1
|
Yan C, Niu Y, Ma L, Tian L, Ma J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med 2022; 20:452. [PMID: 36195876 PMCID: PMC9531858 DOI: 10.1186/s12967-022-03630-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported. METHODS Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC. RESULTS Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells. CONCLUSION In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.
Collapse
Affiliation(s)
- Cheng Yan
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Yandie Niu
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Liukai Ma
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Lifang Tian
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Jiahao Ma
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Tavakkoli M, Aali S, Khaledifar B, Ferns GA, Khazaei M, Fekri K, Arjmand MH. The Potential Association between the Risk of Post-Surgical Adhesion and the Activated Local Angiotensin II Type 1 Receptors: Need for Novel Treatment Strategies. Gastrointest Tumors 2021; 8:107-114. [PMID: 34307308 DOI: 10.1159/000514614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Post-surgical adhesion bands (PSABs) are a common complication after abdominal or pelvic surgeries for different reasons like cancer treatment. Despite improvements in surgical techniques and the administration of drugs or the use of physical barriers, there has only been limited improvement in the frequency of postoperative adhesions. Complications of PSAB are pain, infertility, intestinal obstruction, and increased mortality. The most important molecular mechanisms for the development of PSAB are inflammatory response, oxidative stress, and overexpression of pro-fibrotic molecules such as transforming growth factor β. However, questions remain about the pathogenesis of this problem, for example, the causes for individual differences or why certain tissue sites are more prone to post-surgical adhesions. Summary Addressing the pathological causes of PSAB, the potential role of local angiotensin II/angiotensin II type 1 receptors (AngII/AT1R), may help to prevent this problem. Key Message The objective of this article was to explore the role of the AngII/AT1R axis potential to induce PSAB and the therapeutic potential of angiotensin receptor blockers in the prevention and treatment of PSAB.
Collapse
Affiliation(s)
- Mahmood Tavakkoli
- Kidney Transplantation Complications Research Center, Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Aali
- Department of Urology, Kashani Academic Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Borzoo Khaledifar
- Department of Surgery, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiavash Fekri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
3
|
Dahman LSB, Al-Daghri NM, Alfadda AA, Sallam RM, McTernan PG. Assessment of NF-κB-SN50’s Effect on Adipose Tumor Necrosis Factor-Alpha and Angiotensinogen Secretion and Expression. THE 1ST INTERNATIONAL ELECTRONIC CONFERENCE ON BIOMOLECULES: NATURAL AND BIO-INSPIRED THERAPEUTICS FOR HUMAN DISEASES 2020:15. [DOI: https:/doi.org/10.3390/iecbm2020-08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Affiliation(s)
- Lotfi S. Bin Dahman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Medical Biochemistry Department, College of Medicine and Health Sciences, Hadhramout University, Mukalla 50511, Yemen
| | - Nasser M. Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem M. Sallam
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo 11381, Egypt
| | - Philip G. McTernan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham NG1 8NS, UK
| |
Collapse
|
4
|
The Role of High Fat Diets and Liver Peptidase Activity in the Development of Obesity and Insulin Resistance in Wistar Rats. Nutrients 2020; 12:nu12030636. [PMID: 32121057 PMCID: PMC7146256 DOI: 10.3390/nu12030636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
High-fat diets (HFD) have been widely associated with an increased risk of metabolic disorders and overweight. However, a high intake of sources that are rich in monounsaturated fatty acids has been suggested as a dietary agent that is able to positively influence energy metabolism and vascular function. The main objective of this study was to analyze the role of dietary fats on hepatic peptidases activities and metabolic disorders. Three diets: standard (S), HFD supplemented with virgin olive oil (VOO), and HFD supplemented with butter plus cholesterol (Bch), were administered over six months to male Wistar rats. Plasma and liver samples were collected for clinical biochemistry and aminopeptidase activities (AP) analysis. The expression of inducible nitric oxide synthase (iNOS) was also determined by Western blot in liver samples. The diet supplement with VOO did not induce obesity, in contrast to the Bch group. Though the VOO diet increased the time that was needed to return to the basal levels of plasma glucose, the fasting insulin/glucose ratio and HOMA2-%B index (a homeostasis model index of insulin secretion and valuation of β-cell usefulness (% β-cell secretion)) were improved. An increase of hepatic membrane-bound dipeptidyl-peptidase 4 (DPP4) activity was found only in VOO rats, even if no differences in fasting plasma glucagon-like peptide 1 (GLP-1) were obtained. Both HFDs induced changes in hepatic pyroglutamyl-AP in the soluble fraction, but only the Bch diet increased the soluble tyrosyl-AP. Angiotensinase activities that are implicated in the metabolism of angiotensin II (AngII) to AngIV increased in the VOO diet, which was in agreement with the higher activity of insulin-regulated-AP (IRAP) in this group. Otherwise, the diet that was enriched with butter increased soluble gamma-glutamyl transferase (GGT) and Leucyl-AP, iNOS expression in the liver, and plasma NO. In summary, VOO increased the hepatic activity of AP that were related to glucose metabolism (DPP4, angiotensinases, and IRAP). However, the Bch diet increased activities that are implicated in the control of food intake (Tyrosine-AP), the index of hepatic damage (Leucine-AP and GGT), and the expression of hepatic iNOS and plasma NO. Taken together, these results support that the source of fat in the diet affects several peptidases activities in the liver, which could be related to alterations in feeding behavior and glucose metabolism.
Collapse
|
5
|
Smykiewicz P, Segiet A, Keag M, Żera T. Proinflammatory cytokines and ageing of the cardiovascular-renal system. Mech Ageing Dev 2018; 175:35-45. [DOI: 10.1016/j.mad.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
|
6
|
Sookoian S, Pirola CJ. Nonalcoholic fatty liver disease: Biomarkers support decisions around pharmacological intervention. Hepatology 2017; 65:1417-1419. [PMID: 27737511 DOI: 10.1002/hep.28866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/02/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J Pirola
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Atawia RT, Esmat A, Elsherbiny DA, El-Demerdash E. Telmisartan ameliorates carbon tetrachloride-induced acute hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:359-370. [PMID: 26929000 DOI: 10.1002/tox.22240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 01/18/2023]
Abstract
This study assessed the potential hepatoprotective effect of telmisartan (TLM), a selective angiotensin II type 1 (AT1 ) receptor blocker, on carbon tetrachloride (CCl4 )-induced acute hepatotoxity in rats. Intraperitoneal injection of male Wistar rats with CCl4 1 mL kg-1 , 1:1 mixture with corn oil for 3 days increased serum alanine transaminase, aspartate transaminase, and alkaline phosphatase activities as well as total bilirubin, triglycerides and total cholesterol levels. This is in addition to the disrupted histological architecture in the CCl4 group. Rats receiving CCl4 and co-treated with TLM (3 and 10 mg kg-1 , orally) showed ameliorated serum biochemical and histological changes almost to the control level. Nevertheless, rats treated with TLM (1 mg kg-1 ) didn't show any significant changes compared to CCl4 intoxicated group. In addition, TLM rectified oxidative status disrupted by CCl4 intoxication. Interestingly, TLM protected against CCl4 -induced expressions of nuclear factor-κB, inducible nitric oxide synthase and cyclooxygenase-II, in a dose related manner. Moreover, TLM (3 and 10 mg kg-1 ) significantly modified CCl4 -induced elevation in tumor necrosis factor-α and nitric oxide levels. Furthermore, TLM showed a marked decline in CD68+ cells stained areas and reduced activity of myeloperoxidase enzyme compared to CCl4 -intoxicated group. In conclusion, both doses of TLM (3 and 10 mg kg-1 ) showed significant hepato-protective effects. However, TLM at a dose of 10 mg kg-1 didn't show significant efficacy above 3 mg kg-1 which is nearly equivalent to the human anti-hypertensive dose of 40 mg. Thus, may be effective in guarding against several hepatic complications due to its antioxidant and anti-inflammatory activities. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 359-370, 2017.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Ramalho FN, Sanches SC, Foss MC, Augusto MJ, Silva DM, Oliveira AM, Ramalho LN. Aliskiren effect on non-alcoholic steatohepatitis in metabolic syndrome. Diabetol Metab Syndr 2017; 9:82. [PMID: 29046730 PMCID: PMC5640954 DOI: 10.1186/s13098-017-0282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is highly associated with metabolic syndrome, a major cause of morbidity in the globalized society. The renin-angiotensin system (RAS) influences hepatic fatty acid metabolism, inflammation and fibrosis. Thus, in the present study, we aimed to evaluate the effect of aliskiren, a direct renin inhibitor, on metabolic syndrome-related NASH. METHODS C57BL/6 male mice (n = 45) were divided into three groups: controls; animals inoculated with streptozotocin (STZ) (40 mg/kg/day) for 5 days and fed with high fat diet (HFD) for 8 weeks; and animals inoculated with STZ for 5 days, fed with HFD for 8 weeks and treated with aliskiren (100 mg/kg/day) for the final 2 weeks. Glycemic and insulin levels, hepatic lipid profile, histological parameters and inflammatory protein expression were analyzed. RESULTS Aliskiren normalized plasma glucose and insulin levels, reduced cholesterol, triglycerides and total fat accumulation in liver and diminished hepatic injury, steatosis and fibrosis. These results could be explained by the ability of aliskiren to block angiotensin-II, lowering oxidative stress and inflammation in liver. Also, it exhibited a beneficial effect in increasing insulin sensitivity. CONCLUSION These findings support the use of aliskiren in the treatment of metabolic syndrome underlying conditions. However, clinical studies are indispensable to test its effectiveness in the treatment of patients with metabolic syndrome.
Collapse
Affiliation(s)
- F. N. Ramalho
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - S. C. Sanches
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - M. C. Foss
- Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - M. J. Augusto
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - D. M. Silva
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| | - A. M. Oliveira
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - L. N. Ramalho
- Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
9
|
Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol 2013; 378:29-40. [PMID: 22579612 PMCID: PMC12063499 DOI: 10.1016/j.mce.2012.04.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/30/2012] [Indexed: 01/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now considered the most prevalent chronic liver disease, affecting over 30% of the US adult population. NAFLD is strongly linked to insulin resistance and is considered the hepatic manifestation of the metabolic syndrome. Activation of the renin-angiotensin-aldosterone system (RAAS) is known to play a role in the hypertension observed in the metabolic syndrome and also is thought to play a central role in insulin resistance and NAFLD. Angiotensin II (AngII) is considered the primary effector of the physiological outcomes of RAAS signaling, both at the systemic and local tissue level. Herein, we review data describing the potential involvement of AngII-mediated signaling at multiple levels in the development and progression of NAFLD, including increased steatosis, inflammation, insulin resistance, and fibrosis. Additionally, we present recent work on the potential therapeutic benefits of RAAS and angiotensin II signaling inhibition in rodent models and patients with NAFLD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Internal Medicine - Division of Gastroenterology and Hepatology, University of Missouri, MO, United States; Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States.
| | | | | | | |
Collapse
|
10
|
Increased circulating ANG II and TNF-α represents important risk factors in obese saudi adults with hypertension irrespective of diabetic status and BMI. PLoS One 2012; 7:e51255. [PMID: 23251471 PMCID: PMC3520992 DOI: 10.1371/journal.pone.0051255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/30/2012] [Indexed: 01/21/2023] Open
Abstract
Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk.
Collapse
|
11
|
Al-Daghri NM, Bindahman LS, Al-Attas OS, Saleem TH, Alokail MS, Alkharfy KM, Draz HM, Yakout S, Mohamed AO, Harte AL, McTernan PG. Increased Circulating ANG II and TNF-α Represents Important Risk Factors in Obese Saudi Adults with Hypertension Irrespective of Diabetic Status and BMI. PLoS One 2012; 7:e51255. [DOI: https:/doi.org/10.1371/journal.pone.0051255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
|
12
|
Vasdev S, Stuckless J, Richardson V. Role of the immune system in hypertension: modulation by dietary antioxidants. Int J Angiol 2012. [PMID: 23204821 DOI: 10.1055/s-0031-1288941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B(6), thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
13
|
Fouad AA, Al-Mulhim AS, Jresat I, Gomaa W. Therapeutic role of telmisartan against acetaminophen hepatotoxicity in mice. Eur J Pharmacol 2012; 693:64-71. [PMID: 22940262 DOI: 10.1016/j.ejphar.2012.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 01/18/2023]
Abstract
The therapeutic potential of telmisartan was investigated in mice exposed to acute hepatotoxicity induced by a single dose of acetaminophen (500 mg/kg, p.o.). Telmisartan treatment (two i.p. injections, 10mg/kg, each) was given at 1 and 12h following acetaminophen administration. Telmisartan significantly reduced the level of serum alanine aminotransferase, and suppressed lipid peroxidation, prevented the depletion of the antioxidant defenses (reduced glutathione level, and catalase and superoxide dismutase activities), and attenuated the elevation of nitric oxide resulted from acetaminophen administration. Also, telmisartan ameliorated the histopathological liver tissue damage induced by acetaminophen. Immunohistochemical analysis revealed that telmisartan significantly decreased the expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB and caspase-3 in liver tissue of mice received acetaminophen overdose. In conclusion, telmisartan can be considered as a potential therapeutic option to protect against acute acetaminophen hepatotoxicity commonly encountered in clinical practice.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | | | | | | |
Collapse
|
14
|
Telmisartan treatment attenuates arsenic-induced hepatotoxicity in mice. Toxicology 2012; 300:149-57. [DOI: 10.1016/j.tox.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/11/2012] [Accepted: 06/21/2012] [Indexed: 01/18/2023]
|
15
|
Kita Y, Takamura T, Misu H, Ota T, Kurita S, Takeshita Y, Uno M, Matsuzawa-Nagata N, Kato KI, Ando H, Fujimura A, Hayashi K, Kimura T, Ni Y, Otoda T, Miyamoto KI, Zen Y, Nakanuma Y, Kaneko S. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS One 2012; 7:e43056. [PMID: 23028442 PMCID: PMC3445596 DOI: 10.1371/journal.pone.0043056] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 07/17/2012] [Indexed: 02/06/2023] Open
Abstract
Background Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. Methodology/Principal Findings Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. Conclusions/Significance These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.
Collapse
Affiliation(s)
- Yuki Kita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
- * E-mail:
| | - Hirofumi Misu
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Tsuguhito Ota
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Seiichiro Kurita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Yumie Takeshita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Masafumi Uno
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Naoto Matsuzawa-Nagata
- Department of Hospital Pharmacy, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Ken-ichiro Kato
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Akio Fujimura
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Koji Hayashi
- Genomic Science Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan
| | - Toru Kimura
- Genomic Science Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan
| | - Yinhua Ni
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Toshiki Otoda
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Ken-ichi Miyamoto
- Department of Hospital Pharmacy, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Yoh Zen
- Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Yasuni Nakanuma
- Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| |
Collapse
|
16
|
Yang XH, Wang YH, Wang JJ, Liu YC, Deng W, Qin C, Gao JL, Zhang LY. Role of angiotensin-converting enzyme (ACE and ACE2) imbalance on tourniquet-induced remote kidney injury in a mouse hindlimb ischemia-reperfusion model. Peptides 2012; 36:60-70. [PMID: 22580272 DOI: 10.1016/j.peptides.2012.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 12/14/2022]
Abstract
In this study, the relationship between the local imbalance of angiotensin converting enzymes ACE and ACE2 as well as Ang II and Ang (1-7) and renal injury was observed in the different genotypes mice subjected to tourniquet-induced ischemia-reperfusion on hind limbs. In wild-type mice, renal ACE expression increased while renal ACE2 expression decreased significantly after reperfusion, accompanied by elevated serum angiotensin II (Ang II) level and lowered serum angiotensin (1-7) (Ang (1-7)) level. However, renal Ang (1-7) also increased markedly while renal Ang II was elevated. Renal injury became evident after limb reperfusion, with increased malondialdehyde (MDA), decreased super-oxide dismutase (SOD) activity and increased serum blood urea nitrogen (BUN) and creatinine (Cr), compared to control mice. These mice also developed severe renal pathology including infiltration of inflammatory cells in the renal interstitium and degeneration of tubule epithelial cells. In ACE2 knock-out mice with ACE up-regulation, tourniquet-induced renal injury was significantly aggravated as shown by increased levels of MDA, BUN and Cr, decreased SOD activity, more severe renal pathology, and decreased survival rate, compared with tourniquet-treated wild-type mice. Conversely, ACE2 transgenic mice with normal ACE expression were more resistant to tourniquet challenge as evidenced by decreased levels of MDA, BUN and Cr, increased SOD activity, attenuated renal pathological changes and increased survival rate. Our results suggest that the deregulation of ACE and ACE2 plays an important role in tourniquet-induced renal injury and that ACE2 up-regulation to restore the proper ACE/ACE2 balance is a potential therapeutic strategy for kidney injury.
Collapse
Affiliation(s)
- Xiu-hong Yang
- Department of Physiology, School of Basic Medical Science, Hebei United University, Tangshan, Hebei, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Takamura T, Misu H, Ota T, Kaneko S. Fatty liver as a consequence and cause of insulin resistance: lessons from type 2 diabetic liver. Endocr J 2012; 59:745-63. [PMID: 22893453 DOI: 10.1507/endocrj.ej12-0228] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is less common in the Asian population, but Asian people may be susceptible to obesity-associated metabolic dysregulation. Accumulating evidence suggests that insulin resistance is closely associated with ectopic fat accumulation in the liver. Whether this correlation is due to a causal relationship between the conditions has long been the subject of debate. Insulin resistance and type 2 diabetes affects liver pathology, typically leading to nonalcoholic fatty liver disease (NAFLD) by dynamically altering the hepatic genes involved in glucose and lipid metabolism. Conversely, how overnutrition induces hepatic insulin resistance has been studied intensively, and has been shown to involve excessive energy flux into mitochondria, toxic lipids, reactive oxygen species, and hepatokines. In this review, we focus on NAFLD both as a consequence and as a cause of insulin resistance through lessons learned from the liver of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan.
| | | | | | | |
Collapse
|
18
|
de Kloet AD, Krause EG, Woods SC. The renin angiotensin system and the metabolic syndrome. Physiol Behav 2010; 100:525-34. [PMID: 20381510 PMCID: PMC2886177 DOI: 10.1016/j.physbeh.2010.03.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/18/2010] [Accepted: 03/26/2010] [Indexed: 01/01/2023]
Abstract
The renin angiotensin system (RAS; most well-known for its critical roles in the regulation of cardiovascular function and hydromineral balance) has regained the spotlight for its potential roles in various aspects of the metabolic syndrome. It may serve as a causal link among obesity and several co-morbidities. Drugs that reduce the synthesis or action of angiotensin-II (A-II; the primary effector peptide of the RAS) have been used to treat hypertension for decades and, more recently, clinical trials have determined the utility of these pharmacological agents to prevent insulin resistance. Moreover, there is evidence that the RAS contributes to body weight regulation by acting in various tissues. This review summarizes what is known of the actions of the RAS in the brain and throughout the body to influence various metabolic disorders. Special emphasis is given to the role of the RAS in body weight regulation. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Annette D de Kloet
- Program in Neuroscience University of Cincinnati, Cincinnati, OH 45237, United States.
| | | | | |
Collapse
|
19
|
Rosselli MS, Burgueño AL, Carabelli J, Schuman M, Pirola CJ, Sookoian S. Losartan reduces liver expression of plasminogen activator inhibitor-1 (PAI-1) in a high fat-induced rat nonalcoholic fatty liver disease model. Atherosclerosis 2009; 206:119-26. [DOI: 10.1016/j.atherosclerosis.2009.01.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 01/08/2009] [Accepted: 01/18/2009] [Indexed: 12/13/2022]
|
20
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:260-77. [PMID: 19390324 DOI: 10.1097/med.0b013e32832c937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 2009; 302:128-39. [PMID: 19150387 DOI: 10.1016/j.mce.2008.12.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 12/31/2022]
Abstract
Angiotensin II (Ang II), the major effector hormone of the renin-angiotensin system (RAS), has an important role in the regulation of vascular and renal homeostasis. Clinical and pharmacological studies have recently shown that Ang II is a critical promoter of insulin resistance and diabetes mellitus type 2. Ang II exerts its actions on insulin-sensitive tissues such as liver, muscle and adipose tissue where it has effects on the insulin receptor (IR), insulin receptor substrate (IRS) proteins and the downstream effectors PI3K, Akt and GLUT4. The molecular mechanisms involved have not been completely identified, but the role of serine/threonine phosphorylation of the IR and IRS-1 proteins in desensitization of insulin action has been well established. The purpose of this review is to highlight recent advances in the understanding of Ang II actions which lead to the development of insulin resistance and its implications for diabetes.
Collapse
Affiliation(s)
- J Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico, DF, Mexico.
| | | | | |
Collapse
|
22
|
Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 2009; 15:942-54. [PMID: 19248193 PMCID: PMC2653406 DOI: 10.3748/wjg.15.942] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate insulin resistance, cytolysis and non-alcoholic steatohepatitis (NASH) score (NAS) using the Kleiner and Brunt criteria in 54 patients with NASH and mild-to-moderate hypertension, treated with telmisartan vs valsartan for 20 mo.
METHODS: All patients met the NCEP-ATP III criteria for metabolic syndrome. Histology confirmed steatohepatitis, defined as a NAS greater than five up to 3 wk prior inclusion, using the current criteria. Patients with viral hepatitis, chronic alcohol intake, drug abuse or other significant immune or metabolic hepatic pathology were excluded. Subjects were randomly assigned either to the valsartan (V) group (standard dose 80 mg o.d., n = 26), or to the telmisartan (T) group (standard dose 20 mg o.d., n = 28). Treatment had to be taken daily at the same hour with no concomitant medication or alcohol consumption allowed. Neither the patient nor the medical staff was aware of treatment group allocation. Paired liver biopsies obtained at inclusion (visit 1) and end of treatment (EOT) were assessed by a single blinded pathologist, not aware of patient or treatment group. Blood pressure, BMI, ALT, AST, HOMA-IR, plasma triglycerides (TG) and total cholesterol (TC) were evaluated at inclusion and every 4 mo until EOT (visit 6).
RESULTS: At EOT we noticed a significant decrease in ALT levels vs inclusion in all patients and this decrease did not differ significantly in group T vs group V. HOMA-IR significantly decreased at EOT vs inclusion in all patients but in group T, the mean HOMA-IR decrease per month was higher than in group V. NAS significantly diminished at EOT in all patients with a higher decrease in group T vs group V.
CONCLUSION: Angiotensin receptor blockers seem to be efficient in hypertension-associated NASH. Telmisartan showed a higher efficacy regarding insulin resistance and histology, perhaps because of its specific PPAR-gamma ligand effect.
Collapse
|
23
|
Ando H, Takamura T, Matsuzawa-Nagata N, Shima KR, Nakamura S, Kumazaki M, Kurita S, Misu H, Togawa N, Fukushima T, Fujimura A, Kaneko S. The hepatic circadian clock is preserved in a lipid-induced mouse model of non-alcoholic steatohepatitis. Biochem Biophys Res Commun 2009; 380:684-8. [PMID: 19285022 DOI: 10.1016/j.bbrc.2009.01.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 12/29/2022]
Abstract
Recent studies have correlated metabolic diseases, such as metabolic syndrome and non-alcoholic fatty liver disease, with the circadian clock. However, whether such metabolic changes per se affect the circadian clock remains controversial. To address this, we investigated the daily mRNA expression profiles of clock genes in the liver of a dietary mouse model of non-alcoholic steatohepatitis (NASH) using a custom-made, high-precision DNA chip. C57BL/6J mice fed an atherogenic diet for 5 weeks developed hypercholesterolemia, oxidative stress, and NASH. DNA chip analyses revealed that the atherogenic diet had a great influence on the mRNA expression of a wide range of genes linked to mitochondrial energy production, redox regulation, and carbohydrate and lipid metabolism. However, the rhythmic mRNA expression of the clock genes in the liver remained intact. Most of the circadianly expressed genes also showed 24-h rhythmicity. These findings suggest that the biological clock is protected against such a metabolic derangement as NASH.
Collapse
Affiliation(s)
- Hitoshi Ando
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Angiotensin receptor blockers in the treatment of NASH/NAFLD: could they be a first-class option? Adv Ther 2008; 25:1141-74. [PMID: 18972077 DOI: 10.1007/s12325-008-0110-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition pathogenically linked to metabolic syndrome (MS) by insulin resistance (IR), and characterized by hepatic steatosis in the absence of significant alcohol use, hepatotoxicity, and/or other known liver diseases.The principles of NAFLD therapy target IR: the key point of MS. As the renin-angiotensin system (RAS) plays a central role in IR, and subsequently in NAFLD and nonalcoholic steatohepatitis (NASH), an attempt to block the deleterious effects of RAS overexpression seems a logical target. While many potential therapies tested in NASH target only the consequences of this condition, or try to "get rid" of excessive fat, angiotensin receptor blockers (ARBs) could act as an elegant tool for adequate correction of the various imbalances that act in harmony in NASH/NAFLD. Indeed, by inhibiting RAS we can improve the intracellular insulin signaling pathway, better control adipose tissue proliferation and adipokine production, and produce more balanced local and systemic levels of various cytokines. At the same time, by controlling the local RAS in the liver we might be able to prevent at least fibrosis and also slow down the vicious cycle that links steatosis to necroinflammation. By targeting the pancreatic effects of angiotensin we should be able to preserve an adequate insulin secretion and acquire a better metabolic balance.In our opinion there are two major advantages of ARBs that make them a possible therapeutic option for treating NASH and MS: their specific antihypertensive effect, and their impact on liver fibrosis. In light of this, and based on the current evidence (including existent human studies), we can speculate that some ARBs like telmisartan, candesartan, and losartan can be beneficial in treating NASH/NAFLD and its consequences, and further larger controlled clinical trials will bring consistent data into this field.
Collapse
|
25
|
Olmesartan ameliorates a dietary rat model of non-alcoholic steatohepatitis through its pleiotropic effects. Eur J Pharmacol 2008; 588:316-24. [DOI: 10.1016/j.ejphar.2008.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 03/22/2008] [Accepted: 04/02/2008] [Indexed: 12/13/2022]
|