1
|
Shah FA, Albaqami F, Alattar A, Alshaman R, Zaitone SA, Gabr AM, Abdel-Moneim AMH, dosoky ME, Koh PO. Quercetin attenuated ischemic stroke induced neurodegeneration by modulating glutamatergic and synaptic signaling pathways. Heliyon 2024; 10:e28016. [PMID: 38571617 PMCID: PMC10987936 DOI: 10.1016/j.heliyon.2024.e28016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Ischemic strokes originate whenever the circulation to the brain is interrupted, either temporarily or permanently, resulting in a lack of oxygen and other nutrients. This deprivation primarily impacts the cerebral cortex and striatum, resulting in neurodegeneration. Several experimental stroke models have demonstrated that the potent antioxidant quercetin offers protection against stroke-related damage. Multiple pathways have been associated with quercetin's ability to safeguard the brain from ischemic injury. This study examines whether the administration of quercetin alters glutamate NMDA and GluR1 receptor signaling in the cortex and striatum 72 h after transient middle cerebral artery occlusion. The administration of 10 mg/kg of quercetin shielded cortical and striatal neurons from cell death induced by ischemia in adult SD rats. Quercetin reversed the ischemia-induced reduction of NR2a/PSD95, consequently promoting the pro-survival AKT pathway and reducing CRMP2 phosphorylation. Additionally, quercetin decreased the levels of reactive oxygen species and inflammatory pathways while increasing the expression of the postsynaptic protein PSD95. Our results suggest that quercetin may be a promising neuroprotective drug for ischemic stroke therapy as it recovers neuronal damage via multiple pathways.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Faisal Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Attia M. Gabr
- Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Physiology, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed El dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
2
|
Pang Y, Xiong J, Wu Y, Ding W. A review on recent advances on nobiletin in central and peripheral nervous system diseases. Eur J Med Res 2023; 28:485. [PMID: 37932838 PMCID: PMC10626649 DOI: 10.1186/s40001-023-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
In recent years, the role of nobiletin in neuronal disorders has received extensive attention. However, the study of nobiletin in the peripheral nervous system is limited. Nobiletin, as a compound with high fat solubility, high bioavailability and low toxicity, has been extensively studied. Accumulating scientific evidence has shown that nobiletin has a variety of biological functions in the nervous system, such as inhibiting the expression of inflammatory factors, reducing the neurotoxic response, improving the antioxidant capacity, promoting the survival of nerve cells, promoting axon growth, reducing blood‒brain barrier permeability, reducing brain oedema, promoting cAMP response element binding protein expression, improving memory, and promoting mild depolarization of nerve cell mitochondria to improve antioxidative stress capacity. Accumulating studies have shown that nobiletin also protects enteric nervous system, spinal cord and sciatic nerve. To explore the new therapeutic potential of nobiletin in the nervous system, recent and relevant research progress is reviewed in this article. This will provide a new research idea for nobiletin in the nervous system.
Collapse
Affiliation(s)
- Yueshan Pang
- Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Juan Xiong
- Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - You Wu
- Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
3
|
Qiu M, Wei W, Zhang J, Wang H, Bai Y, Guo DA. A Scientometric Study to a Critical Review on Promising Anticancer and Neuroprotective Compounds: Citrus Flavonoids. Antioxidants (Basel) 2023; 12:antiox12030669. [PMID: 36978916 PMCID: PMC10045114 DOI: 10.3390/antiox12030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Flavonoids derived from citrus plants are favored by phytomedicinal researchers due to their wide range of biological activities, and relevant studies have been sustained for 67 years (since the first paper published in 1955). In terms of a scientometric and critical review, the scientometrics of related papers, chemical structures, and pharmacological action of citrus flavonoids were comprehensively summarized. The modern pharmacological effects of citrus flavonoids are primarily focused on their anticancer activities (such as breast cancer, gastric cancer, lung cancer, and liver cancer), neuroprotective effects (such as anti-Alzheimer’s disease, Parkinson’s disease), and metabolic diseases. Furthermore, the therapeutic mechanism of cancers (including inducing apoptosis, inhibiting cell proliferation, and inhibiting cancer metastasis), neuroprotective effects (including antioxidant and anti-inflammatory), and metabolic diseases (such as non-alcoholic fatty liver disease, type 2 diabetes mellitus) were summarized and discussed. We anticipate that this review could provide an essential reference for anti-cancer and neuroprotective research of citrus flavonoids and provide researchers with a comprehensive understanding of citrus flavonoids.
Collapse
Affiliation(s)
- Mingyang Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
4
|
Wang CC, Kong JY, Li XY, Yang JY, Xue CH, Yanagita T, Wang YM. Antarctic krill oil exhibited synergistic effects with nobiletin and theanine in ameliorating memory and cognitive deficiency in SAMP8 mice: Applying the perspective of the sea–land combination to retard brain aging. Front Aging Neurosci 2022; 14:964077. [PMID: 36185487 PMCID: PMC9523088 DOI: 10.3389/fnagi.2022.964077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complex pathogenesis of Alzheimer's disease (AD) leads to a limited therapeutic effect; therefore, the combination of multiple bioactive ingredients may be more effective in improving AD due to synergistic effects. Based on the perspective of the sea–land combination, the effects of sea-derived Antarctic krill oil (AKO) combined with land-derived nobiletin (Nob) and L-theanine (The) on memory loss and cognitive deficiency were studied in senescence-accelerated prone 8 mice (SAMP8). The results demonstrated that AKO combined with The significantly increased the number of platform crossings in the Morris water maze test by 1.6-fold, and AKO combined with Nob significantly increased the preference index in a novel object recognition test. AKO exhibited synergistic effects with Nob and The in ameliorating recognition memory and spatial memory deficiency in SAMP8 mice, respectively. Further research of the mechanism indicated that AKO exhibited synergistic effects with Nob in suppressing β-amyloid (Aβ) aggregation, neurofibrillary tangles, and apoptosis and neuroinflammation, while the synergistic effects of AKO and The involved in synaptic plasticity and anti-neuroinflammation, which revealed that the combination was complex, not a mechanical addition. These findings revealed that the sea–land combination may be an effective strategy to treat and alleviate AD.
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing-Ya Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yu-Ming Wang
| |
Collapse
|
5
|
Kong J, Wang C, Duan X, Shi H, Xue C, Wei Z, Huang Q, Zhang T, Wang Y. Dietary Antarctic Krill Oil Enhances the Oral Bioavailability of Nobiletin but Has No Ideal Synergistic Effect on Improving Memory and Cognition Ability in Aβ
1–42
Induced Rats. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing‐Ya Kong
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Cheng‐Cheng Wang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Xue‐Feng Duan
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Hao‐Hao Shi
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Chang‐Hu Xue
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong Province 266237 P. R. China
| | - Zi‐Hao Wei
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Qing‐Rong Huang
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers The State University of New Jersey New Brunswick NJ 08901 USA
| | - Tian‐Tian Zhang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Yu‐Ming Wang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong Province 266237 P. R. China
| |
Collapse
|
6
|
Okuyama S, Yoshimura M, Amakura Y, Nakajima M, Furukawa Y. Activation of Extracellular Signal-Regulated Kinase 2 and cAMP Response Element-Binding Protein in Cultured Neurons by the Macrocyclic Ellagitannin Oenothein B. NEUROSCI 2022; 3:387-394. [PMID: 39483426 PMCID: PMC11523700 DOI: 10.3390/neurosci3030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2024] Open
Abstract
(1) Background: The findings of our recent in vivo study indicated that the oral administration of oenothein B, a unique macrocyclic ellagitannin, activated extracellular signal-regulated kinase (ERK) 2 and cAMP response element-binding protein (CREB) in the mouse brain. A large hydrophilic oenothein B is unable to reach the brain, suggesting that any metabolite(s) of oenothein B might function in the brain. (2) Results: The addition of oenothein B to the culture medium of rat cortical neurons induced the prompt and significant activation of ERK2 and CREB. (3) Conclusions: The activation of ERK2 and CREB is crucial for synaptic transmission and learning/memory formation in the brain. The present results suggest oenothein B exerts neurotrophic/neuroprotective effects in the brain through the modulation of neuronal signaling pathways, if it reaches the brain.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.)
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.)
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| |
Collapse
|
7
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Electroacupuncture Increases the Hippocampal Synaptic Transmission Efficiency and Long-Term Plasticity to Improve Vascular Cognitive Impairment. Mediators Inflamm 2022; 2022:5985143. [PMID: 35784174 PMCID: PMC9246579 DOI: 10.1155/2022/5985143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Studies have shown that electroacupuncture (EA) can effectively improve vascular cognitive impairment (VCI), but its mechanisms have not been clearly elucidated. This study is aimed at investigating the mechanisms underlying the effects of EA treatment on hippocampal synaptic transmission efficiency and plasticity in rats with VCI. Methods. Sprague–Dawley rats were subjected to VCI with bilateral common carotid occlusion (2VO). EA stimulation was applied to Baihui (GV20) and Shenting (GV24) acupoints for 30 min once a day, five times a week, for four weeks. Our study also included nonacupoint groups to confirm the specificity of EA therapy. The Morris water maze (MWM) was used to assess cognitive function. Electrophysiological techniques were used to detect the field characteristics of the hippocampal CA3–CA1 circuit in each group of rats, including input-output (I/O), paired-pulse facilitation ratios (PPR), field excitatory postsynaptic potential (fEPSP), and excitatory postsynaptic current (EPSC). The expression of synapse- and calcium-mediated signal transduction associated proteins was detected through western blotting. Results. The MWM behavioural results showed that EA significantly improved cognitive function in VCI model rats. EA increased the I/O curve of VCI model rats from 20 to 90 μA. No significant differences were observed in hippocampal PPR. The fEPSP of the hippocampal CA3–CA1 circuit was significantly increased after EA treatment compared with that after nonacupuncture treatment. We found that EA led to an increase in the EPSC amplitude and frequency, especially in the decay and rise times. In addition, the protein expression and phosphorylation levels of N-methyl-D-aspartate receptor 2B, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 1, and Ca2+-calmodulin-dependent protein kinase II increased to varying degrees in the hippocampus of VCI model rats. Conclusion. EA at GV20 and GV24 acupoints increased the basic synaptic transmission efficiency and synaptic plasticity of the hippocampal CA3–CA1 circuit, thereby improving learning and memory ability in rats with VCI.
Collapse
|
9
|
A Narrative Review of the Effects of Citrus Peels and Extracts on Human Brain Health and Metabolism. Nutrients 2022; 14:nu14091847. [PMID: 35565814 PMCID: PMC9103913 DOI: 10.3390/nu14091847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
As life expectancy increases, age-associated diseases such as Alzheimer's disease (AD) become a major health problem. The onset of AD involves neurological dysfunction due to amyloid-β accumulation, tau hyperphosphorylation, oxidative stress, and neuroinflammation in the brain. In addition, lifestyle-related diseases-such as dyslipidemia, diabetes, obesity, and vascular dysfunction-increase the risk of developing dementia. The world population ages, prompting the development of new strategies to maintain brain health and prevent the onset of dementia in older and preclinical patients. Citrus fruits are abundant polymethoxylated flavone and flavanone sources. Preclinical studies reported that these compounds have neuroprotective effects in models of dementia such as AD. Interestingly, clinical and epidemiological studies appear to support preclinical evidence and show improved cognitive function and reduced associated disease risk in healthy individuals and/or patients. This review summarizes the recent evidence of the beneficial effects of citrus peels and extracts on human cognition and related functions.
Collapse
|
10
|
Hashimoto M, Matsuzaki K, Maruyama K, Hossain S, Sumiyoshi E, Wakatsuki H, Kato S, Ohno M, Tanabe Y, Kuroda Y, Yamaguchi S, Kajima K, Ohizumi Y, Shido O. Perilla seed oil in combination with the nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: Possible supplement for brain health in the elderly. Food Funct 2022; 13:2768-2781. [DOI: 10.1039/d1fo03508h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perilla (Perilla frutescens) seed oil (PO), rich in α-linolenic acid (ALA), can improve cognitive function in healthy elderly Japanese people. Here, supplements containing either PO alone or PO with nobiletin-rich...
Collapse
|
11
|
Matsuzaki K, Ohizumi Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders. Nutrients 2021; 13:E145. [PMID: 33406641 PMCID: PMC7824236 DOI: 10.3390/nu13010145] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|
12
|
Rafael FD, Isidro VM, Héctor-Gabriel AM, Abraham PO, Yolanda CU, Tania RG, Rosa-Isela GG, Lorena PC, Socorro HM. Berry Supplementation and Their Beneficial Effects on Some Central Nervous System Disorders. BEHAVIORAL PHARMACOLOGY - FROM BASIC TO CLINICAL RESEARCH 2020. [DOI: 10.5772/intechopen.90428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Lin C, Tu C, Ma Y, Ye P, Shao X, Yang Z, Fang Y. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma. Food Sci Nutr 2020; 8:3515-3524. [PMID: 32724614 PMCID: PMC7382131 DOI: 10.1002/fsn3.1634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Nobiletin is a polymethoxylated flavone enriched in Citrus and is used as an important drug in traditional Chinese medicine for various kinds of diseases. Among its multiple functions, it has shown that nobiletin inhibits proliferation of various cancer cells. However, it is unclear whether nobiletin inhibits the growth of oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We explored the antitumor effects of nobiletin in TCA-8113 and CAL-27 oral squamous cells. The Cell Counting Kit-8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the number of cells in the various phases of the cell cycle. PCR and Western blot were applied to determine mRNA and protein expression, respectively. RESULTS Nobiletin inhibited proliferation of TCA-8113 and CAL-27 cells via inducing cell cycle arrest at the G1 phase. In addition, the levels of phosphorylated-PKA and phosphorylated-CREB were reduced in nobiletin-treated TCA-8113 and CAL-27 cells. Importantly, our results showed that nobiletin treatment resulted in impaired mitochondrial function and altered glucose consumption, and pyruvate and lactate production. Lastly, nobiletin was found to inhibit the generation of xenografts in vivo. Interestingly, administration of 50 μmol/L Sp-cAMP, a potent PKA activator, rescued all phenotypes caused by nobiletin. CONCLUSIONS Nobiletin inhibits OSCC cell proliferation in a mitochondria-dependent manner, indicating that it may have a promising role in cancer treatment and attenuation of drug resistance.
Collapse
Affiliation(s)
- Chong‐Xiang Lin
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cheng‐Wei Tu
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ke Ma
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Peng‐Cheng Ye
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xia Shao
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhao‐An Yang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ming Fang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
14
|
Nakajima A, Nemoto K, Ohizumi Y. An evaluation of the genotoxicity and subchronic toxicity of the peel extract of Ponkan cultivar 'Ohta ponkan' (Citrus reticulata Blanco) that is rich in nobiletin and tangeretin with anti-dementia activity. Regul Toxicol Pharmacol 2020; 114:104670. [PMID: 32371103 DOI: 10.1016/j.yrtph.2020.104670] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 11/19/2022]
Abstract
Nobiletin and tangeretin are major components of polymethoxylated flavones in the peels of citrus fruits such as Citrus reticulata. Because nobiletin and tangeretin have attracted attention due to their beneficial health properties, citrus peel extracts, in which they are concentrated, have the potential to serve as a functional food ingredient to prevent diseases. In this study, a series of toxicological studies on the peel extract of Ponkan cultivar 'Ohta ponkan' (Citrus reticulata Blanco), was conducted. No mutagenic activity was observed in a bacterial reverse mutation test, whereas chromosomal aberrations were induced in an in vitro mammalian chromosomal aberration test. No genotoxicity was observed in an in vivo mammalian micronucleus test. In a 90-day study at daily doses of 54, 180, or 540 mg/kg body weight (bw)/day, hyaline droplet nephropathy, which specifically occurs in adult male rats, was observed in males of 540 mg/kg bw/day group. No other adverse effects were observed in the 90-day study. The no adverse effect level in the 90-day study was considered to be 540 mg/kg bw/day for female rats and less than 540 mg/kg bw/day for male rats.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai, Miyagi, 989-3201, Japan.
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai, Miyagi, 989-3201, Japan.
| |
Collapse
|
15
|
Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 2020; 132:109114. [PMID: 32331689 DOI: 10.1016/j.foodres.2020.109114] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Citrus peel (CP) forms around 40-50% of the total fruit mass but is generally thought to be a waste. However, it is a substantial source of naturally occurring health enhancing compounds, particularly phenolic compounds and carotenoids. Phenolic compounds in CP mainly comprise phenolic acids (primarily caffeic, p-coumaric, ferulic and sinapic acid), flavanones (generally naringin and hesperidin) and polymethoxylated flavones (notably nobiletin and tangeretin). It has also been noted that CP's contain more amounts of these compounds than corresponding edible parts of the fruits. Phenolic compounds present in CP act as antioxidants (by either donation of protons or electrons) and protect cells against free radical damage as well as help in reducing the risk of many chronic diseases. Owing to the more abundance of polyphenols in CP's, their antioxidant activity is also higher than other edible fruit parts. Therefore, peels from citrus fruits can be used as sources of functional compounds and preservatives for the development of newer food products, that are not only safe but also have health-promoting activities. The present review provides in-depth knowledge about the phenolic composition, antioxidant potential and health benefits of CP.
Collapse
|
16
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
17
|
Jiang C, Sakakibara E, Lin WJ, Wang J, Pasinetti GM, Salton SR. Grape-derived polyphenols produce antidepressant effects via VGF- and BDNF-dependent mechanisms. Ann N Y Acad Sci 2019; 1455:196-205. [PMID: 31074515 PMCID: PMC6834858 DOI: 10.1111/nyas.14098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that bioactive dietary polyphenol preparation (BDPP) and individual polyphenolic compounds ameliorate stress-induced depression-like behaviors, but the underlying molecular mechanisms are incompletely understood. VGF (non-acronymic) in the dorsal hippocampus (dHc) has been shown to play a role in depression-like behaviors and antidepressant efficacy, and the VGF-derived peptide TLQP-62 (named by the N-terminal 4 amino acids and length) infused into dHc has been shown to have antidepressant efficacy that is BDNF-TrkB dependent. Here, we investigated whether BDPP influences VGF expression in the dHc, and whether dHc VGF is required for BDPP antidepressant efficacy. We found that BDPP produced antidepressant-like effects in naive mice and reversed the depression-like behaviors induced by chronic variable stress. In addition, we found that BDPP had no detectable antidepressant efficacy in floxed mice with prior knockdown in the dHc of either VGF or BDNF, achieved by adeno-associated virus-Cre infusion. Our data indicate that dHc VGF and BDNF expression are required for the antidepressant actions of BDPP, and therefore suggest that a VGF(TLQP-62)-BDNF-TrkB autoregulatory feedback loop could play a role in the regulation of BDPP antidepressant efficacy, much as it has been suggested to function in the antidepressant efficacies of ketamine and TLQP-62.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neuroscience, Icahn School of Sinai, New York, NY 10029, USA
| | - Emmy Sakakibara
- Department of Neuroscience, Icahn School of Sinai, New York, NY 10029, USA
| | - Wei-Jye Lin
- Department of Neuroscience, Icahn School of Sinai, New York, NY 10029, USA
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Schoofof Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou,Guangdong, China
| | - Jun Wang
- Department of Neurology, Icahn School of Sinai, New York, NY 10029, USA
| | | | - Stephen R. Salton
- Department of Neuroscience, Icahn School of Sinai, New York, NY 10029, USA
- Department of Geriatrics, Icahn School of Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Goan YG, Wu WT, Liu CI, Neoh CA, Wu YJ. Involvement of Mitochondrial Dysfunction, Endoplasmic Reticulum Stress, and the PI3K/AKT/mTOR Pathway in Nobiletin-Induced Apoptosis of Human Bladder Cancer Cells. Molecules 2019; 24:molecules24162881. [PMID: 31398899 PMCID: PMC6719163 DOI: 10.3390/molecules24162881] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Nobiletin (NOB) is a polymethoxylated flavonoid isolated from citrus fruit peel that has been shown to possess anti-tumor, antithrombotic, antifungal, anti-inflammatory and anti-atherosclerotic activities. The main purpose of this study was to explore the potential of using NOB to induce apoptosis in human bladder cancer cells and study the underlying mechanism. Using an MTT assay, agarose gel electrophoresis, a wound-healing assay, flow cytometry, and western blot analysis, this study investigated the signaling pathways involved in NOB-induced apoptosis in BFTC human bladder cancer cells. Our results showed that NOB at concentrations of 60, 80, and 100 μM inhibited cell growth by 42%, 62%, and 80%, respectively. Cells treated with 60 μM NOB demonstrated increased DNA fragmentation, and flow cytometry analysis confirmed that the treatment caused late apoptotic cell death. Western blot analysis showed that mitochondrial dysfunction occurred in NOB-treated BFTC cells, leading to cytochrome C release into cytosol, activation of pro-apoptotic proteins (caspase-3, caspase-9, Bad, and Bax), and inhibition of anti-apoptotic proteins (Mcl-1, Bcl-xl, and Bcl-2). NOB-induced apoptosis was also mediated by regulating endoplasmic reticulum stress via the PERK/elF2α/ATF4/CHOP pathway, and downregulating the PI3K/AKT/mTOR pathway. Our results suggested that the cytotoxic and apoptotic effects of NOB on bladder cancer cells are associated with endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yih-Gang Goan
- Department of Surgery, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 91202, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Wen-Tung Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Chih-I Liu
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Choo-Aun Neoh
- Department of Research, Pingtung Christian Hospital, Pingtung 90059, Taiwan.
| | - Yu-Jen Wu
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan.
- Department of Biological Technology, Meiho University, Pingtung 91202, Taiwan.
- Yu Jun Biotechnology Co., Ltd., Kaohsiung 81363, Taiwan.
| |
Collapse
|
19
|
Potential Benefits of Nobiletin, A Citrus Flavonoid, against Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20143380. [PMID: 31295812 PMCID: PMC6678479 DOI: 10.3390/ijms20143380] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), which is characterized by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles, accompanied by neurodegeneration, is the most common form of age-related neurodegenerative disease. Parkinson’s disease (PD) is the second most common neurodegenerative disease after AD, and is characterized by early prominent loss of dopaminergic neurons in the substantia nigra pars compacta. As currently available treatments are not able to significantly alter the progression of these diseases, successful therapeutic and preventive interventions are strongly needed. In the course of our survey of substances from natural resources having anti-dementia and neuroprotective activity, we found nobiletin, a polymethoxylated flavone from the peel of Citrus depressa. Nobiletin improved cognitive deficits and the pathological features of AD, such as Aβ pathology, hyperphosphorylation of tau, and oxidative stress, in animal models of AD. In addition, nobiletin improved motor and cognitive deficits in PD animal models. These observations suggest that nobiletin has the potential to become a novel drug for the treatment and prevention of neurodegenerative diseases such as AD and PD.
Collapse
|
20
|
Zhang F, Huang G, Zhu X. Effect of different charges of modified electroconvulsive seizure on the cognitive behavior in stressed rats: Effects of GluR1 phosphorylation and CaMKIIα activity. Exp Ther Med 2019; 17:748-758. [PMID: 30651859 PMCID: PMC6307485 DOI: 10.3892/etm.2018.7022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an efficient therapy for major depression and modern ECT requires anesthesia to enhance safety. However, the commonly used anesthetic, propofol, may weaken the treatment efficacy. A recent study confirmed that ketamine rapidly reduced the symptoms of depression in affected patients. A previous study found that electroconvulsive seizure (ECS), the animal model for ECT, under anesthesia of low-dose ketamine combined with propofol could enhance the antidepressant efficacy and improve the cognitive performance. The present study aimed to investigate the responses to different charges (0, 60, 120, 180 or 240 mC) of ECS under compound anesthetics, ketamine combined with propofol, in stressed rats and the underlying mechanisms to aid in optimization of treatment regimens. The results indicated that ECS exhibited an improved antidepressant effects at 120 mC compared with 60 mC, however, no significant differences in antidepressant effects were identified among the 120, 180 and 240 mC groups. Furthermore, rats subjected to ECS at 120 mC exhibited the best cognitive performance. The phosphorylation levels of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) at Thr286, glutamate receptor 1 (GluR1) at Ser831 and cAMP-response element-binding protein (CREB) at the Ser133 were higher in the 120-mC group compared with all other groups. These results indicated that the ECS at medium intensity (120 mC) with administration of compound anesthetics may exert an improved therapeutic effect on depression compared with other intensities (0, 60, 180 and 240 mC). The results also suggested that the improvement in cognitive function in stressed rats may be attributed to the phosphorylation of CaMKIIα (Thr286), GluR1 (Ser831) and CREB (Ser133).
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, The People's Hospital of Jianyang City, Chengdu, Sichuan 610000, P.R. China
| | - Guihua Huang
- Department of Anesthesiology, The First People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| | - Xianlin Zhu
- Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
21
|
Tatsuzaki J, Ohwada T, Otani Y, Inagi R, Ishikawa T. A simple and effective preparation of quercetin pentamethyl ether from quercetin. Beilstein J Org Chem 2018; 14:3112-3121. [PMID: 30643589 PMCID: PMC6317434 DOI: 10.3762/bjoc.14.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Among the five hydroxy (OH) groups of quercetin (3,5,7,3',4'-pentahydroxyflavone), the OH group at 5 position is the most resistant to methylation due to its strong intramolecular hydrogen bonding with the carbonyl group at 4 position. Thus, it is generally difficult to synthesize the pentamethyl ether efficiently by conventional methylation. Here, we describe a simple and effective per-O-methylation of quercetin with dimethyl sulfate in potassium (or sodium) hydroxide/dimethyl sulfoxide at room temperature for about 2 hours, affording quercetin pentamethyl ether (QPE) quantitatively as a single product. When methyl iodide was used in place of dimethyl sulfate, the C-methylation product 6-methylquercetin pentamethyl ether was also formed. A computational study provided a rationale for the experimental results.
Collapse
Affiliation(s)
- Jin Tatsuzaki
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Reiko Inagi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Tsutomu Ishikawa
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan
| |
Collapse
|
22
|
Kawahata I, Xu H, Takahashi M, Murata K, Han W, Yamaguchi Y, Fujii A, Yamaguchi K, Yamakuni T. Royal jelly coordinately enhances hippocampal neuronal expression of somatostatin and neprilysin genes conferring neuronal protection against toxic soluble amyloid-β oligomers implicated in Alzheimer’s disease pathogenesis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ, Darvin P, Park YM, Yang YM. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis. Nutrients 2018; 10:nu10060772. [PMID: 29914089 PMCID: PMC6024609 DOI: 10.3390/nu10060772] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFβ1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Doh Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Inha University College of Medicine, 27 Inhang-Ro, Jung Gu, Incheon 400-103, Korea.
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Korea.
| | - Hye Jee Kim
- King's College London GKT School of Medical Education, London SE1 1UL, UK.
| | - Pramod Darvin
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825 Doha, Qatar.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
24
|
Flavonoids as Therapeutic Agents in Alzheimer's and Parkinson's Diseases: A Systematic Review of Preclinical Evidences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7043213. [PMID: 29861833 PMCID: PMC5971291 DOI: 10.1155/2018/7043213] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
Alzheimer's and Parkinson's diseases are considered the most common neurodegenerative disorders, representing a major focus of neuroscience research to understanding the cellular alterations and pathophysiological mechanisms involved. Several natural products, including flavonoids, are considered able to cross the blood-brain barrier and are known for their central nervous system-related activity. Therefore, studies are being conducted with these chemical constituents to analyze their activities in slowing down the progression of neurodegenerative diseases. The present systematic review summarizes the pharmacological effects of flavonoids in animal models for Alzheimer's and Parkinson's diseases. A PRISMA model for systematic review was utilized for this search. The research was conducted in the following databases: PubMed, Web of Science, BIREME, and Science Direct. Based on the inclusion criteria, 31 articles were selected and discussed in this review. The studies listed revealed that the main targets of action for Alzheimer's disease therapy were reduction of reactive oxygen species and amyloid beta-protein production, while for Parkinson's disease reduction of the cellular oxidative potential and the activation of mechanisms of neuronal death. Results showed that a variety of flavonoids is being studied and can be promising for the development of new drugs to treat neurodegenerative diseases. Moreover, it was possible to verify that there is a lack of translational research and clinical evidence of these promising compounds.
Collapse
|
25
|
Kimura J, Shimizu K, Kajima K, Yokosuka A, Mimaki Y, Oku N, Ohizumi Y. Nobiletin Reduces Intracellular and Extracellular β-Amyloid in iPS Cell-Derived Alzheimer’s Disease Model Neurons. Biol Pharm Bull 2018; 41:451-457. [DOI: 10.1248/bpb.b17-00364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Junko Kimura
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kosuke Shimizu
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasushi Ohizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
- Kansei Fukushi Research Institute, Tohoku Fukushi University
| |
Collapse
|
26
|
Gao Z, Gao W, Zeng SL, Li P, Liu EH. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
YARIM GF, ÇENESİZ M, YARIM M, KAZAK F. Nöroprotektif Etkili Bir Flavonoid: Nobiletin. ACTA ACUST UNITED AC 2017. [DOI: 10.31196/huvfd.325789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Kawahata I, Suzuki T, Rico EG, Kusano S, Tamura H, Mimaki Y, Yamakuni T. Fermented Citrus reticulata (ponkan) fruit squeezed draff that contains a large amount of 4'-demethylnobiletin prevents MK801-induced memory impairment. J Nat Med 2017; 71:617-631. [PMID: 28488113 DOI: 10.1007/s11418-017-1091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
A previous study reported biotransformation of a citrus peel polymethoxyflavone, nobiletin, by Aspergillus enabling production of 4'-demethylnobiletin, and the product's antimutagenic activity. However, the effects of fermented citrus peel on the basal forebrain-hippocampal system remain unidentified. Citrus reticulata (ponkan) fruit squeezed draffs are generated as mass waste in beverage factories. In this study using PC12D cells and cultured central nervous system neurons, we therefore examined whether Aspergillus kawachii-fermented citrus fruit squeezed draff could affect cAMP response element (CRE)- and choline acetyltransferase gene (ChAT) promoter region-mediated transcriptional activities relevant to memory formation and cholinergic function. Our current fermentation yielded approximately 80% nobiletin bioconversion, and a sample of hot-water extract of the fermented fruit squeezed draff was stronger than that of the unfermented one in facilitating CRE-mediated transcription in cultured hippocampal neurons as well as in PC12D cells. A sample of 0-80% ethanol-eluted fraction of Diaion HP-20 column-adsorbed components of the preparation obtained by the fermentation concentration-dependently and more strongly facilitated CRE-mediated transcription than did the fraction of the unfermented one in both cell culture systems. In a separate study, this polymethoxyflavone-rich fraction of the fermented fruit squeezed draff showed a potent ability to facilitate CRE-mediated and ChAT transcription in a co-culture of hippocampal neurons and basal forebrain neurons. Repeated oral gavage of mice with the fermented fraction sample prevented MK801-impaired memory formation in mice. These findings suggest that the 4'-demethylnobiletin-rich fraction prepared from the Aspergillus-fermented ponkan squeezed draff has a potential anti-dementia effect.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Tatsuya Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Evelyn Gutiérrez Rico
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shuichi Kusano
- Fuji Sangyo Co., Ltd. Research and Development Center, 1301 Tamura-cho, Marugame, 763-0071, Japan
| | - Hiroshi Tamura
- Fuji Sangyo Co., Ltd. Research and Development Center, 1301 Tamura-cho, Marugame, 763-0071, Japan
| | - Yoshihiro Mimaki
- Laboratory of Medicinal Plant Science, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, 192-0392, Japan
| | - Tohru Yamakuni
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
29
|
Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, Song KD, Park YM, Yang YM. Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER⁺ Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18050935. [PMID: 28468300 PMCID: PMC5454848 DOI: 10.3390/ijms18050935] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to play a role in tumor angiogenesis. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis which interacts with Src. Paxillin (PXN) acts as a downstream target for both FAK and STAT3. The main goal of this study was to assess inhibition of tumor angiogenesis by nobiletin in estrogen receptor positive (ER+) breast cancer cells via Src, FAK, and STAT3-mediated signaling through PXN. Treatment with nobiletin in MCF-7 and T47D breast cancer cells inhibited angiogenesis markers, based on western blotting and RT-PCR. Validation of in vitro angiogenesis in the human umbilical vein endothelial cells (HUVEC) endothelial cell line proved the anti-angiogenic activity of nobiletin. Electrophoretic mobility shift assay and the ChIP assay showed that nobiletin inhibits STAT3/DNA binding activity and STAT3 binding to a novel binding site of the PXN gene promoter. We also investigated the migration and invasive ability of nobiletin in ER+ cells. Nobiletin inhibited tumor angiogenesis by regulating Src, FAK, and STAT3 signaling through PXN in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
30
|
Gloston GF, Yoo SH, Chen ZJ. Clock-Enhancing Small Molecules and Potential Applications in Chronic Diseases and Aging. Front Neurol 2017; 8:100. [PMID: 28360884 PMCID: PMC5350099 DOI: 10.3389/fneur.2017.00100] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
Normal physiological functions require a robust biological timer called the circadian clock. When clocks are dysregulated, misaligned, or dampened, pathological consequences ensue, leading to chronic diseases and accelerated aging. An emerging research area is the development of clock-targeting compounds that may serve as drug candidates to correct dysregulated rhythms and hence mitigate disease symptoms and age-related decline. In this review, we first present a concise view of the circadian oscillator, physiological networks, and regulatory mechanisms of circadian amplitude. Given a close association of circadian amplitude dampening and disease progression, clock-enhancing small molecules (CEMs) are of particular interest as candidate chronotherapeutics. A recent proof-of-principle study illustrated that the natural polymethoxylated flavonoid nobiletin directly targets the circadian oscillator and elicits robust metabolic improvements in mice. We describe mood disorders and aging as potential therapeutic targets of CEMs. Future studies of CEMs will shed important insight into the regulation and disease relevance of circadian clocks.
Collapse
Affiliation(s)
- Gabrielle F Gloston
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, TX , USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, TX , USA
| | - Zheng Jake Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, TX , USA
| |
Collapse
|
31
|
Sharikadze N, Jojua N, Sepashvili M, Zhuravliova E, Mikeladze DG. Mitochondrial Target of Nobiletin's Action. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nobiletin is an O-methylated flavonoid found in citrus peels that have anticancer, antiviral, neuroprotective, anti-inflammatory activities and depending on the cell types exhibits both pro- or anti-apoptotic properties. We have found that nobiletin decreases oxygen consumption by bovine brain isolated mitochondria in the presence of glutamate and malate and increases in the presence of succinate. In parallel, nobiletin increases NADH oxidation, a-ketoglutarate dehydrogenase activities and through matrix substrate-level phosphorylation elevates the a-ketoglutarate-dependent production of ATP. In addition, nobiletin reduces the production of peroxides in the presence of complex I substrates and slightly enhances succinate-driven H2O2 formation. Besides, nobiletin induces transient elevation of membrane potential followed by mild depolarization. Affinity purified nobiletin binding proteins revealed one major anti-NDUFV1 positive protein with 52kD and NADH: ubiquinone oxidoreductase activity. This fraction can produce peroxide that is inhibited by nobiletin. We propose that nobiletin may act as a mild “uncoupler”, which through activation of a-ketoglutarate dehydrogenase (a-KGDH)-complex and acceleration of matrix substrate-level phosphorylation maintains membrane potential at an abnormal level. This switch in mitochondrial metabolism could elevate succinate-driven oxygen consumption that may underlay in both pro- and anti-apoptotic effects of nobiletin.
Collapse
Affiliation(s)
- Nino Sharikadze
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Natia Jojua
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Maia Sepashvili
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Elene Zhuravliova
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia
| | - David G Mikeladze
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia
| |
Collapse
|
32
|
Kang J, Shin JW, Kim YR, Swanberg KM, Kim Y, Bae JR, Kim YK, Lee J, Kim SY, Sohn NW, Maeng S. Nobiletin improves emotional and novelty recognition memory but not spatial referential memory. J Nat Med 2016; 71:181-189. [DOI: 10.1007/s11418-016-1047-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
|
33
|
Ohizumi Y. [A new strategy for preventive and functional therapeutic methods for dementia--approach using natural products]. YAKUGAKU ZASSHI 2016; 135:449-64. [PMID: 25759053 DOI: 10.1248/yakushi.14-00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) has become a serious social problem in Japan. However, effective preventive and fundamental therapeutic methods for AD have not yet been developed. Using a new strategy in the course of our survey of numerous natural resouces having neurotrophic activity, we isolated a variety of active constituents and proved their pharmacological properties. As a result, we successfully found nobiletin, a compound with anti-dementia activity that comes from citrus peels. Also, we have demonstrated that nobiletin ameliorates cognitive impairment in several dementia model animals such as chronically amyloid β(Aβ) infused rats, amyloid precursor protein transgenic (APPTg) mice, olfactory-bulbectomized (OBX) mice, N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801)-treated mice, senescence-accelated mice and bilaterial common carotid arteries occlusion mice. In a APPTg mouse of AD, nobiletin greatly improved memory impairment, and this was accompanied by a marked decrease in Aβ deposition. Also, in OBX mice memory impairment was markedly recoverd by nobiletin, accompanied by improvement of a decrease indensity of cholinergic neurons. Interestingly, nobiletin improves age-related congnitive impairment and decreased hyperphosphorylation of tau as well as oxidative stress in senescence-accelerated mice. In cultured cells, nobiletin reversed the Aβ-induced inhibition of glutamate-induced increases in cAMP response element binding protein (CREB) phosphorylation and modulated gen expression of thioredoxin-interacting protein and NMDA resceptor subunits. These results suggest that nobiletin prevents memory impairment and exhibits a protecting action against neurodgeneration in AD model animals. Nobiletin and citrus peels thus have potential as functional foods for prevention of dementia.
Collapse
Affiliation(s)
- Yasushi Ohizumi
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Graduate School of Engineering, Tohoku University; 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579; Faculty of Pharmaceutical Sciences, University of Shizuoka; 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Kansei Research Institute, Tohoku Fukushi University; 1-19-1 Kunimi, Aoba-ku, Sendai 989-3201, Japan; Yokohama College of Pharmacy; 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
34
|
Banerjee D, Kayal U, Maiti G. An efficient oxidative conversion of 2-aryl-2H-chromenes to the corresponding flavones by tert-butylhydroperoxide and copper bromide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
A Potential Alternative against Neurodegenerative Diseases: Phytodrugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8378613. [PMID: 26881043 PMCID: PMC4736801 DOI: 10.1155/2016/8378613] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability.
Collapse
|
36
|
Iwai T, Jin K, Ohnuki T, Sasaki-Hamada S, Nakamura M, Saitoh A, Sugiyama A, Ikeda M, Tanabe M, Oka JI. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice. Neuropeptides 2015; 49:7-14. [PMID: 25481797 DOI: 10.1016/j.npep.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/18/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022]
Abstract
We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan; Department of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazushi Jin
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomoko Ohnuki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Minami Nakamura
- Department of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Azusa Sugiyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Masaatsu Ikeda
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mitsuo Tanabe
- Department of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
37
|
Nakajima A, Ohizumi Y, Yamada K. Anti-dementia Activity of Nobiletin, a Citrus Flavonoid: A Review of Animal Studies. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2014; 12:75-82. [PMID: 25191498 PMCID: PMC4153867 DOI: 10.9758/cpn.2014.12.2.75] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/23/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia among the elderly, is characterized by the progressive decline of cognitive function and has a detrimental impact worldwide. Despite intensive laboratory and clinical research over the last three decades, pharmacological options for the prevention and effective long-term treatment of AD are not currently available. Consequently, successful therapeutic and preventive treatments for AD are needed. When researching materials from natural resources having anti-dementia drug activity, we identified nobiletin, a polymethoxylated flavone from the peel of Citrus depressa. Nobiletin exhibited memory-improving effects in various animal models of dementia and exerted a wide range of beneficial effects against pathological features of AD including amyloid-β (Aβ) pathology, tau hyperphosphorylation, oxidative stress, cholinergic neurodegeneration and dysfunction of synaptic plasticity-related signaling, suggesting this natural compound could become a novel drug for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasushi Ohizumi
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan. ; Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Sendai, Japan. ; Laboratory of Kampo Medicines, Yokohama College of Pharmacy, Yokohama, Japan. ; Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
38
|
Xu SL, Zhu KY, Bi CWC, Yan L, Men SWX, Dong TTX, Tsim KWK. Flavonoids, derived from traditional Chinese medicines, show roles in the differentiation of neurons: possible targets in developing health food products. ACTA ACUST UNITED AC 2014; 99:292-9. [PMID: 24339039 DOI: 10.1002/bdrc.21054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
Abstract
Flavonoids, a family of phenolic compounds, are distributed in a variety of fruits, vegetables, tea, and wine. More importantly, many flavonoids are served as the active ingredients in traditional Chinese herbal medicines, which in general do not have side effects. Several lines of evidence support that flavonoids have impacts on many aspects of human health, including anti-tumor, anti-oxidation, and anti-inflammation. Recently, there is significant attention focused on the neuronal beneficial effects of flavonoids, including the promotion of nervous system development, neuroprotection against neurotoxin stress, as well as the promotion of memory, learning, and cognitive functions. Here, the activities of flavonoids on the development of nervous system are being summarized and discussed. The flavonoids from diverse herbal medicines have significant effects in different developmental stages of nervous systems, including neuronal stem cell differentiation, neurite outgrowth, and neuronal plasticity. These findings imply that flavonoids are potential candidates for the development of health supplements in preventing birth defects and neuronal diseases.
Collapse
Affiliation(s)
- Sherry L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Spectroscopy and Molecular Docking Study on the Interaction Behavior Between Nobiletin and Pepsin. J Fluoresc 2014; 24:1031-40. [DOI: 10.1007/s10895-014-1379-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/19/2014] [Indexed: 11/26/2022]
|
40
|
Yoshida M, Saito K, Fujino Y, Doi T. A concise total synthesis of biologically active frutinones via tributylphosphine-catalyzed tandem acyl transfer-cyclization. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Okuyama S, Morita M, Miyoshi K, Nishigawa Y, Kaji M, Sawamoto A, Terugo T, Toyoda N, Makihata N, Amakura Y, Yoshimura M, Nakajima M, Furukawa Y. 3,5,6,7,8,3′,4′-Heptamethoxyflavone, a citrus flavonoid, on protection against memory impairment and neuronal cell death in a global cerebral ischemia mouse model. Neurochem Int 2014; 70:30-8. [DOI: 10.1016/j.neuint.2014.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/22/2014] [Accepted: 03/08/2014] [Indexed: 12/31/2022]
|
42
|
Yasuda N, Ishii T, Oyama D, Fukuta T, Agato Y, Sato A, Shimizu K, Asai T, Asakawa T, Kan T, Yamada S, Ohizumi Y, Oku N. Neuroprotective effect of nobiletin on cerebral ischemia–reperfusion injury in transient middle cerebral artery-occluded rats. Brain Res 2014; 1559:46-54. [DOI: 10.1016/j.brainres.2014.02.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
|
43
|
Jojua N, Sharikadze N, Zhuravliova E, Zaalishvili E, Mikeladze DG. Nobiletin restores impaired hippocampal mitochondrial bioenergetics in hypothyroidism through activation of matrix substrate-level phosphorylation. Nutr Neurosci 2014; 18:225-31. [PMID: 24627959 DOI: 10.1179/1476830514y.0000000120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Evaluation of the effect of citrus flavonoid - nobiletin on the bioenergetics of synaptic and non-synaptic mitochondria in the hippocampus of hypothyroid rats. METHODS Male Wistar rats were divided into hypothyroid (methimazole-treated), nobiletin supplemented hypothyroid, thyroxine-treated hypothyroid, and euthyroid (control) groups. Synaptic and non-synaptic (cell) mitochondria were isolated from hippocampus. Oligomycin-sensitive, oligomycin-insensitive, α-ketoglutarate dehydrogenase-dependent synthesis of adenosine triphosphate (ATP), succinate dehydrogenase, and hexokinase activities were determined luminometrically and spectrophotometrically, respectively. RESULTS Decreased synthesis of oligomycin-sensitive and oligomycin-insensitive ATP in hypothyroid rat hippocampus was observed in synaptic and non-synaptic mitochondria. Supplementation of hypothyroid rats with nobiletin increases oligomycin-insensitive and α-ketoglutarate-dependent production of ATP in both types of mitochondria. The activity of succinate dehydrogenase in non-synaptic mitochondria and the activities of hexokinase in both types of mitochondria were normalized in nobiletin-treated hypothyroid rats. DISCUSSION Nobiletin restores reduced mitochondrial metabolism in hypothyroid rat hippocampus through acceleration of matrix substrate-level phosphorylation that may be important for the prevention of hypometabolic complications in neurological disorders.
Collapse
|
44
|
Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice. Neuroscience 2014; 259:126-41. [DOI: 10.1016/j.neuroscience.2013.11.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023]
|
45
|
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12:982-95. [PMID: 23751484 PMCID: PMC3834216 DOI: 10.1016/j.arr.2013.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022]
Abstract
Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca(2+) dyshomeostasis, through elevation of intracellular Ca(2+), and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca(2+) and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca(2+) dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca(2+) channels in neurons, leading to Ca(2+) dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca(2+) dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes.
Collapse
Affiliation(s)
- Diana M Sama
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
46
|
Cassani J, Araujo AGE, Martínez-Vázquez M, Manjarrez N, Moreno J, Estrada-Reyes R. Anxiolytic-like and antinociceptive effects of 2(S)-neoponcirin in mice. Molecules 2013; 18:7584-99. [PMID: 23812250 PMCID: PMC6269808 DOI: 10.3390/molecules18077584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 11/29/2022] Open
Abstract
Study aims: 2(S)-neopincirin (NEO) is a constituent from of Clinopodium mexicanum, which is used in traditional Mexican herbal medicine for its tranquilizing and analgesic properties. This study investigated the anxiolytic-like, sedative and antinociceptive effects of NEO in several mice models. Material and methods: The anxiolytic-like effect was evaluated in the hole-board (HBT) and Open Field Tests (OFT); sedative effect was evaluated in sleeping time induced by sodium pentobarbital, and its antinociceptive actions were measured in the hot plate test. To evaluate if the GABA receptor could be involved in the anxiolytic-like effect produced by NEO, in independent experiments, the effects produced by co-administration of NEO plus muscimol (MUS) and NEO plus Pitrotoxin (PTX) were evaluated in the HBT. Results: NEO was isolated from Clinopodium mexicanum leaves. The NMR, MS and optic rotation data helped establish its identity as (2S)-5-hydroxy-4′-methoxyflavanone-7-O-{β-glucopyranosyl-(1→6)-β-rhamnoside}. NEO showed an anxiolytic-like effect and was able to counter the nociception induced by a thermal stimulus in a dose-dependent manner. PTX blocked the anxiolytic-like effect of NEO, while MUS was able to enhance it. Conclusions: The findings of present work demonstrated that NEO possesses anxiolytic-like and antinociceptive effects in mice. Such effects are not associated with changes in the locomotor activity. These results supported the notion that anxiolytic-like effect of NEO involves the participation of GABAergic system.
Collapse
Affiliation(s)
- Julia Cassani
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico D.F. C.P. 04960, Mexico
| | - Anna G. Escalona Araujo
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, Mexico D.F, 14370, Mexico
| | - Mariano Martínez-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Coyoacan, Mexico D.F. 04510, Mexico
| | - Norberto Manjarrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico D.F. C.P. 04960, Mexico
| | - Julia Moreno
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, Mexico D.F, 14370, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, Mexico D.F, 14370, Mexico
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +52-55-4060-5080; Fax: +52-55-5655-9980
| |
Collapse
|
47
|
Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 2013; 22:863-80. [PMID: 23642183 DOI: 10.1517/13543784.2013.794783] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Natural polyphenols, the non-essential micronutrients, found in array of plant products, are known to affect various physiological and biochemical functions in the body. Studies have shown the protective effect of these polyphenols in different neurological and mental disorders. These polyphenols modulate monoaminergic neurotransmission in the brain and thus possess antidepressant-like activity at least in animal models of depression. AREAS COVERED The present review discusses the use of these natural polyphenols in the treatment of major depression. The review article discusses the antidepressant potential of some important polyphenols such as amentoflavone, apigenin, chlorogenic acid, curcumin, ferulic acid, hesperidin, rutin, quercetin, naringenin, resveratrol, ellagic acid, nobiletin and proanthocyanidins. The mechanism of action of these polyphenols in the treatment of major depression is also discussed in detail. EXPERT OPINION There is an exciting prospect in the discovery of natural polyphenols as therapeutic agents in the treatment of major depression.
Collapse
Affiliation(s)
- Lokesh Pathak
- Gujarat Forensic Sciences University, Institute of Research & Development, DFS Headquarters, Sector 18-A, Gandhinagar, Gujarat-382007, India
| | | | | |
Collapse
|
48
|
Potent activity of nobiletin-rich Citrus reticulata peel extract to facilitate cAMP/PKA/ERK/CREB signaling associated with learning and memory in cultured hippocampal neurons: identification of the substances responsible for the pharmacological action. J Neural Transm (Vienna) 2013; 120:1397-409. [PMID: 23588349 DOI: 10.1007/s00702-013-1025-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/04/2013] [Indexed: 10/27/2022]
Abstract
cAMP/PKA/ERK/CREB signaling linked to CRE-mediated transcription is crucial for learning and memory. We originally found nobiletin as a natural compound that stimulates this intracellular signaling and exhibits anti-dementia action in animals. Citrus reticulata or C. unshiu peels are employed as "chinpi" and include a small amount of nobiletin. We here provide the first evidence for beneficial pharmacological actions on the cAMP/PKA/ERK/CREB cascade of extracts from nobiletin-rich C.reticulata peels designated as Nchinpi, the nobiletin content of which was 0.83 ± 0.13% of the dry weight or 16-fold higher than that of standard chinpi extracts. Nchinpi extracts potently facilitated CRE-mediated transcription in cultured hippocampal neurons, whereas the standard chinpi extracts showed no such activity. Also, the Nchinpi extract, but not the standard chinpi extract, stimulated PKA/ERK/CREB signaling. Interestingly, treatment with the Nchinpi extract at the concentration corresponding to approximately 5 μM nobiletin more potently facilitated CRE-mediated transcriptional activity than did 30 μM nobiletin alone. Consistently, sinensetin, tangeretin, 6-demethoxynobiletin, and 6-demethoxytangeretin were also identified as bioactive substances in Nchinpi that facilitated the CRE-mediated transcription. Purified sinensetin enhanced the transcription to a greater degree than nobiletin. Furthermore, samples reconstituted with the four purified compounds and nobiletin in the ratio of each constituent's content in the extract showed activity almost equal to that of the Nchinpi extract to stimulate CRE-mediated transcription. These findings suggest that above four compounds and nobiletin in the Nchinpi extract mainly cooperated to facilitate potently CRE-mediated transcription linked to the upstream cAMP/PKA/ERK/CREB pathway in hippocampal neurons.
Collapse
|
49
|
Nemoto K, Ikeda A, Yoshida C, Kimura J, Mori J, Fujiwara H, Yokosuka A, Mimaki Y, Ohizumi Y, Degawa M. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines. Biochem Biophys Res Commun 2013; 431:530-4. [DOI: 10.1016/j.bbrc.2013.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
50
|
Yoshida M, Saito K, Fujino Y, Doi T. A concise synthesis of 3-aroylflavones via Lewis base 9-azajulolidine-catalyzed tandem acyl transfer-cyclization. Chem Commun (Camb) 2012; 48:11796-8. [PMID: 23114707 DOI: 10.1039/c2cc37015h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis base-catalyzed tandem acyl transfer-cyclization of acylated o-alkynoylphenols leading to 3-aroylflavones was developed. 9-Azajulolidine smoothly promoted the reaction of the aroyl derivatives at ambient temperature, and the structure-diversed synthesis of 3-aroylflavones with distinct substituents was achieved in moderate to excellent yields.
Collapse
Affiliation(s)
- Masahito Yoshida
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku Sendai 980-8578, Japan
| | | | | | | |
Collapse
|