1
|
Li C, Cai D, Yuan W, Cai R, Qiu X, Qin Y, Feng Y, Zhu Q, Liu Y, Chen Y, Yuan X, Jiang W, Hou N. The canonical Wnt/β-catenin signaling pathway upregulates carbonic anhydrase 2 via transcription factor 7-like 2 to promote cardiomyopathy in type 2 diabetic mice. Life Sci 2025; 368:123506. [PMID: 40010634 DOI: 10.1016/j.lfs.2025.123506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Excessive activation of the canonical Wnt/β-catenin pathway contributes to the development of diabetic cardiomyopathy (DCM). Transcription factor 7-like 2 (TCF7L2) is the main β-catenin partner of the TCF family in adult human hearts. Carbonic anhydrase 2 (CA2) is implicated in various hypertrophic cardiomyopathy. In this study, we aimed to investigate the role of the Wnt/β-catenin/TCF7L2 signaling and CA2 in the development of DCM. Streptozotocin (STZ)/high-fat diet (HFD)-induced diabetic mice and high glucose-stimulated neonatal rat cardiomyocytes (NRCMs) were used as in-vivo and in-vitro models of Type 2 diabetes (T2DM), respectively. Histopathological changes in the mouse myocardium were assessed with hematoxylin-eosin (HE) or Masson's trichrome staining. Cardiac function was evaluated with echocardiography. TCF7L2, β-catenin, and CA2 expression was determined with RT-qPCR, western blotting, and immunohistochemistry. Immunoprecipitation (IP) was used to evaluate the formation of the β-catenin/TCF7L2 bipartite. The regulatory relationship between the β-catenin/TCF7L2 bipartite and CA2 was investigated with chromatin immunoprecipitation (ChIP) and a luciferase reporter assay. Compared with the control mice, the T2DM mice exhibited increased myocardial β-catenin and TCF7L2 expression that was concentrated in the nucleus. Treatment of diabetic mice with the β-catenin/TCF7L2 bipartite inhibitor iCRT14 prevented myocardial remodeling and improved cardiac dysfunction. iCRT14 also prevented high glucose-induced hypertrophy in NRCMs, while the β-catenin stabilizer SKL2001 worsened hypertrophy. IP experiments confirmed the formation of the β-catenin/TCF7L2 bipartite in the control and T2DM mouse cardiomyocytes. Moreover, based on the results of RNA-sequencing analysis, CA2 was upregulated in T2DM cardiomyocytes in vitro and in vivo. TCF7L2 overexpression upregulated CA2, while iCRT14 treatment or TCF7L2 knockdown downregulated CA2. CA2 knockdown ameliorated NRCM hypertrophy induced by high glucose and SKL2001. The ChIP experiments revealed an increased interaction between β-catenin/TCF7L2 and the transcription initiation region of CA2 in the heart tissue of T2DM mice. The luciferase reporter assay confirmed that CA2 is directly regulated by the β-catenin/TCF7L2 bipartite. The results indicate that the canonical Wnt/β-catenin pathway upregulates CA2 via TCF7L2 to promote DCM. This research sheds new light on the pathogenesis of DCM and presents new potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Conglin Li
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China
| | - Daofeng Cai
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rui Cai
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoxia Qiu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Qin
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yaofeng Feng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiulian Zhu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yun Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yilin Chen
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xun Yuan
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Wenyue Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China.
| | - Ning Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China; NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Koçak A, Gülle S, Birlik M. Porcupine inhibitors LGK-974 and ETC-159 inhibit Wnt/β-catenin signaling and result in inhibition of the fibrosis. Toxicol In Vitro 2025; 104:105986. [PMID: 39647516 DOI: 10.1016/j.tiv.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES We evaluated potential therapeutic efficacy of LGK-974 and ETC-159 in fibrotic scleroderma cells. METHODS Primary scleroderma dermal fibroblast cells of mouse origin (SSc fibroblasts) and primary fibrotic lung fibroblast cells of human origin (CCL-191) were used in this study. PORCN inhibitors LGK-974 (S7143, 1 μM; Selleckchem, USA) and ETC-159 (S7143, 10 μM; Selleckchem, USA) were used. The possible therapeutic effects of LGK-974 and ETC-159 on scleroderma cells and fibrosis cells were examined. Cell viability experiments were performed for each substance, and the expression levels of WNT and fibrosis marker genes were determined by qPCR. Western blotting was also used to determine collagen, fibronectin and α-SMA protein markers. RESULTS This study showed that LGK-974 and ETC-159 probable protein-cysteine N-palmitoyltransferase porcupine (PORCN) inhibitors exert potent antifibrotic effects and reduce fibrosis by modulating the TGF-β signaling pathway in scleroderma cells. Using LGK-974 and ETC-159 PORCN inhibitors, either alone or in combination, can affect collagen deposition and fibrosis in patients with SSc. CONCLUSIONS LGK-974 and ETC-159 may be a possible long-term therapeutic target for scleroderma.
Collapse
Affiliation(s)
- Ayşe Koçak
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biochemistry, Kutahya, Turkey.
| | - Semih Gülle
- Dokuz Eylul University, Faculty of Medicine, Department of Rheumatology & Immunology, Izmir, Turkey
| | - Merih Birlik
- Dokuz Eylul University, Faculty of Medicine, Department of Rheumatology & Immunology, Izmir, Turkey
| |
Collapse
|
3
|
Low BSH, Asimaki A. Targeting Canonical Wnt-signaling Through GSK-3β in Arrhythmogenic Cardiomyopathy: Conservative or Progressive? J Cardiovasc Transl Res 2025; 18:121-132. [PMID: 39392548 PMCID: PMC11885336 DOI: 10.1007/s12265-024-10567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Arrhythmogenic cardiomyopathy is a primary myocardial disease and a major cause of sudden death in all populations of the world. Canonical Wnt signalling is a critical pathway controlling numerous processes including cellular differentiation, hypertrophy and development. GSK3β is a ubiquitous serine/threonine kinase, which acts downstream of Wnt to promote protein ubiquitination and proteasomal degradation. Several studies now suggest that inhibiting GSK3β can prevent and reverse key pathognomonic features of ACM in a range of experimental models. However, varying concerns are reported throughout the literature including the risk of paradoxical arrhythmias, cancer and off-target effects in upstream or downstream pathways. CLINICAL RELEVANCE: In light of the start of the phase 2 TaRGET clinical trial, designed to evaluate the potential therapeutic efficacy of GSK3β inhibition in patients with arrhythmogenic cardiomyopathy, this report aims to review the advantages and disadvantages of this strategy.
Collapse
Affiliation(s)
| | - Angeliki Asimaki
- Cardiovascular and Genomics Research Institute, City St. George's, University of London, London, UK.
- Cardiovascular Clinical Academic Group, City & St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
4
|
Ali SR, Ahmad W, Salim A, Durrieu MC, Khan I. Xenogeneic Stem Cell–Induced Cardiac Progenitor Cells Regenerated Infarcted Myocardium in Rat Model. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:110-125. [DOI: 10.1007/s40883-023-00311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 09/11/2024]
|
5
|
Wang C, Han Y, Li X. Glypican-1 may be a plasma biomarker for predicting the rupture of small intracranial aneurysms. J Proteomics 2024; 293:105060. [PMID: 38154549 DOI: 10.1016/j.jprot.2023.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Currently, there are no effective methods for predicting the rupture of asymptomatic small intracranial aneurysms (IA) (<7 mm). In this study the aim was to identify early warning biomarkers in peripheral plasma for predicting IA rupture. Four experimental groups were included: ruptured intracranial aneurysm (RIA), unruptured intracranial aneurysm (UIA), traumatic subarachnoid hemorrhage control (tSAHC), and healthy control (HC) groups. Plasma proteomics of these four groups were detected using iTRAQ combined LC-MS/MS. Differentially expressed proteins (DEPs) were identified in RIA, UIA, tSAHC compared with HC. Target proteins associated with aneurysm rupture were obtained by comparing the DEPs of the RIA and UIA groups after filtering out the DEPs of the tSAHC group. The plasma concentrations of target proteins were validated using enzyme-linked immunosorbent assay (ELISA). The iTRAQ analysis showed a significant increase in plasma GPC1 concentration in the RIA group compared to the UIA group, which was further validated among the IA patients. Logistic regression analysis identified GPC1 as an independent risk factor for predicting aneurysm rupture. The ROC curve indicated that the GPC1 plasma cut-off value for predicting aneurysms rupture was 4.99 ng/ml. GPC1 may be an early warning biomarker for predicting the rupture of small intracranial aneurysms. SIGNIFICANCE: The current management approach for asymptomatic small intracranial aneurysms (<7 mm) is limited to conservative observation and surgical intervention. However, the decision-making process regarding these options poses a dilemma due to weighing their respective advantages and disadvantages. Currently, there is a lack of effective diagnostic methods to predict the rupture of small aneurysms. Therefore, our aim is to identify early warning biomarkers in peripheral plasma that can serve as quantitative detection markers for predicting intracranial aneurysm rupture. In this study, four experimental populations were established: small ruptured intracranial aneurysm (sRIA) group, small unruptured intracranial aneurysm (sUIA) group, traumatic subarachnoid hemorrhage control (tSAHC) group, and healthy control (HC) group. The tSAH group was the control group of spontaneous subarachnoid hemorrhage caused by ruptured aneurysm. Compared with patients with UIA, aneurysm tissue and plasma GPC1 in patients with RIA is significantly higher, and GPC1 may be an early warning biomarker for predicting the rupture of intracranial small aneurysms.
Collapse
Affiliation(s)
- Chenchen Wang
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yuwei Han
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Xiaoming Li
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
6
|
Li S, Yang M, Zhao R, Peng L, Liu W, Jiang X, He Y, Dai E, Zhang L, Yang Y, Shi Y, Zhao P, Yang Z, Zhu X. Defective EMC1 drives abnormal retinal angiogenesis via Wnt/β-catenin signaling and may be associated with the pathogenesis of familial exudative vitreoretinopathy. Genes Dis 2023; 10:2572-2585. [PMID: 37554197 PMCID: PMC10404869 DOI: 10.1016/j.gendis.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) membrane protein complex (EMC) is required for the co-translational insertion of newly synthesized multi-transmembrane proteins. Compromised EMC function in different cell types has been implicated in multiple diseases. Using inducible genetic mouse models, we revealed defects in retinal vascularization upon endothelial cell (EC) specific deletion of Emc1, the largest subunit of EMC. Loss of Emc1 in ECs led to reduced vascular progression and vascular density, diminished tip cell sprouts, and vascular leakage. We then performed an unbiased transcriptomic analysis on human retinal microvascular endothelial cells (HRECs) and revealed a pivotal role of EMC1 in the β-catenin signaling pathway. Further in-vitro and in-vivo experiments proved that loss of EMC1 led to compromised β-catenin signaling activity through reduced expression of Wnt receptor FZD4, which could be restored by lithium chloride (LiCl) treatment. Driven by these findings, we screened genomic DNA samples from familial exudative vitreoretinopathy (FEVR) patients and identified one heterozygous variant in EMC1 that co-segregated with FEVR phenotype in the family. In-vitro expression experiments revealed that this variant allele failed to facilitate the expression of FZD4 on the plasma membrane and activate the β-catenin signaling pathway, which might be a main cause of FEVR. In conclusion, our findings reveal that variants in EMC1 gene cause compromised β-catenin signaling activity, which may be associated with the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Shi
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
| |
Collapse
|
7
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC. Single-cell transcriptomics reveal extracellular vesicles secretion with a cardiomyocyte proteostasis signature during pathological remodeling. Commun Biol 2023; 6:79. [PMID: 36681760 PMCID: PMC9867722 DOI: 10.1038/s42003-022-04402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from β-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - Federico Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Giulia Germena
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Cheila Rocha
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Petra Tucholla
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Izzatullo Sobitov
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Max-Planck-Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Mostafa Samak
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Rabea Hinkel
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Zoltán Giricz
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Julia C Gross
- Health and Medical University, D-14471, Potsdam, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
9
|
Huang K, Xu H, Han L, Xu R, Xu Z, Xie Y. Identification of therapeutic targets and prognostic biomarkers among frizzled family genes in glioma. Front Mol Biosci 2023; 9:1054614. [PMID: 36699699 PMCID: PMC9868451 DOI: 10.3389/fmolb.2022.1054614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: The biological functions of the Frizzled gene family (FZDs), as the key node of wingless-type MMTV integration site family (Wnt) and mammalian target of rapamycin signaling pathways, have not been fully elucidated in glioma. This study aims to identify novel therapeutic targets and prognostic biomarkers for gliomas, which may help us understand the role of FZDs. Methods: RNA-sequence data were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Survival analyses, Cox regression analyses, nomograms, calibration curves, receiver operating characteristic (ROC) curves, gene function enrichment analyses, and immune cell infiltration analyses were conducted using R. Results: High expressions of FZDs were positively associated with the activation of mTOR signaling. FZD1/2/3/4/5/7/8 was significantly highly expressed in tumor tissues, and the high expression of FZD1/2/5/6/7/8 was significantly positively associated with poorer prognosis. FZD2 and FZD6 positively served as independent predictors of poor prognosis. Gene function analysis showed that FZDs were associated with mTOR signaling, immune response, cytokine-cytokine receptor interaction, extracellular matrix organization, apoptosis, and p53 signaling pathway. Conclusions: Our finding strongly indicated a crucial role of FZDs in glioma. FZD1/2/5/6/7/8 could be an unfavorable prognostic factor in glioma and FZD2 and FZD6 may be novel independent predictors of poor prognosis in glioma.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Huimei Xu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liang Han
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Ruiming Xu
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhaoqing Xu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,*Correspondence: Zhaoqing Xu, ; Yi Xie,
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China,*Correspondence: Zhaoqing Xu, ; Yi Xie,
| |
Collapse
|
10
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
11
|
Sikorski V, Vento A, Kankuri E, IHD-EPITRAN Consortium. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
12
|
Arun A, Rayford KJ, Cooley A, Rana T, Rachakonda G, Villalta F, Pratap S, Lima MF, Sheibani N, Nde PN. Thrombospondin-1 expression and modulation of Wnt and hippo signaling pathways during the early phase of Trypanosoma cruzi infection of heart endothelial cells. PLoS Negl Trop Dis 2022; 16:e0010074. [PMID: 34986160 PMCID: PMC8730400 DOI: 10.1371/journal.pntd.0010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.
Collapse
Affiliation(s)
- Ashutosh Arun
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Kayla J. Rayford
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Tanu Rana
- Department of Professional Medical Education and Molecular Biology Core Facility, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Molecular and Cellular and Biomedical Sciences, School of Medicine, The City College of New York, New York, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Pius N. Nde
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
| |
Collapse
|
13
|
Pathogenesis, Diagnosis and Risk Stratification in Arrhythmogenic Cardiomyopathy. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease associated with sudden cardiac death (SCD). It is most frequently caused by mutations in genes encoding desmosomal proteins. However, there is growing evidence that ACM is not exclusively a desmosome disease but rather appears to be a disease of the connexoma. Fibroadipose replacement of the right ventricle (RV) had long been the hallmark of ACM, although biventricular involvement or predominant involvement of the left ventricle (LD-ACM) is increasingly found, raising the challenge of differential diagnosis with arrhythmogenic dilated cardiomyopathy (a-DCM). A-DCM, ACM, and LD-ACM are increasingly acknowledged as a single nosological entity, the hallmark of which is electrical instability. Our aim was to analyze the complex molecular mechanisms underlying arrhythmogenic cardiomyopathies, outlining the role of inflammation and autoimmunity in disease pathophysiology. Secondly, we present the clinical tools used in the clinical diagnosis of ACM. Focusing on the challenge of defining the risk of sudden death in this clinical setting, we present available risk stratification strategies. Lastly, we summarize the role of genetics and imaging in risk stratification, guiding through the appropriate patient selection for ICD implantation.
Collapse
|
14
|
Li B, Chen K, Liu F, Zhang J, Chen X, Chen T, Chen Q, Yao Y, Hu W, Wang L, Wu Y. Developmental Angiogenesis Requires the Mitochondrial Phenylalanyl-tRNA Synthetase. Front Cardiovasc Med 2021; 8:724846. [PMID: 34540921 PMCID: PMC8440837 DOI: 10.3389/fcvm.2021.724846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Mitochondrial aminoacyl-tRNA synthetases (mtARSs) catalyze the binding of specific amino acids to their cognate tRNAs and play an essential role in the synthesis of proteins encoded by mitochondrial DNA. Defects in mtARSs have been linked to human diseases, but their tissue-specific pathophysiology remains elusive. Here we examined the role of mitochondrial phenylalanyl-tRNA synthetase (FARS2) in developmental angiogenesis and its potential contribution to the pathogenesis of cardiovascular disease. Methods: Morpholinos were injected into fertilized zebrafish ova to establish an in vivo fars2 knock-down model. A visualization of the vasculature was achieved by using Tg (fli1: EGFP)y1 transgenic zebrafish. In addition, small interference RNAs (siRNAs) were transferred into human umbilical vein endothelial cells (HUVECs) to establish an in vitro FARS2 knock-down model. Cell motility, proliferation, and tubulogenesis were determined using scratch-wound CCK8, transwell-based migration, and tube formation assays. In addition, mitochondria- and non-mitochondria-related respiration were evaluated using a Seahorse XF24 analyzer and flow cytometry assays. Analyses of the expression levels of transcripts and proteins were performed using qRT-PCR and western blotting, respectively. Results: The knock-down of fars2 hampered the embryonic development in zebrafish and delayed the formation of the vasculature in Tg (fli1: EGFP)y1 transgenic zebrafish. In addition, the siRNA-mediated knock-down of FARS2 impaired angiogenesis in HUVECs as indicated by decreased cell motility and tube formation capacity. The knock-down of FARS2 also produced variable decreases in mitochondrial- and non-mitochondrial respiration in HUVECs and disrupted the regulatory pathways of angiogenesis in both HUVECs and zebrafish. Conclusion: Our current work offers novel insights into angiogenesis defects and cardiovascular diseases induced by FARS2 deficiency.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Fangfang Liu
- Department of Neurosciences, Air Force Medical University, Xi'an, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xihui Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Yan Yao
- Department of Clinical Medicine, Yan'an University, Yan'an, China
| | - Weihong Hu
- Department of Clinical Medicine, Yan'an University, Yan'an, China
| | - Li Wang
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China.,School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| |
Collapse
|
15
|
Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Watanabe M. HECT (Homologous to the E6-AP Carboxyl Terminus)-Type Ubiquitin E3 Ligase ITCH Attenuates Cardiac Hypertrophy by Suppressing the Wnt/β-Catenin Signaling Pathway. Hypertension 2020; 76:1868-1878. [PMID: 33131309 DOI: 10.1161/hypertensionaha.120.15487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The HECT (homologous to the E6-AP carboxyl terminus)-type ubiquitin E3 ligase ITCH is an enzyme that plays an important role in ubiquitin-proteasomal protein degradation. Disheveled proteins (Dvl1 [disheveled protein 1], Dvl2, and Dvl3) are the main components of the Wnt/β-catenin signaling pathway, which is involved in cardiac hypertrophy. The aim of this study was to examine the role of ITCH during development of cardiac hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type mice. Cardiac hypertrophy after TAC was attenuated in ITCH-Tg mice, and the survival rate was higher for ITCH-Tg mice than for wild-type mice. Protein interaction between ITCH and Dvls was confirmed with immunoprecipitation in vivo and in vitro. Expression of key molecules of the Wnt/β-catenin signaling pathway (Dvl1, Dvl2, GSK3β [glycogen synthase kinase 3β], and β-catenin) was inhibited in ITCH-Tg mice compared with wild-type mice. Notably, the ubiquitination level of Dvl proteins increased in ITCH-Tg mice. Protein and mRNA expression levels of ITCH increased in response to Wnt3a stimulation in neonatal rat cardiomyocytes. Knockdown of ITCH using small-interfering RNA increased cardiomyocyte size and augmented protein expression levels of Dvl proteins, phospho-GSK3β, and β-catenin after Wnt3a stimulation in cardiomyocytes. Conversely, overexpression of ITCH attenuated cardiomyocyte hypertrophy and decreased protein expression levels of Dvl proteins, phospho-GSK3β and β-catenin. In conclusion, ITCH targets Dvl proteins for ubiquitin-proteasome degradation in cardiomyocytes and attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jun Goto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoichiro Otaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsu Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yuta Kobayashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tomonori Aono
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Ken Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masahiro Wanezaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Daisuke Kutsuzawa
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shigehiko Kato
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Harutoshi Tamura
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Satoshi Nishiyama
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takanori Arimoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Hiroki Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsuro Shishido
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masafumi Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| |
Collapse
|
16
|
Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H, Hamblin MR. TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal 2020; 18:87. [PMID: 32517807 PMCID: PMC7281690 DOI: 10.1186/s12964-020-00555-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis describes the inappropriate proliferation of cardiac fibroblasts (CFs), leading to accumulation of extracellular matrix (ECM) proteins in the cardiac muscle, which is found in many pathophysiological heart conditions. A range of molecular components and cellular pathways, have been implicated in its pathogenesis. In this review, we focus on the TGF-β and WNT signaling pathways, and their mutual interaction, which have emerged as important factors involved in cardiac pathophysiology. The molecular and cellular processes involved in the initiation and progression of cardiac fibrosis are summarized. We focus on TGF-β and WNT signaling in cardiac fibrosis, ECM production, and myofibroblast transformation. Non-coding RNAs (ncRNAs) are one of the main players in the regulation of multiple pathways and cellular processes. MicroRNAs, long non-coding RNAs, and circular long non-coding RNAs can all interact with the TGF-β/WNT signaling axis to affect cardiac fibrosis. A better understanding of these processes may lead to new approaches for diagnosis and treatment of many cardiac conditions. Video Abstract.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Stem Cell and Development Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azin Nikoozadeh
- Pathology Department, School of Medicine,Mashhad Univesity of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA. .,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
17
|
Wang LJ, Xue Y, Li H, Huo R, Yan Z, Wang J, Xu H, Wang J, Cao Y, Zhao JZ. Wilms' tumour 1-associating protein inhibits endothelial cell angiogenesis by m6A-dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. J Cell Mol Med 2020; 24:4981-4991. [PMID: 32281240 PMCID: PMC7205785 DOI: 10.1111/jcmm.15101] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Brain arteriovenous malformations (AVMs) are congenital vascular abnormality in which arteries and veins connect directly without an intervening capillary bed. So far, the pathogenesis of brain AVMs remains unclear. Here, we found that Wilms' tumour 1‐associating protein (WTAP), which has been identified as a key subunit of the m6A methyltransferase complex, was down‐regulated in brain AVM lesions. Furthermore, the lack of WTAP could inhibit endothelial cell angiogenesis in vitro. In order to screen for downstream targets of WTAP, we performed RNA transcriptome sequencing (RNA‐seq) and Methylated RNA Immunoprecipitation Sequencing technology (MeRIP‐seq) using WTAP‐deficient and control endothelial cells. Finally, we determined that WTAP regulated Desmoplakin (DSP) expression through m6A modification, thereby affecting angiogenesis of endothelial cells. In addition, an increase in Wilms' tumour 1 (WT1) activity caused by WTAP deficiency resulted in substantial degradation of β‐catenin, which might also inhibit angiogenesis of endothelial cells. Collectively, our findings revealed the critical function of WTAP in angiogenesis and laid a solid foundation for the elucidation of the pathogenesis of brain AVMs.
Collapse
Affiliation(s)
- Lin-Jian Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yimeng Xue
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ran Huo
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Zihan Yan
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jie Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hongyuan Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jia Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yong Cao
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ji-Zong Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
18
|
Kuipers AL, Miljkovic I, Barinas‐Mitchell E, Nestlerode CS, Cvejkus RK, Wheeler VW, Zhang Y, Zmuda JM. Wnt Pathway Gene Expression Is Associated With Arterial Stiffness. J Am Heart Assoc 2020; 9:e014170. [PMID: 32013702 PMCID: PMC7033870 DOI: 10.1161/jaha.119.014170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Background Animal and in vitro experiments implicate the Wnt pathway in cardiac development, fibrosis, vascular calcification, and atherosclerosis, but research in humans is lacking. We examined peripheral blood Wnt pathway gene expression and arterial stiffness in 369 healthy African ancestry men (mean age, 64 years). Methods and Results Gene expression was assessed using a custom Nanostring nCounter gene expression panel (N=43 genes) and normalized to housekeeping genes and background signal. Arterial stiffness was assessed via brachial-ankle pulse-wave velocity. Fourteen Wnt genes showed detectable expression and were tested individually as predictors of pulse-wave velocity using linear regression, adjusting for age, height, weight, blood pressure, medication use, resting heart rate, current smoking, alcohol intake, and sedentary lifestyle. Adenomatous polyposis coli regulator of Wnt signaling pathway (APC), glycogen synthase kinase 3β (GSK3B), and transcription factor 4 (TCF4) were significantly associated with arterial stiffness (P<0.05 for all). When entered into a single model, APC and TCF4 expression remained independently associated with arterial stiffness (P=0.04 and 0.003, respectively), and each explained ≈3% of the variance in pulse-wave velocity. Conclusions The current study establishes a novel association between in vivo expression of the Wnt pathway genes, APC and TCF4, with arterial stiffness in African ancestry men, a population at high risk of hypertensive vascular disease.
Collapse
Affiliation(s)
| | - Iva Miljkovic
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| | | | | | - Ryan K. Cvejkus
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| | | | - Yingze Zhang
- Department of MedicineUniversity of PittsburghPittsburghPA
| | - Joseph M. Zmuda
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| |
Collapse
|
19
|
Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang X, Huang Y. Multiple Roles of sFRP2 in Cardiac Development and Cardiovascular Disease. Int J Biol Sci 2020; 16:730-738. [PMID: 32071544 PMCID: PMC7019133 DOI: 10.7150/ijbs.40923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway plays important roles in organ development and disease processes. Secreted frizzled-related protein 2 (sFRP2), a vital molecule of Wnt signaling, can regulate cardiac development and cardiovascular disease. Recent studies have suggested that sFRP2 is not only an antagonist of the canonical Wnt signaling pathway, but also has a more complex relationship in myocardial fibrosis, angiogenesis, cardiac hypertrophy and cardiac regeneration. Here, we review the role of sFRP2 and Wnt signaling in cardiac development and cardiovascular disease.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Xinyue Liu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Hailan Zhu
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou
| | - Xiaohui Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde hospital, Southern Medical University, Jiazi Road 1 Lunjiao Town, Shunde District, Foshan, Guangdong, 528308, China
- The George Institute for Global Health, NSW 2042 Australia
| |
Collapse
|
20
|
Iyer LM, Nagarajan S, Woelfer M, Schoger E, Khadjeh S, Zafiriou MP, Kari V, Herting J, Pang ST, Weber T, Rathjens FS, Fischer TH, Toischer K, Hasenfuss G, Noack C, Johnsen SA, Zelarayán LC. A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart. Nucleic Acids Res 2019; 46:2850-2867. [PMID: 29394407 PMCID: PMC5887416 DOI: 10.1093/nar/gky049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-β-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-β-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of β-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2–5 and GATA4 in stabilized-β-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/β-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing β-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/β-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway.
Collapse
Affiliation(s)
- Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Sankari Nagarajan
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,Cancer Research UK (CRUK-CI), Cambridge CB2 0RE, UK
| | - Monique Woelfer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Sara Khadjeh
- German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Maria Patapia Zafiriou
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Vijayalakshmi Kari
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Jonas Herting
- German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Sze Ting Pang
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Tobias Weber
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Franziska S Rathjens
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Thomas H Fischer
- German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Karl Toischer
- German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Gerd Hasenfuss
- German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Claudia Noack
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| | - Steven A Johnsen
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK) partner site Goettingen, Goettingen 37075, Germany
| |
Collapse
|
21
|
Fimasartan for Remodeling after Myocardial Infarction. J Clin Med 2019; 8:jcm8030366. [PMID: 30875971 PMCID: PMC6463200 DOI: 10.3390/jcm8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
An angiotensin receptor blocker (ARB) mitigates cardiac remodeling after myocardial infarction (MI). Here, we investigated the effect of fimasartan, a new ARB, on cardiac remodeling after MI. Sprague–Dawley rats were assigned into 3 groups: surgery only (sham group, n = 7), MI without (MI-only group, n = 13), and MI with fimasartan treatment (MI + Fima group, n = 16). MI was induced by the permanent ligation of the left anterior descending artery. Treatment with fimasartan (10 mg/kg) was initiated 24 h after MI and continued for 7 weeks. Rats in the MI + Fima group had a higher mean ejection fraction (66.3 ± 12.5% vs. 51.3 ± 14.8%, P = 0.002) and lower left ventricular end-diastolic diameter (9.14 ± 1.11 mm vs. 9.91 ± 1.43 mm, P = 0.045) than those in the MI-only group at 7 weeks after MI. The infarct size was lower in the MI + Fima than in the MI group (P < 0.05). A microarray analysis revealed that the expression of genes related to the lipid metabolism and mitochondrial membrane ion transporters were upregulated, and those involved in fibrosis and inflammation were downregulated by fimasartan. Fimasartan attenuates cardiac remodeling and dysfunction in rats after MI and may prevent the progression to heart failure after MI.
Collapse
|
22
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
23
|
Meyer IS, Jungmann A, Dieterich C, Zhang M, Lasitschka F, Werkmeister S, Haas J, Müller OJ, Boutros M, Nahrendorf M, Katus HA, Hardt SE, Leuschner F. The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction. EMBO Mol Med 2018; 9:1279-1293. [PMID: 28774883 PMCID: PMC5582413 DOI: 10.15252/emmm.201707565] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A disturbed inflammatory response following myocardial infarction (MI) is associated with poor prognosis and increased tissue damage. Monocytes are key players in healing after MI, but little is known about the role of the cardiac niche in monocyte activation. This study investigated microenvironment‐dependent changes in inflammatory monocytes after MI. RNA sequencing analysis of murine Ly6Chigh monocytes on day 3 after MI revealed differential regulation depending on location. Notably, the local environment strongly impacted components of the WNT signaling cascade. Analysis of WNT modulators revealed a strong upregulation of WNT Inhibitory Factor 1 (WIF1) in cardiomyocytes—but not fibroblasts or endothelial cells—upon hypoxia. Compared to wild‐type (WT) littermates, WIF1 knockout mice showed severe adverse remodeling marked by increased scar size and reduced ejection fraction 4 weeks after MI. While FACS analysis on day 1 after MI revealed no differences in neutrophil numbers, the hearts of WIF1 knockouts contained significantly more inflammatory monocytes than hearts from WT animals. Next, we induced AAV‐mediated cardiomyocyte‐specific WIF1 overexpression, which attenuated the monocyte response and improved cardiac function after MI, as compared to control‐AAV‐treated animals. Finally, WIF1 overexpression in isolated cardiomyocytes limited the activation of non‐canonical WNT signaling and led to reduced IL‐1β and IL‐6 expression in monocytes/macrophages. Taken together, we investigated the cardiac microenvironment's interaction with recruited monocytes after MI and identified a novel mechanism of monocyte activation. The local initiation of non‐canonical WNT signaling shifts the accumulating myeloid cells toward a pro‐inflammatory state and impacts healing after myocardial infarction.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Andreas Jungmann
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Christoph Dieterich
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Min Zhang
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Susann Werkmeister
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Michael Boutros
- DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hugo A Katus
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Stefan E Hardt
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Florian Leuschner
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| |
Collapse
|
24
|
Ren J, Ma R, Zhang Z, Li Y, Lei P, Men J. Retracted
: Effects of microRNA‐330 on vulnerable atherosclerotic plaques formation and vascular endothelial cell proliferation through the WNT signaling pathway in acute coronary syndrome. J Cell Biochem 2018; 119:4514-4527. [DOI: 10.1002/jcb.26584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jing Ren
- Precision Medicine CenterTianjin Medical University General HospitalTianjinP.R. China
| | - Rui Ma
- Precision Medicine CenterTianjin Medical University General HospitalTianjinP.R. China
| | - Zhu‐Bo Zhang
- Precision Medicine CenterTianjin Medical University General HospitalTianjinP.R. China
| | - Yang Li
- Precision Medicine CenterTianjin Medical University General HospitalTianjinP.R. China
| | - Ping Lei
- Department of GeriatricsTianjin Medical University General HospitalTianjinP.R. China
| | - Jian‐Long Men
- Precision Medicine CenterTianjin Medical University General HospitalTianjinP.R. China
| |
Collapse
|
25
|
Gross JC, Zelarayán LC. The Mingle-Mangle of Wnt Signaling and Extracellular Vesicles: Functional Implications for Heart Research. Front Cardiovasc Med 2018; 5:10. [PMID: 29564334 PMCID: PMC5850280 DOI: 10.3389/fcvm.2018.00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling is an important pathway in health and disease and a key regulator of stem cell maintenance, differentiation, and proliferation. During heart development, Wnt signaling controls specification, proliferation and differentiation of cardiovascular cells. In this regard, the role of activated Wnt signaling in cardiogenesis is well defined. However, the knowledge about signaling transmission has been challenged. Recently, the packaging of hydrophobic Wnt proteins on extracellular vesicles (EVs) has emerged as a mechanism to facilitate their extracellular spreading and their functioning as morphogens. EVs spread systemically and therefore can have pleiotropic effects on very different cell types. They are heavily studied in tumor biology where they affect tumor growth and vascularization and can serve as biomarkers in liquid biopsies. In this review we will highlight recent discoveries of factors involved in the release of Wnts on EVs and its potential implications in the communication between physiological and pathological heart cells.
Collapse
Affiliation(s)
- Julia Christina Gross
- Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany.,Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| |
Collapse
|
26
|
Lee CY, Kuo WW, Baskaran R, Day CH, Pai PY, Lai CH, Chen YF, Chen RJ, Padma VV, Huang CY. Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes. Cardiovasc Pathol 2017; 31:9-16. [PMID: 28802159 DOI: 10.1016/j.carpath.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
Defective Wnt/β-Catenin signaling, activated under various pathological conditions, can result in cardiac and vascular abnormalities. In the present study, the possible role of β-catenin over expression during cardiac hypertrophy was investigated. Ten samples from hearts of human patients with acute infarction, and granulation tissue from 20 patients and 10 from normal ones were collected in order to investigate roles of β-catenin in cardiac hypertrophy. H9c2 cardiomyoblast cells and Wistar rat primary neonatal cardiomyocytes were overexpressed with β-catenin. Expression levels of β-catenin protein were increased in human acute infarction tissues and rat hypertension heart tissues. Overexpression of this transcription factor induced actin filament formation and increased hypertrophic marker protein levels via MAPK pathway. In addition, β-catenin overexpression also resulted in increased elevation of NFATc3 and p-GATA4. Therefore, acute infarction resulted in β-catenin overexpression mediated hypertrophy in cardiomyocytes regulated through MAPK pathway.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Department of Cardiology, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Wei Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | | | - Pei Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chao Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung 41152, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung 41152, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Chih Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
| |
Collapse
|
27
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
28
|
Wu X, Liu W, Jiang H, Chen J, Wang J, Zhu R, Li B. Kindlin-2 siRNA inhibits vascular smooth muscle cell proliferation, migration and intimal hyperplasia via Wnt signaling. Int J Mol Med 2015; 37:436-44. [PMID: 26676966 DOI: 10.3892/ijmm.2015.2429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/01/2015] [Indexed: 11/06/2022] Open
Abstract
It is known that vascular smooth muscle cell (VSMC) proliferation and migration leads to intimal hyperplasia in cases of atherosclerosis and restenosis. In the present study, we investigated the effects of kindlin-2 on VSMC proliferation, migration and intimal hyperplasia, and the underlying mechanisms. The left common carotid artery of Sprague‑Dawley rats were subjected to balloon injury in order to induce intimal hyperplasia, and then transfected with kindlin-2 small interfering RNA (siRNA) lentivirus or negative control siRNA lentivirus. We noted that the degree of intimal hyperplasia 4 weeks after balloon injury was significantly reduced in arteries transfected with kindlin-2 siRNA lentivirus (P<0.05). In vitro, kindlin-2 siRNA suppressed VSMC proliferation and migration induced by Wnt3a (100 ng/ml). Western blot analyses and RT-qPCR revealed that kindlin-2 regulated Wnt/β-catenin signaling and thereby modulated the expression of β-catenin target genes, including c-myc and cyclin D1. This study demonstrated that kindlin-2 plays a critical role in VSMC proliferation, migration and intimal hyperplasia via Wnt signaling. Therefore, blocking the activity of kindlin-2 represents a novel therapeutic strategy for vascular injury.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenwei Liu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui Zhu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| | - Bin Li
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
29
|
Affiliation(s)
- Amy C Arnold
- Division of Clinical Pharmacology and Vanderbilt Autonomic Dysfunction Center, Vanderbilt University School of Medicine, Nashville, TN
| | - David Robertson
- Division of Clinical Pharmacology and Vanderbilt Autonomic Dysfunction Center, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
30
|
Secreted Frizzled Related Protein 3 in Chronic Heart Failure: Analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One 2015; 10:e0133970. [PMID: 26288364 PMCID: PMC4545831 DOI: 10.1371/journal.pone.0133970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/03/2015] [Indexed: 01/14/2023] Open
Abstract
Background We have previously demonstrated an association between increased sFRP3 expression and adverse outcome in a population of HF irrespective of cause and left ventricular ejection fraction. In this study we evaluated the prognostic value of sFRP3 in older patients with chronic systolic HF of ischemic origin. Methods We evaluated sFRP3, by tertiles, as a risk factor for the primary endpoint (cardiovascular [CV] mortality, nonfatal myocardial infarction, nonfatal stroke), all-cause mortality, CV mortality, death from worsening HF (WHF), any coronary event, including sudden death, as well as hospitalizations for CV causes and WHF in 1444 patients from the CORONA population, randomly assigned to 10 mg rosuvastatin or placebo. Results Kaplan-Meier curves for the primary endpoint, as well as all-cause- and CV mortality revealed a markedly better survival for patients with sFRP3 levels in the middle tertile of compared to the 1st and 3rd tertile. In multivariable Cox-regression, after full adjustment including high-sensitive CRP and NT-proBNP, a lower event rate for the primary end point, all cause and CV mortality was observed for patients with tertile 2 sFRP3 levels (HR 0.57 [0.44–0.74], 0.55 [0.44–0.74] and 0.52 [0.39–0.69]; p<0.001), as well as for the number of coronary events (HR 0.62 [0.47–0.82], p = 0.001) and sudden death (HR 0.55 [0.37–0.82], p = 0.002). Applying sFRP3 values to the fully adjusted regression model resulted in highly significant continuous net reclassification improvements for the primary endpoint, all cause and CV mortality, coronary events and sudden death (range 0.24–0.31; p≤0.002 for all). Conclusions Intermediate serum sFRP3 levels are associated with better survival and fewer CV events than low or high sFRP3 levels, independently of conventional risk factors, in older patients with chronic systolic HF of ischemic origin. Our study suggests that balanced Wnt activity might confer protective effects in a clinical HF setting. Trial Registration http://www.clinicaltrials.govNCT00206310
Collapse
|
31
|
FrzA gene protects cardiomyocytes from H2O2-induced oxidative stress through restraining the Wnt/Frizzled pathway. Lipids Health Dis 2015; 14:90. [PMID: 26282432 PMCID: PMC4539933 DOI: 10.1186/s12944-015-0088-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/25/2015] [Indexed: 12/16/2022] Open
Abstract
Background Lately, there is accumulating evidence that the Wnt/Frizzled pathway is reactivated after myocardial infarction, the inhibition of the pathway is beneficial since it reduce of myocardial apoptosis and prevents heart failure. FrzA/Sfrp-1, a secreted frizzled-related protein and antagonist for the wnt/frizzled pathway. We assessed the hypothesis that FrzA protects cardiomyocytes from H2O2-Induced Oxidative damage through the inhibition of Wnt/Frizzled pathway activity. Methods We used a recombinant AAV9 vector to deliver FrzA gene into neonatal rat ventricle myocytes and developed an oxidative stress model using H2O2. The cell vitality was measured by MTT colorimetric assay. Western blot and RT-PCR were used to evaluate the expressions of Dvl-1, β-catenin, c-Myc, Bax and Bcl-2. Flow cytometry analysis of cardiomyocytes apoptosis. Results We confirmed that Wnt/frizzled pathway is involved in H2O2-induced apoptosis in cardiomyocytes. Compared with controls, H2O2 induced the upregulation of Dvl-1, β-catenin, and c-Myc. FrzA suppressed the expression of Dvl-1, β-catenin, c-Myc and the activity of the Wnt/frizzled pathway. Furthermore, FrzA over-expression decreased the apoptotic rate, and the Bax/Bcl-2 ratio in cardiomyocytes treated with H2O2. Conclusions FrzA, through the inhibition of Wnt/Frizzled pathway activity reduced H2O2-induced cardiomyocytes apoptosis and could be a potential therapeutic target for prevention of cardiac oxidative damage.
Collapse
|
32
|
Kessler EL, van Veen TAB. A fishing trip to cure arrhythmogenic cardiomyopathy? ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:90. [PMID: 26015932 DOI: 10.3978/j.issn.2305-5839.2015.01.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 11/14/2022]
Abstract
The paper entitled "Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy", as published in 2014 in Science Translational Medicine, examined the effects of the newly discovered drug SB216763 (SB21) on arrhythmogenic cardiomyopathy (ACM). In this paper, the authors focused on mechanisms underlying ACM and the accompanying molecular and cellular alterations. Most importantly they showed that SB21 was able to rescue and partly reverse the ACM phenotype in three different experimental models: (I) a zebrafish model of Naxos disease induced by the overexpression of the 2057del2 mutation in plakoglobin (PKG); (II) neonatal rat cardiomyocytes overexpressing the same mutation in PKG; (III) cardiomyocytes derived from induced pluripotent stem cells expressing two different forms of mutations in plakophilin-2. This editorial will focus on the potency and possible restrictions concerning SB21 treatment as a potential intervention for ACM and the usefulness of the applied zebrafish models in general.
Collapse
Affiliation(s)
- Elise L Kessler
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht Utrecht, The Netherlands
| |
Collapse
|
33
|
Matthijs Blankesteijn W, Hermans KCM. Wnt signaling in atherosclerosis. Eur J Pharmacol 2015; 763:122-30. [PMID: 25987418 DOI: 10.1016/j.ejphar.2015.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/01/2015] [Indexed: 02/03/2023]
Abstract
Atherosclerosis is a disease of the vascular wall that forms the basis for a large spectrum of pathologies of various organs and tissues. Although massive research efforts in the last decades have yielded valuable information about its underlying molecular mechanisms, this has not led to a translation into effective therapeutic interventions that can stop the progression or even can induce regression of atherosclerosis. This underscores the importance of investigations on the involvement of novel signaling pathways in the development and progression of this condition. In this review we focus on the role of Wnt signaling in atherosclerosis. Experimental evidence is presented that Wnt signaling is involved in many aspects of the development and progression of vascular lesions including endothelial dysfunction, macrophage activation and the proliferation and migration of vascular smooth muscle cells. Subsequently, we will discuss the role of Wnt signaling in myocardial infarction and stroke, two common pathologies resulting from the progression of atherosclerotic lesions towards an unstable phenotype. Despite the fact that the published data sometimes are ambiguous or even conflicting, a picture is emerging that an attenuation of Wnt signaling is beneficial for the cardiovascular system that is compromised by atherosclerosis.
Collapse
Affiliation(s)
- W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| |
Collapse
|
34
|
Jin Y, Wang W, Chai S, Liu J, Yang T, Wang J. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice. Exp Biol Med (Maywood) 2015; 240:1742-51. [PMID: 25956683 DOI: 10.1177/1535370215584889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.
Collapse
Affiliation(s)
- Yuling Jin
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Sanbao Chai
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Jie Liu
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100016, P.R. China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
35
|
Ding LC, Huang XY, Zheng FF, Xie J, She L, Feng Y, Su BH, Zheng DL, Lu YG. FZD2 inhibits the cell growth and migration of salivary adenoid cystic carcinomas. Oncol Rep 2015; 35:1006-12. [PMID: 25695658 DOI: 10.3892/or.2015.3811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 11/06/2022] Open
Abstract
Several studies have reported that FZD2 regulates tumor biology in a complex manner. The aim of the present study was to identify the role of FZD2 in the cell growth and metastasis of salivary adenoid cystic carcinomas (SACCs). The expression of FZD2 in ACC-83 and ACC-LM cells were measured with real-time PCR. Immunohistochemical staining was used to detect the expression of FZD2 in clinical SACC samples with or without metastasis. Cell proliferation and Transwell assays were performed to explore the effects of FZD2 on cell growth and migration following the silencing of FZD2 with small interference RNAs and the overexpression of FZD2 with plasmid. Our data showed that FZD2 was downregulated in ACC-LM cells, which are an adenoid cystic carcinoma cell line with high metastatic potential, compared to ACC-83 cells, which have low metastatic potential. Additionally, the expression of FZD2 was lower in SACC tissues with metastasis compared to SACC tissues without metastasis (P<0.05). Cell proliferation and migration of ACC-83 cells were increased after the knockdown of FZD2 and decreased following overexpression of FZD2. Knockdown of FZD2 downregulated the expression of PAI-1. Our results suggest that FZD2 may be a tumor suppressor gene in SACCs that inhibits cell growth and migration.
Collapse
Affiliation(s)
- Lin-Can Ding
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Xiao-Yu Huang
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Fei-Fei Zheng
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Jian Xie
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Lin She
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Yan Feng
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Bo-Hua Su
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, P.R. China
| | - You-Guang Lu
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| |
Collapse
|
36
|
Lin J, Kirshenbaum LA. Wnt-1 Dishevelled Signaling Functionally Links Calcium-Calmodulin–Dependent Protein Kinase II and Cardiac Dysfunction. Hypertension 2015; 65:287-8. [DOI: 10.1161/hypertensionaha.114.04616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junjun Lin
- From the Department of Physiology and Pathophysiology, Faculty of Health Sciences, College of Medicine, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A. Kirshenbaum
- From the Department of Physiology and Pathophysiology, Faculty of Health Sciences, College of Medicine, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
37
|
Zhang M, Hagenmueller M, Riffel JH, Kreusser MM, Bernhold E, Fan J, Katus HA, Backs J, Hardt SE. Calcium/calmodulin-dependent protein kinase II couples Wnt signaling with histone deacetylase 4 and mediates dishevelled-induced cardiomyopathy. Hypertension 2014; 65:335-44. [PMID: 25489064 DOI: 10.1161/hypertensionaha.114.04467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of Wnt signaling results in maladaptive cardiac remodeling and cardiomyopathy. Recently, calcium/calmodulin-dependent protein kinase II (CaMKII) was reported to be a pivotal participant in myocardial remodeling. Because CaMKII was suggested as a downstream target of noncanonical Wnt signaling, we aimed to elucidate the role of CaMKII in dishevelled-1-induced cardiomyopathy and the mechanisms underlying its function. Dishevelled-1-induced cardiomyopathy was reversed by deletion of neither CaMKIIδ nor CaMKIIγ. Therefore, dishevelled-1-transgenic mice were crossed with CaMKIIδγ double-knockout mice. These mice displayed a normal cardiac phenotype without cardiac hypertrophy, fibrosis, apoptosis, or left ventricular dysfunction. Further mechanistic analyses unveiled that CaMKIIδγ couples noncanonical Wnt signaling to histone deacetylase 4 and myosin enhancer factor 2. Therefore, our findings indicate that the axis, consisting of dishevelled-1, CaMKII, histone deacetylase 4, and myosin enhancer factor 2, is an attractive therapeutic target for prevention of cardiac remodeling and its progression to left ventricular dysfunction.
Collapse
Affiliation(s)
- Min Zhang
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Marco Hagenmueller
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Johannes H Riffel
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Michael M Kreusser
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Elmar Bernhold
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Jingjing Fan
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Hugo A Katus
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Johannes Backs
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Stefan E Hardt
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.).
| |
Collapse
|
38
|
Xing Y, Liu Z, Yang G, Gao D, Niu X. MicroRNA expression profiles in rats with selenium deficiency and the possible role of the Wnt/β-catenin signaling pathway in cardiac dysfunction. Int J Mol Med 2014; 35:143-52. [PMID: 25339460 DOI: 10.3892/ijmm.2014.1976] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/07/2014] [Indexed: 11/06/2022] Open
Abstract
Selenium deficiency is a causative factor in heart failure and microRNAs (known as miRNAs or miRs) play an important role in numerous cardiovascular diseases. However, the changes of miRNA expression during selenium deficiency and whether selenium deficiency is involved in cardiac dysfunction remain unclear. In the present study, miRNA expression profiling was carried out in normal rats, selenium-deficient rats and selenium-supplemented rats by miRNA microarray. Cardiac function was evaluated by analyzing the plasma brain natriuretic peptide level, echocardiographic parameters and hemodynamic parameters. Cardiac glutathione peroxidase activity was assessed by spectrophotometry. The histological changes were examined by hematoxylin and eosin staining. Electrocardiograph was used to test the arrhythmia. The differentially expressed miRNAs were verified by reverse transcription-polymerase chain reaction. Additionally, the underlying mechanism associated with the Wnt/β-catenin signaling pathway was further explored. The cardiac dysfunction of the rat with selenium deficiency was mainly associated with five upregulated miRNAs, which were miR-374, miR-16, miR-199a-5p, miR-195 and miR-30e*, and three downregulated miRNAs, which were miR-3571, miR-675 and miR-450a*. Among these, the expression of miR-374 was the highest, which may be of vital importance in rats with selenium deficiency. In conclusion, the possible mechanism of selenium deficiency-induced cardiac dysfunction was associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yujie Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongwei Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
39
|
Asimaki A, Saffitz JE. Remodeling of cell-cell junctions in arrhythmogenic cardiomyopathy. ACTA ACUST UNITED AC 2014; 21:13-23. [PMID: 24460198 DOI: 10.3109/15419061.2013.876016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Arrhythmogenic cardiomyopathy (AC) is a primary myocardial disorder characterized by a high incidence of ventricular arrhythmias often preceding the onset of ventricular remodeling and dysfunction. Approximately 50% of patients diagnosed with AC have one or more mutations in genes encoding desmosomal proteins, although non-desmosomal genes have also been associated with the disease. Increasing evidence implicates remodeling of intercalated disk proteins reflecting abnormal responses to mechanical load and aberrant cell signaling pathways in the pathogenesis of AC. This review summarizes recent advances in understanding disease mechanisms in AC that have come from studies of human myocardium and experimental models.
Collapse
Affiliation(s)
- Angeliki Asimaki
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|
40
|
Hagenmueller M, Riffel JH, Bernhold E, Fan J, Katus HA, Hardt SE. Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett 2014; 588:2230-7. [PMID: 24879894 DOI: 10.1016/j.febslet.2014.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/28/2022]
Abstract
The Wnt signaling pathway was identified as crucial mediator of cardiomyocyte hypertrophy. In this study we found that activation of non-canonical Wnt signaling by Wnt5a stimulates protein synthesis and enlargement of cardiomyocyte surface area. These hypertrophic features were inhibited in Dapper-1 (Dpr1) depleted cells. On the molecular level, we observed inhibition of the non-canonical Wnt/planar-cell-polarity (PCP) pathway denoted by reduction of c-jun-n-terminal-kinase (JNK) phosphorylation. Upstream of JNK, increased protein levels of the Wnt/PCP trans-membrane receptor van-Gogh-like-2 (Vangl2) were observed along with an enrichment of Vangl2 in perinuclear located vesicles. The findings suggest that Dpr1 is essential for execution of the Wnt/PCP pathway and regulation of the Vangl2/JNK axis. Depletion of Dpr1 inhibits non-canonical Wnt signaling induced cardiomyocyte hypertrophy by blocking Wnt/PCP signaling.
Collapse
Affiliation(s)
- Marco Hagenmueller
- Department of Cardiology, University Hospital of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Johannes H Riffel
- Department of Cardiology, University Hospital of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Elmar Bernhold
- Department of Cardiology, University Hospital of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Jingjing Fan
- Department of Cardiology, University Hospital of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital of Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Stefan E Hardt
- Department of Cardiology, University Hospital of Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
41
|
Wu X, Wang J, Jiang H, Hu Q, Chen J, Zhang J, Zhu R, Liu W, Li B. Wnt3a activates β1-integrin and regulates migration and adhesion of vascular smooth muscle cells. Mol Med Rep 2014; 9:1159-64. [PMID: 24535659 DOI: 10.3892/mmr.2014.1937] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are known to undergo functional changes that contribute to the pathogenesis of atherosclerosis and restenosis. Wnts are a family of secreted glycoproteins that bind to transmembrane Frizzled receptors and initiate signaling cascades with indispensable roles during cell migration, adhesion, proliferation, and survival. The present study reports that wingless-type MMTV integration site family, member 3a (Wnt3a) activates the canonical Wnt pathway in rat VSMCs by triggering the phosphorylation of β-catenin at position Ser675 and GSK-3β at position Ser9. Phosphorylation of these two proteins increases VSMC migration and adhesion. In a search for the downstream mediators of Wnt3a's effects on VSMC migration and adhesion, Wnt3a treatment was observed to increase integrin-linked kinase (ILK) protein expression. ILK is a serine/threonine protein kinase that is thought to control cell migration and adhesion by regulating the affinity of β1-integrin for the extracellular matrix. Wnt3a treatment of VSMCs also activated β1-integrin without changing the quantity of protein expressed on the cell surface. These results demonstrate that Wnt3a enhances migration and adhesion of VSMCs by activating β1-integrin.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui Zhu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| | - Wenwei Liu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| | - Bin Li
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
42
|
Role of Wnt/β-catenin signaling pathway in the mechanism of calcification of aortic valve. ACTA ACUST UNITED AC 2014; 34:33-36. [PMID: 24496676 DOI: 10.1007/s11596-014-1228-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 11/01/2013] [Indexed: 12/12/2022]
Abstract
Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the process of calcification of aortic valve, porcine aortic valve interstitial cells (VICs) were isolated, cultured and stimulated with oxidized low density lipoprotein (ox-LDL) for 48 h to induce the differentiation of VICs into osteoblast-like cells. The key proteins and genes of Wnt/β-catenin signaling pathway, such as glycogen synthase kinase 3β (GSK-3β) and β-catenin, were detected by using Western blotting and real-time polymerase chain reaction (PCR). The results showed that the VICs managed to differentiate into osteoblast-like cells after the stimulation with ox-LDL and the levels of proteins and genes of GSK-3β and β-catenin were increased significantly in VICs after stimulation for 48 h (P<0.05). It is suggested that Wnt/β-catenin signaling pathway may play a key role in the differentiation of VICs into osteoblast-like cells and make great contribution to aortic valve calcification.
Collapse
|
43
|
Gewies A, Castineiras-Vilarino M, Ferch U, Jährling N, Heinrich K, Hoeckendorf U, Przemeck GKH, Munding M, Groß O, Schroeder T, Horsch M, Karran EL, Majid A, Antonowicz S, Beckers J, Hrabé de Angelis M, Dodt HU, Peschel C, Förster I, Dyer MJS, Ruland J. Prdm6 is essential for cardiovascular development in vivo. PLoS One 2013; 8:e81833. [PMID: 24278461 PMCID: PMC3836774 DOI: 10.1371/journal.pone.0081833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the PRDM protein family have been shown to play important roles during embryonic development. Previous in vitro and in situ analyses indicated a function of Prdm6 in cells of the vascular system. To reveal physiological functions of Prdm6, we generated conditional Prdm6-deficient mice. Complete deletion of Prdm6 results in embryonic lethality due to cardiovascular defects associated with aberrations in vascular patterning. However, smooth muscle cells could be regularly differentiated from Prdm6-deficient embryonic stem cells and vascular smooth muscle cells were present and proliferated normally in Prdm6-deficient embryos. Conditional deletion of Prdm6 in the smooth muscle cell lineage using a SM22-Cre driver line resulted in perinatal lethality due to hemorrhage in the lungs. We thus identified Prdm6 as a factor that is essential for the physiological control of cardiovascular development.
Collapse
Affiliation(s)
- Andreas Gewies
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Laboratory of Signaling in the Immune System, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mercedes Castineiras-Vilarino
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Uta Ferch
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Nina Jährling
- Department of Bioelectronics, Institute of Solid State Electronics, Vienna University of Technology, Vienna, Austria
- Center for Brain Research, Section of Bioelectronics, Medical University of Vienna, Vienna, Austria
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Katja Heinrich
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrike Hoeckendorf
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Munding
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Stem Cell Dynamics, Neuherberg, Germany
| | - Olaf Groß
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Timm Schroeder
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Stem Cell Dynamics, Neuherberg, Germany
| | - Marion Horsch
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - E. Loraine Karran
- MRC Toxicology Unit and Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Aneela Majid
- MRC Toxicology Unit and Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Stefan Antonowicz
- MRC Toxicology Unit and Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, Institute of Solid State Electronics, Vienna University of Technology, Vienna, Austria
- Center for Brain Research, Section of Bioelectronics, Medical University of Vienna, Vienna, Austria
| | - Christian Peschel
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Irmgard Förster
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Martin J. S. Dyer
- MRC Toxicology Unit and Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Laboratory of Signaling in the Immune System, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Infection Research (DZIF), partner site München, Munich, Germany
- * E-mail:
| |
Collapse
|
44
|
Pandey S. Targeting Wnt-Frizzled signaling in cardiovascular diseases. Mol Biol Rep 2013; 40:6011-8. [PMID: 24057182 DOI: 10.1007/s11033-013-2710-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023]
Abstract
Wnts are secreted glycoproteins implicated in biological processes ranging from embryonic cardiac development to uncontrolled cell proliferation in diseased conditions. Cardiovascular disease is a major cause of morbidity and mortality worldwide. Phenotypic modulation of vascular smooth muscle cells, migration and proliferation in intimal layer and increased extracellular matrix production are some of the known hallmarks of cardiovascular pathologies. Heterogeneity associated with the binding of Wnts to their transmembrane receptors, Frizzled, and coreceptors low density lipoprotein-receptor-related protein is indeed intriguing. Nuclear-cytoplasmic shuttling of beta-catenin and activation of transcriptional factors, lymphoid enhancer factor and T cell activation factor leading to target gene activation has remained elusive. Our review highlights the emerging role of Wnt-Frizzled signaling in cardiovascular diseases. Overall, the pathway appears to be an attractive therapeutic target in identifying susceptible individuals at risk of developing restenosis/other vascular pathologies in the near future.
Collapse
Affiliation(s)
- Saumya Pandey
- Krishna Medical Centre, 1, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India,
| |
Collapse
|
45
|
Hutter R, Huang L, Speidl WS, Giannarelli C, Trubin P, Bauriedel G, Klotman ME, Fuster V, Badimon JJ, Klotman PE. Novel small leucine-rich repeat protein podocan is a negative regulator of migration and proliferation of smooth muscle cells, modulates neointima formation, and is expressed in human atheroma. Circulation 2013; 128:2351-63. [PMID: 24043300 DOI: 10.1161/circulationaha.113.004634] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smooth muscle cell (SMC) migration and proliferation critically influence the clinical course of vascular disease. We tested the effect of the novel small leucine-rich repeat protein podocan on SMC migration and proliferation using a podocan-deficient mouse in combination with a model of arterial injury and aortic explant SMC culture. In addition, we examined the effect of overexpression of the human form of podocan on human SMCs and tested for podocan expression in human atherosclerosis. In all these conditions, we concomitantly evaluated the Wnt-TCF (T-cell factor) pathway. METHODS AND RESULTS Podocan was strongly and selectively expressed in arteries of wild-type mice after injury. Podocan-deficient mice showed increased arterial lesion formation compared with wild-type littermates in response to injury (P<0.05). Also, SMC proliferation was increased in arteries of podocan-deficient mice compared with wild-type (P<0.05). In vitro, migration and proliferation were increased in podocan-deficient SMCs and were normalized by transfection with the wild-type podocan gene (P<0.05). In addition, upregulation of the Wnt-TCF pathway was found in SMCs of podocan-deficient mice both in vitro and in vivo. On the other hand, podocan overexpression in human SMCs significantly reduced SMC migration and proliferation, inhibiting the Wnt-TCF pathway. Podocan and a Wnt-TCF pathway marker were differently expressed in human coronary restenotic versus primary lesions. CONCLUSIONS Podocan appears to be a potent negative regulator of the migration and proliferation of both murine and human SMCs. The lack of podocan results in excessive arterial repair and prolonged SMC proliferation, which likely is mediated by the Wnt-TCF pathway.
Collapse
Affiliation(s)
- Randolph Hutter
- Departments of Medicine and Cardiology, Mount Sinai School of Medicine, New York, NY (R.H., L.H., W.S.S., C.G., P.T., V.F., J.J.B.); Department of Cardiology, Elisabeth Klinikum, Schmalkalden, Germany (G.B.); Department of Medicine, Duke University, Durham, NC (M.E.K.); and Department of Medicine, Baylor College of Medicine, Houston, TX (P.E.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zaitseva M, Holdsworth-Carson SJ, Waldrip L, Nevzorova J, Martelotto L, Vollenhoven BJ, Rogers PAW. Aberrant expression and regulation of NR2F2 and CTNNB1 in uterine fibroids. Reproduction 2013; 146:91-102. [DOI: 10.1530/rep-13-0087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uterine fibroids are the most common benign tumour afflicting women of reproductive age. Despite the large healthcare burden caused by fibroids, there is only limited understanding of the molecular mechanisms that drive fibroid pathophysiology. Although a large number of genes are differentially expressed in fibroids compared with myometrium, it is likely that most of these differences are a consequence of the fibroid presence and are not causal. The aim of this study was to investigate the expression and regulation of NR2F2 and CTNNB1 based on their potential causal role in uterine fibroid pathophysiology. We used real-time quantitative RT-PCR, western blotting and immunohistochemistry to describe the expression of NR2F2 and CTNNB1 in matched human uterine fibroid and myometrial tissues. Primary myometrial and fibroid smooth muscle cell cultures were treated with progesterone and/or retinoic acid (RA) and sonic hedgehog (SHH) conditioned media to investigate regulatory pathways for these proteins. We showed that NR2F2 and CTNNB1 are aberrantly expressed in fibroid tissue compared with matched myometrium, with strong blood vessel-specific localisation. Although the SHH pathway was shown to be active in myometrial and fibroid primary cultures, it did not regulateNR2F2orCTNNB1mRNA expression. However, progesterone and RA combined regulatedNR2F2mRNA, but notCTNNB1, in myometrial but not fibroid primary cultures. In conclusion, we demonstrate aberrant expression and regulation of NR2F2 and CTNNB1 in uterine fibroids compared with normal myometrium, consistent with the hypothesis that these factors may play a causal role uterine fibroid development.
Collapse
|
47
|
Abstract
Myocardial infarction is one of the major causes of left ventricular dilatation, frequently leading to heart failure. In the last decade, the wound healing process that takes place in the infarct area after infarction has been recognized as a novel therapeutic target to attenuate left ventricular dilatation and preserve an adequate cardiac function. In this chapter, we discuss the role of Wnt signaling in the wound healing process after infarction, with a specific focus on its modulating effect on myofibroblast characteristics.
Collapse
|
48
|
Targeting the Wnt/frizzled signaling pathway after myocardial infarction: a new tool in the therapeutic toolbox? Trends Cardiovasc Med 2012; 23:121-7. [PMID: 23266229 DOI: 10.1016/j.tcm.2012.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022]
Abstract
Wnt/frizzled signaling in the adult heart is quiescent under normal conditions; however it is reactivated after myocardial infarction (MI). Any intervention at the various levels of this pathway can modulate its signaling. Several studies have targeted Wnt/frizzled signaling after MI with the majority of them indicating that the inhibition of the pathway is beneficial since it improves infarct healing and prevents heart failure. This suggests that blocking the Wnt/frizzled signaling pathway could be a potential novel therapeutic target to prevent the adverse cardiac remodeling after MI.
Collapse
|
49
|
Jagadeesh G, Balakumar P, Stockbridge N. How well do aliskiren's purported mechanisms track its effects on cardiovascular and renal disorders? Cell Signal 2012; 24:1583-91. [DOI: 10.1016/j.cellsig.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/04/2012] [Indexed: 01/27/2023]
|
50
|
Koval A, Katanaev VL. Platforms for high-throughput screening of Wnt/Frizzled antagonists. Drug Discov Today 2012; 17:1316-22. [PMID: 22819927 DOI: 10.1016/j.drudis.2012.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/04/2012] [Accepted: 07/13/2012] [Indexed: 12/22/2022]
Abstract
Signaling cascades initiated by Wnt lipoglycoproteins and their receptors of the Frizzled family regulate many aspects of animal development and physiology. Improper activation of this signaling promotes carcinogenic transformation and metastasis. Development of agents blocking the Wnt-Frizzled signaling is of prime interest for drug discovery. Despite certain progress no such agents are as yet brought to the market or even to clinical trials. One reason for these delays might be the use of suboptimal readout assays. In this article we overview existing and developing assay platforms to screen for Wnt-Frizzled antagonists. Among those, G protein-activating assays built on the emerging GPCR properties of Frizzleds are highlighted.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|