
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; 103 Meishan Road Hefei 230031 China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yunman Li
- Department of Physiology; China Pharmaceutical University; 24 TongJia Xiang Nanjing 210009 China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Xiaoming Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
7
|
Xu L, Wei Y, Dong D, Yin L, Qi Y, Han X, Xu Y, Zhao Y, Liu K, Peng J. iTRAQ-based proteomics for studying the effects of dioscin against nonalcoholic fatty liver disease in rats. RSC Adv 2014; 4:30704. [DOI: 10.1039/c4ra03948c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
|
8
|
Zhang S, Zheng L, Dong D, Xu L, Yin L, Qi Y, Han X, Lin Y, Liu K, Peng J. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats. Food Chem 2013; 141:2108-2116. [PMID: 23870935 DOI: 10.1016/j.foodchem.2013.05.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023]
Abstract
The effects and mechanisms of the total flavonoids (TFs) from Rosa laevigata Michx fruit on high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) were investigated in this study. Gavage administration of the TFs significantly decreased the relative liver weight, serum AST and ALT activities, the levels of serum lipid, LDL, blood glucose and insulin, suppressed lipid accumulation in liver, and increased serum HDL level. Moreover, the natural product significantly enhanced SOD activity, increased GSH-Px and GSH contents and decreased the concentration of MDA and CYP2E1 expression as well as prevented mitochondrial membrane potential dysfunctions and ultrastructural alterations. Further mechanism investigation indicated that the TFs inhibited hepatic lipid accumulation by suppressing the expressions of some key molecules in fatty acid synthesis pathway and promoting fatty acid β-oxidation, while not by inhibiting cholesterol synthesis. On the base of these, the TFs should be developed as a new drug for treatment of NAFLD.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Novel nitric oxide-releasing isochroman-4-one derivatives: Synthesis and evaluation of antihypertensive activity. Bioorg Med Chem 2012; 20:6848-55. [DOI: 10.1016/j.bmc.2012.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
10
|
Sheehan D, Rainville LC, Tyther R, McDonagh B. Redox proteomics in study of kidney-associated hypertension: new insights to old diseases. Antioxid Redox Signal 2012; 17:1560-70. [PMID: 22607037 DOI: 10.1089/ars.2012.4705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE The kidney helps to maintain low blood pressure in the human body, and impaired kidney function is a common attribute of aging that is often associated with high blood pressure (hypertension). Kidney-related pathologies are important contributors (either directly or indirectly) to overall human mortality. In comparison with other organs, kidney has an unusually wide range of oxidative status, ranging from the well-perfused cortex to near-anoxic medulla. RECENT ADVANCES Oxidative stress has been implicated in many kidney pathologies, especially chronic kidney disease, and there is considerable research interest in oxidative stress biomarkers for earlier prediction of disease onset. Proteomics approaches have been taken to study of human kidney tissue, serum/plasma, urine, and animal models of hypertension. CRITICAL ISSUES Redox proteomics, in which oxidative post-translational modifications can be identified in protein targets of oxidative or nitrosative stress, has not been very extensively pursued in this set of pathologies. FUTURE DIRECTIONS Proteomics studies of kidney and related tissues have relevance to chronic kidney disease, and redox proteomics, in particular, represents an under-exploited toolkit for identification of novel biomarkers in this commonly occurring pathology.
Collapse
Affiliation(s)
- David Sheehan
- Proteomics Research Group, Department of Biochemistry, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
11
|
Differential effects of short-term treatment with two AT1 receptor blockers on diameter of pial arterioles in SHR. PLoS One 2012; 7:e42469. [PMID: 22957022 PMCID: PMC3434186 DOI: 10.1371/journal.pone.0042469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Chronic treatment with angiotensin receptor blockers is largely accepted for protecting cerebral circulation during hypertension, but beneficial effects of short-term treatments are questionable, as highlighted by the recent SCAST trial. We compared the impact of 10 days treatment with candesartan (as SCAST) versus telmisartan (previously described to reverse arteriolar remodeling, chronic treatment) on pial arterioles of spontaneously hypertensive rats (SHR). We explored whether PPAR-gamma agonist activity or AT(1) receptor blockade are involved in their differential effects. In the first study, 4-month-old male SHR were treated with telmisartan (TELMI, 2 mg/kg per day) or candesartan cilexetil (CANDE, 10 mg/kg per day) and compared to vehicle treated SHR and normotensive WKY. In a second study, SHR were treated with CANDE, pioglitazone (a PPAR-gamma agonist, PIO 2.5 mg/kg per day) or CANDE+PIO, compared to TELMI. Internal diameter of pial arterioles (ID, cranial window) was measured at baseline, during hemorrhage-induced hypotension, or following suffusion of Ang II (10(-6) mol/L) or EDTA inactivation of smooth muscle cells (passive ID). PPAR-gamma and eNOS (target gene of PPAR-gamma) mRNA were evaluated in brain microvessels. For similar antihypertensive effects, TELMI (+44% versus SHR), but not CANDE, increased baseline ID. During hemorrhage, ID in TELMI group was similar to WKY, while ID in SHR and CANDE remained lower. In the second study, TELMI (+36%, versus SHR) and CANDE+PIO (+43%) increased baseline ID, but not CANDE or PIO alone. TELMI (-66%) and CANDE+PIO (-69%), but neither CANDE nor PIO alone, decreased Ang II-induced vasoconstriction. CANDE+PIO, but not CANDE, increased passive ID. In both studies, PPAR-gamma and eNOS expressions were higher in TELMI than CANDE. Short-term treatment with TELMI, but not with CANDE, reverses narrowing of pial arteriolar ID in SHR. This may involve PPAR-gamma related mechanisms, since CANDE+PIO treatment induced similar effects, and a better blockade of AT(1) receptors.
Collapse
|
12
|
Abstract
Successful treatment of hypertension is difficult despite the availability of several classes of antihypertensive drug, and the value of strategies to combat the effect of adverse lifestyle behaviours on blood pressure. In this paper, we discuss two promising therapeutic alternatives for patients with resistant hypertension: novel drugs, including new pharmacological classes (such as vasopeptidase inhibitors and aldosterone synthase inhibitors) and new molecules from present pharmacological classes with additional properties in blood-pressure or metabolism pathways; and new procedures and devices, including stimulation of arterial baroreceptors and catheter-based renal denervation. Although several pharmacological targets have been discovered with promising preclinical results, the clinical development of novel antihypertensive drugs has been more difficult and less productive than expected. The effectiveness and safety of new devices and procedures should be carefully assessed in patients with resistant hypertension, thus leading to a new era of outcome trials and evidence-based guidelines.
Collapse
Affiliation(s)
- Stéphane Laurent
- Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
| | | | | |
Collapse
|
13
|
Mogi M, Horiuchi M. [New antihypertensive drugs including angiotensin II type 2 receptor agonist]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:432-440. [PMID: 21400882 DOI: 10.2169/naika.100.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Japan
| | | |
Collapse
|
14
|
Tyther R, McDonagh B, Sheehan D. Proteomics in investigation of protein nitration in kidney disease: technical challenges and perspectives from the spontaneously hypertensive rat. MASS SPECTROMETRY REVIEWS 2011; 30:121-141. [PMID: 21166007 DOI: 10.1002/mas.20270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Kidneys are the mammalian organs with widest range of oxidative status ranging from the well-perfused cortex to the relatively anoxic medulla. This organ is of key interest from the perspective of hypertension, an important contributor to human mortality, and there has been growing use of the spontaneously hypertensive rat (SHR) as a model to explore oxidative stress in hypertensive kidney. Nitrosative stress is often associated with oxidative stress and, like oxidative stress, can lead to covalent modification of protein side-chains. It is especially relevant to kidney because of high levels of both nitrite/nitrate and nitric oxide synthase in medulla. Because of their relatively low abundance and their well-known role in signal transduction, nitration of tyrosines to 3-nitrotyrosines (3NT) is of particular interest in this regard. This modification has the potential to contribute to changes in regulation, in protein activity and may provide a means of specific targeting of key proteins. Mass spectrometry (MS) offers a promising route to detecting this modification. This review surveys protein nitration in kidney disease and highlights opportunities for MS detection of nitrated residues in the SHR.
Collapse
Affiliation(s)
- Raymond Tyther
- Upstream Bioprocessing Group, National Institute for Bioprocessing Research and Training, NICB, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
15
|
Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A, Taddei S, Calderone V. Hydrogen sulphide: novel opportunity for drug discovery. Med Res Rev 2010; 32:1093-130. [PMID: 23059761 DOI: 10.1002/med.20234] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogen sulphide (H(2)S) is emerging as an important endogenous modulator, which exhibits the beneficial effects of nitric oxide (NO) on the cardiovascular (CV) system, without producing toxic metabolites. H(2)S is biosynthesized in mammalian tissues by cystathionine-β-synthase and cystathionine-γ-lyase. H(2)S exhibits the antioxidant properties of inorganic and organic sulphites, behaving as a scavenger of reactive oxygen species. There is also clear evidence that H(2)S triggers other important effects, mainly mediated by the activation of ATP-sensitive potassium channels (K(ATP)). This mechanism accounts for the vasorelaxing and cardioprotective effects of H(2)S. Furthermore, H(2)S inhibits smooth muscle proliferation and platelet aggregation. In non-CV systems, H(2)S regulates the functions of the central nervous system, as well as respiratory, gastroenteric, and endocrine systems. Conversely, H(2)S deficiency contributes to the pathogenesis of hypertension. Likewise, impairment of H(2)S biosynthesis is involved in CV complications associated with diabetes mellitus. There is also evidence of a cross-talk between the H(2)S and the endothelial NO pathways. In particular, recent observations indicate a possible pathogenic link between deficiencies of H(2 S activity and the progress of endothelial dysfunction. These biological aspects of endogenous H(2)S have led several authors to look at this mediator as "the new NO" that has given attractive opportunities to develop innovative classes of drugs. In this review, the main biological actions of H(2)S are discussed. Moreover, some examples of H(2)S-donors are shown, as well as some hybrids, in which H(2)S-releasing moieties are added to well-known drugs, for improving their pharmacodynamic profile or reducing the potential for adverse effects, are reported.
Collapse
Affiliation(s)
- Alma Martelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Ma L, Ji JL, Ji H, Yu X, Ding LJ, Liu K, Li YQ. Telmisartan alleviates rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. Bone 2010; 47:5-11. [PMID: 20362079 DOI: 10.1016/j.bone.2010.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/19/2010] [Accepted: 03/24/2010] [Indexed: 11/28/2022]
Abstract
In the present study, we systematically examined telmisartan, an angiotensin AT(1) receptor antagonist, on rosiglitazone-induced bone loss in ovariectomized spontaneously hypertensive rats. Telmisartan (5 mg/kg/d, 90 days) was found to be able to significantly alleviate rosiglitazone (10 mg/kg/d, 90 days)-induced decrease in BMD of femur and lumbar vertebrae. The BMD changes were associated with positive biomechanical changes of lumbar vertebrae, improvements in microarchitecture of tibial metaphysic and normalized serum osteocalcin (OC) levels and urinary deoxypyridinoline/creatinine (DPD/Cr) ratio. MicroCT analysis of the tibial metaphysis showed that telmisartan significantly prevented the decreases in bone volume/tissue volume (BV/TV), connect density (Conn. D.), trabecular number (Tb. N.) and trabecular thickness (Tb. Th.), and increase in trabecular separation (Tb. Sp.) induced by rosiglitazone. Histomorphometric analysis also showed that telmisartan had protective effects on rosiglitazone-reduced bone formation indices such as histomorphometric bone volume fraction (BV/TV-Histo), mineralizing surface/bone surface (MS/BS), mineral apposition rate (MAR) and bone formation rate (BFR/BS). Our study clearly showed that telmisartan alleviated rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. The relief of bone loss provides a possible therapeutic application of telmisartan with rosiglitazone for the treatment of elderly women patients afflicted with metabolic syndrome.
Collapse
Affiliation(s)
- L Ma
- Department of Pharmacology, China Pharmaceutical University, 24 Tong Jia Xiang, 210009 Nanjing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Yamamoto K, Ohishi M, Ho C, Kurtz TW, Rakugi H. Telmisartan-induced inhibition of vascular cell proliferation beyond angiotensin receptor blockade and peroxisome proliferator-activated receptor-gamma activation. Hypertension 2009; 54:1353-9. [PMID: 19822796 DOI: 10.1161/hypertensionaha.109.138750] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigated the ability of angiotensin II type 1 (AT1) receptor blockers with peroxisome proliferator-activated receptor (PPAR)-gamma agonist activity (telmisartan and irbesartan) and AT1 receptor blockers devoid of PPARgamma agonist activity (eprosartan and valsartan) to inhibit vascular cell proliferation studied in the absence of angiotensin II stimulation. Telmisartan and, to a lesser extent, irbesartan inhibited proliferation of human aortic vascular smooth muscle cells in a dose-dependent fashion, whereas eprosartan and valsartan did not. To investigate the role of PPARgamma in the antiproliferative effects of telmisartan, we studied genetically engineered NIH3T3 cells that express PPARgamma. Pioglitazone inhibited proliferation of NIH3T3 cells expressing PPARgamma but had little effect on control NIH3T3 cells that lack PPARgamma. In contrast, telmisartan inhibited proliferation equally in NIH3T3 with and without PPARgamma. Valsartan failed to inhibit proliferation of either cell line. In addition, telmisartan inhibited proliferation equally in aortic smooth muscle cells derived from mice with targeted knockout of PPARgamma in the smooth muscle and from control mice, whereas valsartan had no effect on cell proliferation. Telmisartan, but not valsartan, reduced phosphorylation of AKT but not extracellular signal-regulated kinase otherwise induced by exposure to serum of quiescent human smooth muscle cells, quiescent mice smooth muscle cells lacking PPARgamma, or quiescent Chinese hamster ovary-K1 cells lacking the AT1 receptor. In summary, the antiproliferative effects of telmisartan in the absence of exogenously supplemented angiotensin II involve more than just AT1 receptor blockade and do not require activation of PPARgamma. It might be postulated that inhibition of AKT activation is a mechanism mediating the antiproliferative effects of telmisartan, including in cells lacking AT1 receptors or PPARgamma.
Collapse
Affiliation(s)
- Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Angiotensin receptor blockers (ARBs) are well-tolerated drugs that are known to be useful for inhibiting activity of the renin-angiotensin (RAS) system, treating hypertension and reducing the risk for cardiovascular disease. However, inhibition of the RAS does not control all pathophysiological mechanisms of hypertension or cardiovascular risk and many patients continue to suffer from cardiovascular events and metabolic disturbances despite being treated with an ARB, an angiotensin-converting enzyme inhibitor or both, in addition to other standard therapies for cardiovascular disease. Recently, it has become apparent that bifunctional molecules can be designed that do more than just block AT(1) receptors and that can target additional mechanisms of hypertension, cardiovascular disease and diabetes besides just increased activity of the renin-angiotensin system. Specifically, next generation ARBs are becoming available that are intended to not only antagonize AT(1) receptors, but also block endothelin receptors, function as nitric oxide donors, inhibit neprilysin activity and increase natriuretic peptide levels, or stimulate the peroxisome proliferator-activated receptor gamma (PPARgamma). In this review, we: (1) discuss the potential importance of multifunctional ARBs that can reduce cardiovascular and metabolic risk through multiple mechanisms that go beyond just inhibition of the renin-angiotensin system and (2) describe specific examples of next generation ARBs in development that are intended to do more than simply block AT(1) receptors.
Collapse
|
19
|
Calderone V. An update on hybrid drugs in cardiovascular drug research. Expert Opin Drug Discov 2008; 3:1397-408. [DOI: 10.1517/17460440802564845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
|