1
|
Xiao G, Wang X, Xu Z, Liu Y, Jing J. Lung-specific metastasis: the coevolution of tumor cells and lung microenvironment. Mol Cancer 2025; 24:118. [PMID: 40241074 PMCID: PMC12001740 DOI: 10.1186/s12943-025-02318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The vast majority of cancer-related deaths are attributed to metastasis. The lung, being a common site for cancer metastasis, is highly prone to being a target for multiple cancer types and causes a heavy disease burden. Accumulating evidence has demonstrated that tumor metastasis necessitates continuous interactions between tumor cells and distant metastatic niches. Nevertheless, a comprehensive elucidation of the underlying mechanisms governing lung-specific metastasis still poses a formidable challenge. In this review, we depict the lung susceptibility and the molecular profiles of tumors with the potential for lung metastasis. Under the conceptual framework of "Reciprocal Tumor-Lung Metastatic Symbiosis" (RTLMS), we mechanistically delineate the bidirectional regulatory dynamics and coevolutionary adaptation between tumor cells and distal pulmonary niches during lung-specific metastasis, including the induction of pre-metastatic-niches, positive responses of the lung, tumor colonization, dormancy, and reawakening. An enhanced understanding of the latest mechanisms is essential for developing targeted strategies to counteract lung-specific metastasis.
Collapse
Affiliation(s)
- Guixiu Xiao
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinmin Wang
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jing Jing
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Wu S, Wu Z, Lu Z, Qi F, Cheng J, Chu T, Li B, Zhao Y, Nie G, Li S. Selective apoptosis of tumor-associated platelets boosts the anti-metastatic potency of PD-1 blockade therapy. Cell Rep Med 2025; 6:101984. [PMID: 40020674 PMCID: PMC11970387 DOI: 10.1016/j.xcrm.2025.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Despite the transformative impact of programmed cell death protein-1 (PD-1) blockade therapy on metastatic/advanced solid tumor treatment, its efficacy is hindered by a limited response rate. Platelets play a pivotal role in tumor metastasis by shielding circulating tumor cells and secreting immunosuppressive factors. We here demonstrate that selectively inducing apoptosis in tumor-associated platelets (TAPs) using ABT-737-loaded nanoparticles (cyclic arginine-glycine-aspartate containing peptide-modified ABT-737-loaded nanoparticles [cRGD-NP@A]) enhances the anti-metastatic efficacy of the anti-PD-1 antibody (aPD-1). cRGD-NP@A specifically binds to TAPs, disrupting platelet-tumor cell interactions and exposing tumor cells to immune surveillance in vivo. Combined with aPD-1, cRGD-NP@A substantially augments immune activation and reduces TAP-derived immunosuppressive factors, notably transforming growth factor β1 (TGF-β1), consequently improving anti-metastatic outcomes across multiple metastasis-bearing animal models without observable adverse effects. Our study underscores the importance of depleting TAPs to enhance PD-1 blockade therapy, presenting a promising strategy to improve response rates and clinical outcomes for patients with metastatic cancer.
Collapse
Affiliation(s)
- Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Jin Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; School of Astronautics, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
3
|
Qiang L, Zhao B, Ming M, Wang N, He TC, Hwang S, Thorburn A, He YY. Autophagy regulates tumor growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564991. [PMID: 37961427 PMCID: PMC10635024 DOI: 10.1101/2023.10.31.564991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The role of autophagy in tumorigenesis and tumor metastasis remains poorly understood. Here we show that inhibition of autophagy stabilizes the transcription factor Twist1 through Sequestosome-1 (SQSTM1, also known as p62) and thus increases cell proliferation, migration, and epithelial-mesenchymal transition (EMT) in tumor development and metastasis. Inhibition of autophagy or p62 overexpression blocks Twist1 protein degradation in the proteasomes, while p62 inhibition enhances it. SQSTM1/p62 interacts with Twist1 via the UBA domain of p62, in a Twist1-ubiquitination-dependent manner. Lysine 175 in Twist1 is critical for Twist1 ubiquitination, degradation, and SQSTM1/p62 interaction. For squamous skin cancer and melanoma cells that express Twist1, SQSTM1/p62 increases tumor growth and metastasis in mice. Together, our results identified Twist1 as a key downstream protein for autophagy and suggest a critical role of the autophagy/p62/Twist1 axis in cancer development and metastasis.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Mei Ming
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Ning Wang
- Department of Orthopaedic Surgery & Rehabilitation Medicine, University of Chicago, Chicago, IL, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery & Rehabilitation Medicine, University of Chicago, Chicago, IL, USA
| | - Seungmin Hwang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
I El Habbash A, El Rashedy A, Soliman MES. Comparative Dynamic Features of Apo and Bound MDM2 Protein Reveal the Mechanism of Inhibitor Recognition for Anti-Cancer Activity. Curr Med Chem 2023; 30:1193-1206. [PMID: 35702782 DOI: 10.2174/0929867329666220610194919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mouse Double Minute 2 Homolog (MDM2) oncogenic protein is the principal cellular antagonist of the p53 tumor suppressor gene. Restoration of p53 activity by inhibiting the MDM2-P53 interactions at the molecular level has become the cornerstone of cancer research due to its promising anticancer effects. Natural medicinal products possess various chemical structures and represent an essential source for drug discovery. α-Mangostin (AM) and gambogic acid (G250) are plant-derived compounds that showed inhibitory effects on MDM2-P53 interactions in vitro and in vivo. METHODS Despite the many clinical studies which performed deeper insight about the molecular understanding of the structural mechanisms exhibited by α-Mangostin and Gambogic acid-binding to MDM2 remains critical. In this study, comparative molecular dynamics simulations were performed for each Apo and bound p53 and MDM2 proteins to shed light on the MDM2-p53 interactions and get a better understanding of the inhibition mechanisms. RESULTS Results revealed atomistic interaction of AM and G250 within the MDM2-p53 interaction cleft. Both compounds mediate the interaction between the α-helix motifs of the p53 amino-terminal domain, which caused a significant separation between orthogonally opposed residues, specifically Lys8 and Gly47 residues of the p53 and MDM2, respectively. Contrasting changes in magnitudes were observed in per-residue fluctuation on AM and G250 (~0.04 nm and ~2.3 nm, respectively). The Radius of gyration (~0.03 nm and 0.04 nm, respectively), C-alpha deviations (~0.06 nm and 0.1 nm, respectively). The phenolic group of AM was found to establish hydrogen interactions with Glu28 and His96 residues of MDM2. The trioxahexacyclo-ring of G250 also forms hydrogen bond interactions with Lys51 and Leu26 residues of MDM2. CONCLUSION Utilizing the information provided on the inhibitory binding mode adopted by each compound in this study may further assist in the tailored designs for cancer therapeutics.
Collapse
Affiliation(s)
- Aisha I El Habbash
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban 4001, South Africa
| | - Ahmed El Rashedy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
5
|
Nurzat Y, Su W, Min P, Li K, Xu H, Zhang Y. Identification of Therapeutic Targets and Prognostic Biomarkers Among Integrin Subunits in the Skin Cutaneous Melanoma Microenvironment. Front Oncol 2021; 11:751875. [PMID: 34660316 PMCID: PMC8514842 DOI: 10.3389/fonc.2021.751875] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The roles of different integrin alpha/beta (ITGA/ITGB) subunits in skin cutaneous melanoma (SKCM) and their underlying mechanisms of action remain unclear. Oncomine, UALCAN, GEPIA, STRING, GeneMANIA, cBioPortal, TIMER, TRRUST, and Webgestalt analysis tools were used. The expression levels of ITGA3, ITGA4, ITGA6, ITGA10, ITGB1, ITGB2, ITGB3, ITGB4, and ITGB7 were significantly increased in SKCM tissues. The expression levels of ITGA1, ITGA4, ITGA5, ITGA8, ITGA9, ITGA10, ITGB1, ITGB2, ITGB3, ITGB5, ITGB6 and ITGB7 were closely associated with SKCM metastasis. The expression levels of ITGA1, ITGA4, ITGB1, ITGB2, ITGB6, and ITGB7 were closely associated with the pathological stage of SKCM. The expression levels of ITGA6 and ITGB7 were closely associated with disease-free survival time in SKCM, and the expression levels of ITGA6, ITGA10, ITGB2, ITGB3, ITGB6, ITGB7, and ITGB8 were markedly associated with overall survival in SKCM. We also found significant correlations between the expression of integrin subunits and the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells). Finally, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and protein-protein interaction (PPI) networks were constructed. We have identified abnormally-expressed genes and gene regulatory networks associated with SKCM, improving understanding of the underlying pathogenesis of SKCM.
Collapse
Affiliation(s)
- Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weijie Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ke Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang D, Wang W, Hou T, Pang Y, Wang C, Wu S, Wang Q. New Delivery Route of Gambogic Acid Via Skin for Topical Targeted Therapy of Cutaneous Melanoma and Reduction of Systemic Toxicity. J Pharm Sci 2020; 110:2167-2176. [PMID: 33373608 DOI: 10.1016/j.xphs.2020.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Cutaneous melanoma is the deadliest form of skin cancer, and gambogic acid (GA) exhibits potent anti-melanoma activity. However, clinical application of GA via intravenous injection and oral administration is limited by systemic toxicity and rapid metabolism in the blood. Here, we developed a new, topical route of GA delivery for anti-melanoma activity and reduction of systemic toxicity. The results indicated that the barrier of the stratum corneum (SC) and low diffusion of GA in the hydrophilic viable skin (epidermis and dermis) limited the GA penetration through intact skin. The combination of azone (AZ) and propylene glycol (PG) showed obvious synergistic effects on skin penetration by GA via improving the permeability of the SC and greatly increasing the skin accumulation of GA, thereby forming a high drug concentration in the skin and achieving a topical targeted treatment of melanoma. In addition, GA (AZ-PG) achieved the same anti-melanoma effect via topical delivery as via intravenous injection. Intravenous injection and oral administration of GA induced remarkable pathological changes in various organs in mice, whereas GA was not toxic to various organs or to the skin via topical delivery. These findings indicated that topical administration of GA is an alternative route for melanoma treatment.
Collapse
Affiliation(s)
- Ding Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanjun Pang
- Liaoning Institute for Drug Control, Shenyang, Liaoning 110036, China
| | - Chao Wang
- Liaoning Institute for Drug Control, Shenyang, Liaoning 110036, China
| | - Shuai Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
7
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Gunter NV, Teh SS, Lim YM, Mah SH. Natural Xanthones and Skin Inflammatory Diseases: Multitargeting Mechanisms of Action and Potential Application. Front Pharmacol 2020; 11:594202. [PMID: 33424605 PMCID: PMC7793909 DOI: 10.3389/fphar.2020.594202] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.
Collapse
Affiliation(s)
| | - Soek Sin Teh
- Engineering and Processing Division, Energy and Environment Unit, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Siau Hui Mah
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Li CY, Wang Q, Wang XM, Li GX, Shen S, Wei XL. Gambogic acid exhibits anti-metastatic activity on malignant melanoma mainly through inhibition of PI3K/Akt and ERK signaling pathways. Eur J Pharmacol 2019; 864:172719. [PMID: 31586634 DOI: 10.1016/j.ejphar.2019.172719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
Gambogic acid (GA) is a potential anti-cancer compound that is extracted from the resin of Garciania hanburyi. The present study was designed to evaluate the anti-metastatic effect of GA on melanoma cell lines in vitro and to explore the underlying mechanism. The anti-proliferative activity of GA on melanoma cells was assessed by CCK-8 assay. The Wound-healing, transwell, adhesion, and tube formation assays were performed to examine the inhibition of GA on the cell's migration, invasion, adhesion, and angiogenesis capacities, respectively. Enzymatic activity of MMP-2 and MMP-9 were detected by gelatin zymography assay. Protein expressions regulated by GA treatment were tested by Western blot assay. The present results showed that GA significantly inhibited the proliferation of highly metastatic melanoma A375, B16-F10 cells and human umbilical vein endothelial cells (HUVECs) in time- and doses-dependent manners. Furthermore, GA significantly inhibited the migratory, invasive and adhesive properties of A375 and B16-F10 cells, and tube-forming potential of HUVECs at sub-IC50 concentrations, where no significant cytotoxicity was observed. Mechanistically, GA treatment suppressed the EMT and angiogenesis processes and reduced the enzymatic activity of MMP-2 and MMP-9. Moreover, abnormal PI3K/Akt and ERK signaling pathways in A375 and B16-F10 cells and HUVECs were notably suppressed by GA treatment. Collectively, our results suggest that GA exerts anti-metastasis activity in melanoma cells by suppressing the EMT and angiogenesis through the PI3K/Akt and ERK signaling pathways, and might be used as a phytomedicine against metastatic melanoma.
Collapse
Affiliation(s)
- Chun-Yu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China.
| | - Qi Wang
- Department of Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, No. 507 Zhengmin, Yangpu District, Shanghai, 200433, China
| | - Xiao-Min Wang
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Guo-Xia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Xiao-Lu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| |
Collapse
|
10
|
Liu F, Huang X, Han L, Sang M, Hu L, Liu B, Duan B, Jiang P, Wang X, Qiao Z, Ma C, Liu W, Liu J, Feng F, Qu W. Improved druggability of gambogic acid using core–shell nanoparticles. Biomater Sci 2019; 7:1028-1042. [DOI: 10.1039/c8bm01154k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A core-shell hybrid nanoparticle has been developed to improve the druggability of Gambogic acid (GA), a natural antitumor drug candidate.
Collapse
|
11
|
The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2018; 8:8921-8946. [PMID: 27888811 PMCID: PMC5352454 DOI: 10.18632/oncotarget.13475] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer has long been a grievous disease complicated by innumerable players aggravating its cure. Many clinical studies demonstrated the prognostic relevance of the tumor suppressor protein p53 for many human tumor types. Overexpression of mutated p53 with reduced or abolished function is often connected to resistance to standard medications, including cisplatin, alkylating agents (temozolomide), anthracyclines, (doxorubicin), antimetabolites (gemcitabine), antiestrogenes (tamoxifen) and EGFR-inhibitors (cetuximab). Such mutations in the TP53 gene are often accompanied by changes in the conformation of the p53 protein. Small molecules that restore the wild-type conformation of p53 and, consequently, rebuild its proper function have been identified. These promising agents include PRIMA-1, MIRA-1, and several derivatives of the thiosemicarbazone family. In addition to mutations in p53 itself, p53 activity may be also be impaired due to alterations in p53s regulating proteins such as MDM2. MDM2 functions as primary cellular p53 inhibitor and deregulation of the MDM2/p53-balance has serious consequences. MDM2 alterations often result in its overexpression and therefore promote inhibition of p53 activity. To deal with this problem, a judicious approach is to employ MDM2 inhibitors. Several promising MDM2 inhibitors have been described such as nutlins, benzodiazepinediones or spiro-oxindoles as well as novel compound classes such as xanthone derivatives and trisubstituted aminothiophenes. Furthermore, even naturally derived inhibitor compounds such as a-mangostin, gambogic acid and siladenoserinols have been discovered. In this review, we discuss in detail such small molecules that play a pertinent role in affecting the p53-MDM2 signaling axis and analyze their potential as cancer chemotherapeutics.
Collapse
|
12
|
Banik K, Harsha C, Bordoloi D, Lalduhsaki Sailo B, Sethi G, Leong HC, Arfuso F, Mishra S, Wang L, Kumar AP, Kunnumakkara AB. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett 2017; 416:75-86. [PMID: 29246645 DOI: 10.1016/j.canlet.2017.12.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Natural compounds have enormous biological and clinical activity against dreadful diseases such as cancer, as well as cardiovascular and neurodegenerative disorders. In spite of the widespread research carried out in the field of cancer therapeutics, cancer is one of the most prevalent diseases with no perfect treatment till date. Adverse side effects and the development of chemoresistance are the imperative limiting factors associated with conventional chemotherapeutics. For this reason, there is an urgent need to find compounds that are highly safe and efficacious for the prevention and treatment of cancer. Gambogic acid (GA) is a xanthone structure extracted from the dry, brownish gamboge resin secreted from the Garcinia hanburyi tree in Southeast Asia and has inherent anti-cancer properties. In this review, the molecular mechanisms underlying the targets of GA that are liable for its effective anti-cancer activity are discussed that reveal the potential of GA as a pertinent candidate that can be appropriately developed and designed into a capable anti-cancer drug.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
13
|
Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci Rep 2017; 7:4243. [PMID: 28652618 PMCID: PMC5484684 DOI: 10.1038/s41598-017-03470-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.
Collapse
|
14
|
Caged xanthones: Potent inhibitors of global predominant MRSA USA300. Bioorg Med Chem Lett 2016; 26:2980-2983. [DOI: 10.1016/j.bmcl.2016.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/21/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
|
15
|
Zou M, Duan Y, Wang P, Gao R, Chen X, Ou Y, Liang M, Wang Z, Yuan Y, Wang L, Zhu H. DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, blocks malignant glioblastoma growth and invasion by inhibiting AEG-1 and NF-κB signaling pathways. Sci Rep 2016; 6:27331. [PMID: 27251589 PMCID: PMC4890319 DOI: 10.1038/srep27331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been explored as a novel target for human glioma therapy, thus reflecting its potential contribution to gliomagenesis. In the present study, we investigated the effect of DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, on cell growth and invasion in glioblastoma (GBM) and uncovered the underlying mechanisms of this molecule. DYT-40 induces the intrinsic mitochondrial pathway of apoptosis and inhibits the epithelial-mesenchymal transition (EMT) and invasion of GBM cell lines. Furthermore, DYT-40 deactivates PI3K/Akt and MAPK pathways, suppresses AEG-1 expression, and inhibits NF-κB nuclear translocation. DYT-40 reduced the tumor volumes in a rat C6 glioma model by apoptotic induction. Moreover, HE staining demonstrated that the glioma rat model treated with DYT-40 exhibited better defined tumor margins and fewer invasive cells to the contralateral striatum compared with the vehicle control and temozolomide-treated rats. Microscopic examination showed a decrease in AEG-1-positive cells in DYT-40-treated rats compared with the untreated controls. DYT-40-treatment increases the in vivo apoptotic response of glioma cells to DYT-40 treatment by TUNEL staining. In conclusion, the inhibitory effects of DYT-40 on growth and invasion in GBM suggest that DYT-40 might be a potential AEG-1 inhibitor to prevent the growth and motility of malignant glioma.
Collapse
Affiliation(s)
- Meijuan Zou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yongtao Duan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Pengfei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Xuguan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Yingwei Ou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Mingxing Liang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Zhongchang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yi Yuan
- Jiangsu Key Laboratory of Oral Diseases; Department of oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Li Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hailiang Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Abstract
The ubiquitin–proteasome system has been recognized as fundamental toward protein turnover in eukaryotic cells. The system comprises the ubiquitin conjugation machinery consisting of an enzyme cascade of E1, E2, and E3 enzymes, the deubiquitinases (DUBs) and the proteasome, a multisubunit protease complex acting through an N-terminal threonine protease mechanism. A number of natural product inhibitors of the proteasome have been studied in detail and these inhibitors and their derivatives have been highly valuable in developing our understanding of this system. These efforts culminated in the successful development of bortezomib as a pharmacological agent used clinically as a cancer therapeutic in the treatment of multiple myeloma. This review is focused on natural product inhibitors of the enzymes involved in intracellular ubiquitin conjugation (ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin ligase E3) and ubiquitin deconjugation (DUBs). Members of both of these enzyme systems have been proposed as pharmacological targets for cancer therapy and several other diseases. Furthermore compounds with activities toward enzymes from the analogous ubiquitin-like (Ubl) protein families have been identified for SUMO and NEDD8. To date natural product inhibitors have been described for members of each of these protein families and were isolated from plant, fungal, animal, and microbial sources. Insights into the mechanism of action of natural products and their derivatives will enhance our understanding of this complex system and will improve our ability to rationally design novel inhibitors. The increased availability of assays and research tools for the study of protein ubiquitination, deubiquitination, and Ubl proteins will contribute to the discovery of more potent and selective compounds. We expect that these studies will stimulate development of further potential pharmacological agents in this area.
Collapse
|
17
|
Gambogic Acid and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:375-395. [DOI: 10.1007/978-3-319-41334-1_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
AlQathama A, Prieto JM. Natural products with therapeutic potential in melanoma metastasis. Nat Prod Rep 2015; 32:1170-82. [PMID: 26018751 DOI: 10.1039/c4np00130c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant melanoma is the most aggressive form of skin cancer and accounts for about 3% of all cases of malignant tumour. Its incidence is increasing worldwide and it is becoming resistant to current therapeutic agents. Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. This paper systematically and critically surveys all natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and maps the mechanisms of action for these underexploited properties. As a result, over 30 natural active principles are described acting mainly through their antagonistic effects upon the TNF-α and EP2 receptors or the suppression of several protein kinases involved in metastatic pathways such as RAS, PI3K, ERK and FAK. Also, some were able to reduce the level of mesenchymal biomarkers such as N-cadherin and/or elevate the expression of other molecules such as E-cadherin. Consequently, downstream transcription factors namely NF-kB, AP-1, ATF-2, CREB, and HIF were inactivated leading to diminished production of MMPs, IL-1, IL-6, COX-2, VEGF and GM-CSF. This review also discusses the opportunity of combination therapies based on natural products and approved drugs, such as the combination of EGCG and dacarbazine, or the combination of two natural compounds such as quercetin and sulforaphane.
Collapse
Affiliation(s)
- A AlQathama
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK.
| | | |
Collapse
|
19
|
Jia B, Li S, Hu X, Zhu G, Chen W. Recent research on bioactive xanthones from natural medicine: Garcinia hanburyi. AAPS PharmSciTech 2015; 16:742-58. [PMID: 26152816 PMCID: PMC4508296 DOI: 10.1208/s12249-015-0339-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Garcinia hanburyi, a tropical plant found in south Asia, has a special long history in the development of both medicine and art. This review mainly focuses on the pharmacy research of the bioactive compounds from the plant in recent years. Preparative and analysis separation methods were introduced. Moreover, the chemical structure of the isolated compounds was included. The studies of biological activities of the caged xanthones from the plant, including antitumor, anti-HIV-1, antibacterial, and neurotrophic activities, were reviewed in detail. Furthermore, the mechanisms of its antitumor activity were also reviewed. As mentioned above, some of the xanthones from G. hanburyi can be promising drug candidates, which is worth studying. However, we still need much evidence to prove their efficacy and safety. So, further research is critical for the future application of xanthones from G. hanburyi.
Collapse
Affiliation(s)
- Buyun Jia
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| | - Shanshan Li
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| | - Xuerui Hu
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| | - Guangyu Zhu
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
- />Ma’anshan Central Hospital, 027 Hudong Road, Ma’anshan, 243000 Anhui China
| | - Weidong Chen
- />School of Pharmacy, Anhui University of Chinese Medicine, 001 Qianjiang Road, Hefei, 230012 Anhui China
| |
Collapse
|
20
|
Huang GM, Sun Y, Ge X, Wan X, Li CB. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways. World J Gastroenterol 2015; 21:6194-6205. [PMID: 26034354 PMCID: PMC4445096 DOI: 10.3748/wjg.v21.i20.6194] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/22/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of gambogic acid (GA) on apoptosis in the HT-29 human colon cancer cell line.
METHODS: H-29 cells were used for in vitro experiments in this study. Relative cell viability was assessed using MTT assays. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and Hoechst 33342 staining, and quantified by flow cytometry. Cellular ultrastructure was observed by transmission electron microscopy. Real-time PCR and Western blot analyses were used to evaluate gene and protein expression levels. For in vivo experiments, BALB/c nude mice received subcutaneous injections of HT-29 cells in the right armpit. When well-established xenografts were palpable with a tumor size of 75 mm3, mice were randomly assigned to a vehicle (negative) control, positive control or GA treatment group (n = 6 each). The animals in the treatment group received one of three dosages of GA (in saline; 5, 10 or 20 mg/kg) via the caudal vein twice weekly, whereas animals in the negative and positive control groups were given equal volumes of 0.9% saline or 10 mg/kg docetaxel, respectively, via the caudal vein once weekly.
RESULTS: The cell viability assay showed that GA inhibited proliferation of HT-29 cells in a dose- and time-dependent manner after treatment with GA (0.00, 0.31, 0.62, 1.25, 2.50, 5.00 or 10.00 μmol/L) for 24, 48 or 72 h. After 48 h, the percentage of apoptotic cells in cells treated with 0.00, 1.25, 2.50 and 5.00 μmol/L GA was 1.4% ± 0.3%, 9.8% ± 1.2%, 25.7% ± 3.3% and 49.3% ± 5.8%, respectively. Ultrastructural analysis of HT-29 cells treated for 48 h with 2.5μmol/L GA revealed apoptotic bodies and condensed and fragmented nuclei. Levels of caspase-8, -9 and -3 mRNAs were significantly increased after treatment with GA (1.25, 2.50 or 5.00 μmol/L) for 48 h (P < 0.05 for all). Protein levels of apoptosis-related factors Fas, FasL, FADD, cytochrome c, and Apaf-1 were increased in GA-treated cells, whereas levels of pro-caspase-8, -9 and -3 were significantly decreased (P < 0.05 for all). Furthermore, GA significantly and dose-dependently inhibited the growth of HT-29 tumors in a mouse xenograft model (P < 0.05).
CONCLUSION: GA inhibits HT-29 proliferation via induction of apoptosis. The anti-cancer effects are likely mediated by death receptor (extrinsic) and mitochondrial (intrinsic) pathways.
Collapse
|
21
|
Xiang L, Chi T, Tang Q, Yang X, Ou M, Chen X, Yu X, Chen J, Ho RJ, Shao J, Jia L. A pentacyclic triterpene natural product, ursolic acid and its prodrug US597 inhibit targets within cell adhesion pathway and prevent cancer metastasis. Oncotarget 2015; 6:9295-312. [PMID: 25823660 PMCID: PMC4496218 DOI: 10.18632/oncotarget.3261] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Here we showed that ursolic acid (UA), a pentacyclic triterpene natural product, and its novel prodrug derivative US597 suppressed cancer cells adhesion, invasion and migration. This effect was accompanied by inhibition of focal adhesion signaling pathway including alterations in ICAM-1, VCAM-1, E-selectin, P-selectin, integrin α6β1, FAK, Src, paxillin and PTEN. While oral administration of UA or US597 increases survival rate of melanoma lung metastasis in C57BL/6 mice, US597 treatment extend the survival rate above that of UA. Immunohistochemical analysis revealed that US597 treatment regulates ICAM-1, a biomarker of metastasis. We did not detect side effects with US597 in mice such as weight loss, viscera tissues toxicity and blood cell abnormalities. Thus, UA and US597 are potential drug candidates for preventing cancer metastasis. Molecular and cellular study data suggest that UA and US597 modulate expression of cell adhesion molecules within focal adhesion signaling pathway leading to cancer cell motility.
Collapse
Affiliation(s)
- Liping Xiang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Ting Chi
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiao Tang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiang Yang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Minrui Ou
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiufen Chen
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaobo Yu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jianzhong Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, China
| | - Rodney J.Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98105, USA
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
22
|
Li C, Zhao Y, Yang D, Yu Y, Guo H, Zhao Z, Zhang B, Yin X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem Cell Biol 2015; 93:16-27. [DOI: 10.1139/bcb-2014-0067] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| | - Yuanwei Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| | - Dan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| | - Hao Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| | - Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| | - Bei Zhang
- Department of Gynecology, Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, People’s Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Tongshan Road 209#, 221004, Xuzhou, People’s Republic of China
| |
Collapse
|
23
|
Li C, Li F, Zhao K, Yao J, Cheng Y, Zhao L, Li Z, Lu N, Guo Q. LFG-500 inhibits the invasion of cancer cells via down-regulation of PI3K/AKT/NF-κB signaling pathway. PLoS One 2014; 9:e91332. [PMID: 24618693 PMCID: PMC3950212 DOI: 10.1371/journal.pone.0091332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/09/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer cell invasion, one of the crucial events in local growth and metastatic spread of tumors, possess a broad spectrum of mechanisms, especially altered expression of matrix metalloproteinases. LFG-500 is a novel synthesized flavonoid with strong anti-cancer activity, whose exact molecular mechanism remains incompletely understood. This current study was designed to examine the effects of LFG-500 on tumor metastasis using in vitro and in vivo assays. LFG-500 could inhibit adhesion, migration and invasion of MDA-MB-231 human breast carcinoma cells. Meanwhile, it reduced the activities and expression of MMP-2 and MMP-9 via suppressing the transcriptional activation of NF-κB rather than AP-1 or STAT3. Moreover, LFG-500 repressed TNF-α induced cell invasion through inhibiting NF-κB and subsequent MMP-9 activity. Further elucidation of the mechanism revealed that PI3K/AKT but not MAPK signaling pathway was involved in the inhibitory effect of LFG-500 on NF-κB activation. LFG-500 could also suppress lung metastasis of B16F10 murine melanoma cells in vivo. Taken together, these results demonstrated that LFG-500 could block cancer cell invasion via down-regulation of PI3K/AKT/NF-κB signaling pathway, which provides new evidence for the anti-cancer activity of LFG-500.
Collapse
Affiliation(s)
- Chenglin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fanni Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
- * E-mail: (QG); (NL)
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, People's Republic of China
- * E-mail: (QG); (NL)
| |
Collapse
|
24
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
25
|
Leão M, Gomes S, Pedraza-Chaverri J, Machado N, Sousa E, Pinto M, Inga A, Pereira C, Saraiva L. Α-mangostin and gambogic acid as potential inhibitors of the p53-MDM2 interaction revealed by a yeast approach. JOURNAL OF NATURAL PRODUCTS 2013; 76:774-778. [PMID: 23540934 DOI: 10.1021/np400049j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
α-Mangostin (1) and gambogic acid (2) are natural products with potent cytotoxic activity against several human tumor cells. However, their molecular mechanisms of action remain controversial. In this work, using yeast-based assays, it was shown that both xanthones are potential inhibitors of the p53-MDM2 interaction. This activity on p53-MDM2 interaction was confirmed by a gene reporter assay in a human tumor cell. Additionally, computational docking studies supported the potential of these xanthones to bind to MDM2 and therefore act as putative MDM2 inhibitors. Altogether, this work provides a new insight concerning the molecular basis of activity for these compounds.
Collapse
Affiliation(s)
- Mariana Leão
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li C, Qi Q, Lu N, Dai Q, Li F, Wang X, You Q, Guo Q. Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol 2012. [PMID: 23194187 DOI: 10.1139/o2012-030] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gambogic acid (GA) is considered a potent anti-tumor agent for its multiple effects on cancer cells in vitro and in vivo. Low concentrations of GA (0.3-1.2 µmol/L) can suppress invasion of human breast carcinoma cells without affecting cell viability. To get a whole profile of the inhibition on breast cancers, higher concentrations of GA and spontaneous metastatic animal models were employed. Treatment with GA (3 and 6 µmol/L) induced apoptosis in MDA-MB-231 cells and the accumulation of reactive oxygen species (ROS). Furthermore, GA induced PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, as well as an increased ratio of Bax/Bcl-2. Moreover, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c (Cyt c) from mitochondria were observed, indicating that GA induced apoptosis through accumulation of ROS and mitochondrial apoptotic pathway. GA also inhibited cell survival via blocking Akt/mTOR signaling. In vivo, GA significantly inhibited the xenograft tumor growth and lung metastases in athymic BALB/c nude mice bearing MDA-MB-231 cells. Collectively, these data provide further support for the multiple effects of GA on human breast cancer cells, as well as for its potential application to inhibit tumor growth and prevent metastasis in human cancers.
Collapse
Affiliation(s)
- Chenglin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen Q, Massagué J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res 2012; 18:5520-5. [PMID: 22879387 DOI: 10.1158/1078-0432.ccr-11-2904] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between disseminated tumor cells (DTC) and stromal cells in the microenvironment are critical for tumor colonization of distal organs. Recent studies have shown that vascular cell adhesion molecule-1 (VCAM-1) is aberrantly expressed in breast cancer cells and mediates prometastatic tumor-stromal interactions. Moreover, the usefulness of VCAM-1 to DTCs in 2 different organs--lung and bone--is based on distinct mechanisms. In the lungs, VCAM-1 on the surface of cancer cells binds to its counterreceptor, the α4β1 integrin (also known as very-late antigen, VLA-4), on metastasis-associated macrophages, triggering VCAM-1-mediated activation of the phosphoinositide 3-kinase growth and survival pathway in the cancer cells. In the bone marrow, cancer cell VCAM-1 attracts and tethers α4 integrin-expressing osteoclast progenitors to facilitate their maturation into multinucleated osteoclasts that mediate osteolytic metastasis. These findings highlight the importance of direct interactions between DTCs and stromal cells during tumor dissemination and draw attention to the possibility of targeting the α4 integrin-VCAM-1 interactions in metastatic breast cancer. Anti-α4 integrin inhibitors have been developed to treat various diseases driven by massive leukocyte infiltrates and have gained U.S. Food and Drug Administration approval or are undergoing clinical trials. Testing these drugs against tumor-stromal leukocyte interactions may provide a new strategy to suppress lung and bone relapse of breast cancer.
Collapse
Affiliation(s)
- Qing Chen
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
28
|
Knockdown of von Hippel-Lindau protein decreases lung cancer cell proliferation and colonization. FEBS Lett 2012; 586:1510-5. [PMID: 22673518 DOI: 10.1016/j.febslet.2012.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/19/2012] [Accepted: 04/07/2012] [Indexed: 12/31/2022]
Abstract
Although von Hippel-Lindau protein (pVHL) is known as a tumor suppressor in kidney and other organs, it remains unclear whether pVHL plays a role in lung cancer development. We investigated the role of pVHL in lung cancer cell proliferation, migration, and colonization using stable A549 cells with knockdown of pVHL. We found that knockdown of pVHL promotes epithelial-mesenchymal transition (EMT) in lung cancer cells. Knockdown of pVHL decreased tumor colonization in a tail-vein injection model and decreased cell proliferation, whereas overexpression of constitutive active HIF increased tumor colonization, suggesting a HIF-independent function of pVHL in lung. Knockdown of pVHL decreased phosphorylation of FAK and expression of integrin, suggesting that pVHL regulates lung cancer development via integrin/FAK signaling pathway.
Collapse
|
29
|
Man S, Gao W, Wei C, Liu C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res 2012; 26:1449-65. [PMID: 22389143 DOI: 10.1002/ptr.4609] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
Many anticancer drugs are obtained from natural sources. Nature produces a variety of toxic compounds, which are often used as anticancer drugs. Up to now, there are at least 120 species of poisonous botanicals, animals and minerals, of which more than half have been found to possess significant anticancer properties. In spite of their clinical toxicity, they exhibit pharmacological effects and have been used as important traditional Chinese medicines for the different stages of cancer. The article reviews many structures such as alkaloids of Camptotheca acuminata, Catharanthus roseus and Cephalotaxus fortunei, lignans of Dysosma versipellis and Podophyllum emodi, ketones of Garcinia hanburyi, terpenoids of Mylabris and Ginkgo biloba, diterpenoids of Tripterygium wilfordii, Euphorbia fischeriana, Euphorbia lathyris, Euphorbia kansui, Daphne genkwa, Pseudolarix kaempferi and Brucea javanica, triterpenoids of Melia toosendan, steroids of Periploca sepium, Paris polyphylla and Venenum Bufonis, and arsenic compounds including Arsenicum and Realgar. By comparing their related phytochemistry, toxic effects and the recent advances in understanding the mechanisms of action, this review puts forward some ideals and examples about how to increase antitumour activity and/or reduce the side effects experienced with Chinese medicine.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China
| | | | | | | |
Collapse
|
30
|
Anantachoke N, Tuchinda P, Kuhakarn C, Pohmakotr M, Reutrakul V. Prenylated caged xanthones: chemistry and biology. PHARMACEUTICAL BIOLOGY 2012; 50:78-91. [PMID: 22196584 DOI: 10.3109/13880209.2011.636176] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Prenylated caged xanthones are "privileged structure" characterized by the presence of the unusual 4-oxo-tricyclo[4.3.1.0(3,7)]dec-8-en-2-one scaffold. The natural sources of these compounds confines mainly in the Garcinia genus in the family of Guttiferae. Gambogic acid is the most abundant substance and most of the studies have been done on this compound, particularly as a new potential antitumor agent. The history, sources, structural diversity, and biological activities of these compounds are covered. OBJECTIVE This review is written with the intention to provide additional aspects from what have been published of prenylated caged xanthones, including history, sources, structural diversity, and biological activities. METHODS This review has been compiled using information from a number of reliable references mainly from major databases including SciFinder, ScienceDirect, and PubMed. RESULTS More than 120 prenylated caged xanthones have been found in the plant genera Garcinia, Cratoxylum, and Dascymaschalon. These compounds exhibited various potentially useful biological activities such as anticancer, anti-HIV-1, antibacterial, anti-inflammatory, and neurotrophic activities. CONCLUSIONS Prenylated caged xanthones, both naturally occurring and synthetic analogues, have been identified as promising bioactive compounds, especially for anticancer agents. Gambogic acid has been demonstrated to be a highly valuable lead compound for antitumor chemotherapy. The structure activity relationship (SAR) study of its analogues is still the subject of intensive research. Apoptosis cytotoxic mechanism has been identified as the major pathway. Research on the delineation of the in-depth mechanism of action is still on-going. Analogues of gambogic acid had been identified to be effective against a rare and special form of liver cancer, cholangiocarcinoma for which currently there is no chemotherapeutic treatment available.
Collapse
Affiliation(s)
- Natthinee Anantachoke
- Department of Pharmacognosy and The Center of Excellence for Innovation in Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
31
|
Li C, Lu N, Qi Q, Li F, Ling Y, Chen Y, Qin Y, Li Z, Zhang H, You Q, Guo Q. Gambogic acid inhibits tumor cell adhesion by suppressing integrin β1 and membrane lipid rafts-associated integrin signaling pathway. Biochem Pharmacol 2011; 82:1873-83. [PMID: 21946083 DOI: 10.1016/j.bcp.2011.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Cell adhesion plays an important role in the steps of cancer metastasis. Regulation of cell-cell (intercellular) and cell-matrix adhesion is a promising strategy for cancer progression. Gambogic acid is a xanthone derived from the resin of the Chinese plant Garciania hanburyi, with potent anti-metastasis activity on highly metastatic cells. The aim of this study was to investigate the function and mechanism of gambogic acid on tumor adhesion. We found that gambogic acid strongly inhibited the adhesion of human cancer cells to fibronectin. This inhibition was associated with the deformation of focal adhesion complex, which was mediated by suppressing the expression of integrin β1 and integrin signaling pathway. In vitro, cell lipid rafts clustering was inhibited following treatment of gambogic acid, which induced the suppression of integrin β1 and focal adhesion complex proteins colocalization within rafts. Moreover, gambogic acid significantly decreased cellular cholesterol content, whereas cholesterol replenishment lessened the inhibitory effect of gambogic acid on cell adhesion. Real-time PCR analysis showed that gambogic acid reduced mRNA levels of hydroxymethylglutaryl-CoA reductase and sterol regulatory element binding protein-2, while increased acetyl-CoA acetyltransferase-1/2. Taken together, these results demonstrate that gambogic acid inhibits cell adhesion via suppressing integrin β1 abundance and cholesterol content as well as the membrane lipid raft-associated integrin function, which provide new evidence for the anti-cancer activity of gambogic acid.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of Carcinogenesis and Intervention (China Pharmaceutical University), Tongjiaxiang 24, Nanjing 210009, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011. [PMID: 21777476 DOI: 10.1186/1749-8546-6- 27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
33
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6:27. [PMID: 21777476 PMCID: PMC3149025 DOI: 10.1186/1749-8546-6-27] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/22/2011] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
34
|
Ren Y, Yuan C, Chai HB, Ding Y, Li XC, Ferreira D, Kinghorn AD. Absolute configuration of (-)-gambogic acid, an antitumor agent. JOURNAL OF NATURAL PRODUCTS 2011; 74:460-3. [PMID: 21067206 PMCID: PMC3052414 DOI: 10.1021/np100422z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
(-)-Gambogic acid (1), a biologically active "caged xanthone" from gamboge, the dried resin of Garcinia hanburyi, is of interest as a potential anticancer agent. The planar structure of (-)-gambogic acid has been determined previously by analysis of its detailed NMR data and confirmed by single-crystal X-ray diffraction, with the absolute configuration at C-13 deduced as R through a series of chemical degradations. Using (-)-morellic acid (2), an analogue of (-)-gambogic acid, as a model compound, the 5R, 7S, 10aS, 13R, 27S absolute configuration of (-)-gambogic acid was determined for the first time by comparison of physical and spectroscopic data, especially experimental and calculated electronic circular dichroism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A. Douglas Kinghorn
- To whom correspondence should be addressed. Tel.: +1 614 247-8094. Fax: +1 614 247-8642.
| |
Collapse
|
35
|
Chantarasriwong O, Batova A, Chavasiri W, Theodorakis EA. Chemistry and biology of the caged Garcinia xanthones. Chemistry 2010; 16:9944-62. [PMID: 20648491 PMCID: PMC3144150 DOI: 10.1002/chem.201000741] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70 % of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development.
Collapse
Affiliation(s)
- Oraphin Chantarasriwong
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1)858-822-0386
- Department of Chemistry, Natural Products Research Unit, Chulalongkorn University, Faculty of Science, Bangkok 10330 (Thailand)
| | - Ayse Batova
- Department of Pediatrics/Hematology-Oncology, University of California, San Diego, West Arbor Drive, San Diego, CA 92103-8447 (USA)
| | - Warinthorn Chavasiri
- Department of Chemistry, Natural Products Research Unit, Chulalongkorn University, Faculty of Science, Bangkok 10330 (Thailand)
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1)858-822-0386
| |
Collapse
|
36
|
Biomarkers: the useful and the not so useful--an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol 2010; 130:1971-87. [PMID: 20555347 DOI: 10.1038/jid.2010.149] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Among individuals with localized (Stage I-II) melanoma, stratifying patients by a number of phenotypic variables (e.g., depth of invasion, ulceration) yields a wide range of 10-year melanoma-specific survival rates. With the possible exception of Ki-67, no molecular assessment is routinely used. However, there have been a tremendous number of studies assessing protein expression by immunohistochemistry toward the goal of better prediction of recurrence. In a previous systematic review, which required publication of multivariable prognostic models as a strict inclusion criterion, we identified 37 manuscripts that collectively reported on 62 proteins. Data for 324 proteins extracted from 418 manuscripts did not meet our inclusion criteria for that study, but are revisited here, emphasizing trends of protein expression across either melanocytic lesion progression or gradations of tumor thickness. These identified 101 additional proteins that stratify melanoma, organized according to the Hanahan and Weinberg functional capabilities of cancer.
Collapse
|
37
|
Lee JH, Kishikawa M, Kumazoe M, Yamada K, Tachibana H. Vitamin A enhances antitumor effect of a green tea polyphenol on melanoma by upregulating the polyphenol sensing molecule 67-kDa laminin receptor. PLoS One 2010; 5:e11051. [PMID: 20548792 PMCID: PMC2883578 DOI: 10.1371/journal.pone.0011051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 05/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs after drinking an equivalent of 2–3 cups of green tea. To obtain the anticancer effects of EGCG when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged with B16 melanoma cells. Methodology/Principal Findings All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor (67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-mediated silencing of the retinoic acid receptor (RAR) α attenuated the ATRA-induced enhancement of 67LR expression in the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth inhibition. Conclusions/Significance Our findings provide a molecular basis for the combination effect seen with dietary components, and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG.
Collapse
Affiliation(s)
- Ju Hye Lee
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Mutsumi Kishikawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Motofumi Kumazoe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Koji Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
| | - Hirofumi Tachibana
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Japan
- Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
38
|
Gassmann P, Kang ML, Mees ST, Haier J. In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell--endothelial cell interaction. BMC Cancer 2010; 10:177. [PMID: 20433713 PMCID: PMC2874534 DOI: 10.1186/1471-2407-10-177] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 04/30/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastasis formation is the leading cause of death among colon cancer patients. We established a new in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this typical metastatic target of colon cancer. METHODS Anaesthetized CD rats were mechanically ventilated and 106 human HT-29LMM and T84 colon cancer cells were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10 minute intervals for a total of 40 minutes beginning with the time of injection. RESULTS After vehicle treatment of HT-29LMM controls 15.2 +/- 5.3; 14.2 +/- 7.5; 11.4 +/- 5.5; and 15.4 +/- 6.5 cells/20 microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against beta1-, beta4-, and alphav-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by more than 50% (p < 0.05). The same degree of impairment was achieved by inhibition of P- and L-selectins via animal treatment with fucoidan (p < 0.05) and also by inhibition of the Thomson-Friedenreich (TF)-antigen (p < 0.05). CONCLUSIONS These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by circulating tumor cells.
Collapse
Affiliation(s)
- Peter Gassmann
- Department of General and Visceral Surgery; University Hospital Muenster; Muenster; Germany
| | - Mi-Li Kang
- Department of General and Visceral Surgery; University Hospital Muenster; Muenster; Germany
| | - Soeren T Mees
- Department of General and Visceral Surgery; University Hospital Muenster; Muenster; Germany
| | - Joerg Haier
- Department of General and Visceral Surgery; University Hospital Muenster; Muenster; Germany
| |
Collapse
|
39
|
Zhao L, Zhen C, Wu Z, Hu R, Zhou C, Guo Q. General pharmacological properties, developmental toxicity, and analgesic activity of gambogic acid, a novel natural anticancer agent. Drug Chem Toxicol 2009; 33:88-96. [PMID: 20001662 DOI: 10.3109/01480540903173534] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. J Mol Med (Berl) 2008; 86:1367-77. [PMID: 18777017 DOI: 10.1007/s00109-008-0398-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 02/07/2023]
Abstract
Cancer cell invasion is one of the crucial events in local spreading, growth, and metastasis of tumors. The present study investigated the antiinvasive and antimetastatic action of gambogic acid (GA) in MDA-MB-435 human breast carcinoma cells. GA caused a concentration-dependent suppression of cell invasion through Matrigel and significantly inhibited lung metastases of the cells transplanted in vivo. The potent effects of GA have been attributed to its ability to reduce the expression of matrix metalloproteinases (MMP) 2 and 9 in vitro and in vivo both at the protein and mRNA levels, which were associated with protein kinase C (PKC) signaling pathway as supported by the diminished antiinvasive effect of GA in the presence of specific activator of the pathway. Collectively, our data demonstrated that GA exhibited antiinvasion properties on highly invasive cancer cells via PKC mediated MMP-2/9 expression inhibition. This indicated that GA can be served as a potential novel therapeutic candidate for the treatment of cancer metastasis.
Collapse
|