1
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
2
|
Qi JY, Kang DY, Yu J, Zhang MZ. Suxiao Jiuxin Pills Prevent Ventricular Fibrillation from Inhibiting L-type Calcium Currents CaV1.2 in vivo and in vitro. Chin J Integr Med 2023; 29:108-118. [PMID: 36327050 DOI: 10.1007/s11655-022-3623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate whether Suxiao Jiuxin Pills (SJP), a Chinese herbal remedy, is an anti-ventricular fibrillation (VF) agent. METHODS VF was induced by isoproterenolol (ISO) intraperitoneal injection followed by electrical pacing in mice and rabbits. The effects of SJP on the L-type calcium channel current (CaV1.2), voltage-dependent sodium channel current (INa), rapid and slow delayed rectifier potassium channel current (IKr and IKs, respectively) were studied by whole-cell patch-clamp method. Computer simulation was implemented to incorporate the experimental data of SJP effects on the CaV1.2 current into the action potential (AP) and pseudo-electrocardiography (pseudo-ECG) models. RESULTS SJP prevented VF induction and reduced VF durations significantly in mice and rabbits. Patch-clamp experiments revealed that SJP decreased the peak amplitude of the CaV1.2 current with a half maximal concentration (IC50) value of 16.9 mg/L (SJP-30 mg/L, -32.8 ± 6.1 pA; Verapamil, -16.2 ±1.8 pA; vs. control, -234.5 ±16.7 pA, P<0.01, respectively). The steady-state activation curve, inactivation curve, and the recovery from inactivation of the CaV1.2 current were not shifted significantly. Specifically, SJP did not altered INa, IKr, and IKs currents significantly (SJP vs. control, P>0.05). Computer simulation showed that SJP-reduced CaV1.2 current shortened the AP duration, transiting VF into sinus rhythm in pseudo-ECG. CONCLUSION SJP reduced VF via inhibiting the CaV1.2 current with in vivo, in vitro, and in silico studies, which provide experimental basis for SJP anti-VF clinical application.
Collapse
Affiliation(s)
- Jian-Yong Qi
- Acute Myocardial Infarction Key Laboratory of Chinese Medicine in Guangzhou, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Dong-Yuan Kang
- Acute Myocardial Infarction Key Laboratory of Chinese Medicine in Guangzhou, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Juan Yu
- Animal Center, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangdong Province Academy of Chinese Medicine, Guangzhou, 510006, China
| | - Min-Zhou Zhang
- Acute Myocardial Infarction Key Laboratory of Chinese Medicine in Guangzhou, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China. .,Intensive Care Research Team of Traditional Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Huang X, Deng H, Shen QK, Quan ZS. Tanshinone IIA: Pharmacology, total synthesis, and progress in structure-modifications. Curr Med Chem 2021; 29:1959-1989. [PMID: 34749607 DOI: 10.2174/0929867328666211108110025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Tanshinone IIA, a major bioactive constituent of Danshen, a Chinese herbal medicine, has gained extensive exploration owing to its unique structural features and multiple promising biological activities. This review focuses on the pharmacology, total synthesis, and structural modifications of tanshinone IIA. We hope this review will contribute to a better understanding of the progress in the field and provide constructive suggestions for further study of tanshinone IIA.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| |
Collapse
|
4
|
Naveed M, Majeed F, Taleb A, Zubair HM, Shumzaid M, Farooq MA, Baig MMFA, Abbas M, Saeed M, Changxing L. A Review of Medicinal Plants in Cardiovascular Disorders: Benefits and Risks. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:259-286. [PMID: 32345058 DOI: 10.1142/s0192415x20500147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many cultivated and wild plants are used for the management of various diseases, specifically renal and hepatic diseases and those of the immune and cardiovascular systems. In China, medicinal plants from ancient to modern history have been used in patients with angina pectoris, congestive heart failure (CHF), systolic hypertension, arrhythmia, and venous insufficiency for centuries. The latest increase in the fame of natural products and alternative medicine has revived interest in conventional remedies that have been consumed in the management of CVD. The cardio-protective properties of the various herbs are possibly due to their anti-oxidative, antihypercholesterolemic, anti-ischemic activities, and inhibition of platelet aggregation that reduce the risk of CVD. Ethno-pharmacological and biological properties of these plants are explored, based upon published scientific literature. Although a majority of medicinal plants having a biological mechanism that linked with CVD management, to date, published literature pertaining to their promising scientific properties are still poorly understood. Compared with synthetic medicines, alternative medicines do not need scientific studies before their formal approval from the government sector and due to this purpose; their safety, as well as efficacy, still remain elusive. Taken together, we addressed all accessible evidence on alternative medicines commonly consumed in CVD management. Our comprehensive analysis of the scientific literature indicated that many TCMs are available and valuable herbal medication would be the best alternative for the management of CVD as a complementary therapy. Furthermore, practitioners should always discuss possible benefits-risks of alternative medicines with patients so that they are aware of the consumption of alternative medications.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Fatima Majeed
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Abdoh Taleb
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu Province, Nanjing 211166, P. R. China
| | - Muhammad Shumzaid
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Punjab Province, Lahore 54770, Pakistan
| | - Muhammad Asim Farooq
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing 211198, P. R. China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu Province, Nanjing 210093, P. R. China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Jiangsu Province, Nanjing 210093, P. R. China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810000, Qinghai Province, P. R. China
| |
Collapse
|
5
|
Lübke M, Schreiber JA, Le Quoc T, Körber F, Müller J, Sivanathan S, Matschke V, Schubert J, Strutz‐Seebohm N, Seebohm G, Scherkenbeck J. Rottlerin: Structure Modifications and KCNQ1/KCNE1 Ion Channel Activity. ChemMedChem 2020; 15:1078-1088. [PMID: 32338831 PMCID: PMC7318133 DOI: 10.1002/cmdc.202000083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Indexed: 11/10/2022]
Abstract
The slow delayed rectifier potassium current (IKs ) is formed by the KCNQ1 (Kv 7.1) channel, an ion channel of four α-subunits that modulates KCNE1 β-subunits. IKs is central to the repolarization of the cardiac action potential. Loss of function mutation reducing ventricular cardiac IKs cause the long-QT syndrome (LQTS), a disorder that predisposes patients to arrhythmia and sudden death. Current therapy for LQTS is inadequate. Rottlerin, a natural product of the kamala tree, activates IKs and has the potential to provide a new strategy for rational drug therapy. In this study, we show that simple modifications such as penta-acetylation or penta-methylation of rottlerin blunts activation activity. Total synthesis was used to prepare side-chain-modified derivatives that slowed down KCNQ1/KCNE1 channel deactivation to different degrees. A binding hypothesis of rottlerin is provided that opens the way to improved IKs activators as novel therapeutics for the treatment of LQTS.
Collapse
Affiliation(s)
- Marco Lübke
- Faculty of Mathematics and Natural SciencesUniversity Wuppertal42119WuppertalGermany
| | - Julian A. Schreiber
- Institut für Genetik von HerzerkrankungenUniversity Hospital MünsterAlbert-Schweitzer-Campus 148149MünsterGermany
| | - Thang Le Quoc
- Department of ChemistryHue University34 Le Loi St.Hue CityVietnam
| | - Florian Körber
- Faculty of Mathematics and Natural SciencesUniversity Wuppertal42119WuppertalGermany
| | - Jasmin Müller
- Faculty of Mathematics and Natural SciencesUniversity Wuppertal42119WuppertalGermany
| | | | - Veronika Matschke
- Medical Faculty, Institute of Anatomy Department of CytologyRuhr University Bochum44801BochumGermany
| | - Janina Schubert
- Institut für Genetik von HerzerkrankungenUniversity Hospital MünsterAlbert-Schweitzer-Campus 148149MünsterGermany
| | - Nathalie Strutz‐Seebohm
- Institut für Genetik von HerzerkrankungenUniversity Hospital MünsterAlbert-Schweitzer-Campus 148149MünsterGermany
| | - Guiscard Seebohm
- Institut für Genetik von HerzerkrankungenUniversity Hospital MünsterAlbert-Schweitzer-Campus 148149MünsterGermany
| | - Jürgen Scherkenbeck
- Faculty of Mathematics and Natural SciencesUniversity Wuppertal42119WuppertalGermany
| |
Collapse
|
6
|
Yang X, Liu N, Li X, Yang Y, Wang X, Li L, Jiang L, Gao Y, Tang H, Tang Y, Xing Y, Shang H. A Review on the Effect of Traditional Chinese Medicine Against Anthracycline-Induced Cardiac Toxicity. Front Pharmacol 2018; 9:444. [PMID: 29867456 PMCID: PMC5963334 DOI: 10.3389/fphar.2018.00444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
Anthracyclines are effective agents generally used to treat solid-tumor and hematologic malignancies. The use of anthracyclines for over 40 years has improved cancer survival statistics. Nevertheless, the clinical utility of anthracyclines is limited by its dose-dependent cardiotoxicity that adversely affects 10-30% of patients. Anthracycline-induced cardiotoxicity may be classified as acute/subacute or chronic/late toxicity and leads to devastating adverse effects resulting in poor quality of life, morbidity, and premature mortality. Traditional Chinese medicine has a history of over 2,000 years, involving both unique theories and substantial experience. Several studies have investigated the potential of natural products to decrease the cardiotoxic effects of chemotherapeutic agents on healthy cells, without negatively affecting their antineoplastic activity. This article discusses the mechanism of anthracycline-induced cardiotoxicity, and summarizes traditional Chinese medicine treatment for anthracycline-induced heart failure (HF), cardiac arrhythmia, cardiomyopathy, and myocardial ischemia in recent years, in order to provide a reference for the clinical prevention and treatment of cardiac toxicity.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Linling Li
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Le Jiang
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hebin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong Tang
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Wang X, Hu D, Dang S, Huang H, Huang CX, Yuan MJ, Tang YH, Zheng QS, Yin F, Zhang S, Zhang BL, Gao RL. Effects of Traditional Chinese Medicine Shensong Yangxin Capsules on Heart Rhythm and Function in Congestive Heart Failure Patients with Frequent Ventricular Premature Complexes: A Randomized, Double-blind, Multicenter Clinical Trial. Chin Med J (Engl) 2018; 130:1639-1647. [PMID: 28685712 PMCID: PMC5520549 DOI: 10.4103/0366-6999.209906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Pharmacological therapy for congestive heart failure (CHF) with ventricular arrhythmia is limited. In the study, our aim was to evaluate the effects of Chinese traditional medicine Shensong Yangxin capsules (SSYX) on heart rhythm and function in CHF patients with frequent ventricular premature complexes (VPCs). Methods: This double-blind, placebo-controlled, multicenter study randomized 465 CHF patients with frequent VPCs to the SSYX (n = 232) and placebo groups (n = 233) for 12 weeks of treatment. The primary endpoint was the VPCs monitored by a 24-h ambulatory electrocardiogram. The secondary endpoints included the left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter, N-terminal pro-brain natriuretic peptide (NT-proBNP), New York Heart Association (NYHA) classification, 6-min walking distance (6MWD), Minnesota Living with Heart Failure Questionnaire (MLHFQ) scores, and composite cardiac events (CCEs). Results: The clinical characteristics were similar at baseline. SSYX caused a significantly greater decline in the total number of VPCs than the placebo did (−2145 ± 2848 vs. −841 ± 3411, P < 0.05). The secondary endpoints of the LVEF, NYHA classification, NT-proBNP, 6MWD, and MLHFQ scores showed a greater improvements in the SSYX group than in the placebo group (ΔLVEF at 12th week: 4.75 ± 7.13 vs. 3.30 ± 6.53; NYHA improvement rate at the 8th and 12th week: 32.6% vs. 21.8%, 40.5% vs. 25.7%; mean level of NT-proBNP in patients with NT-proBNP ≥125 pg/ml at 12th week: −122 [Q1, Q3: −524, 0] vs. −75 [Q1, Q3: −245, 0]; Δ6MWD at 12th week: 35.1 ± 38.6 vs. 17.2 ± 45.6; ΔMLHFQ at the 4th, 8th, and 12th week: −4.24 ± 6.15 vs. −2.31 ± 6.96, −8.19 ± 8.41 vs. −3.25 ± 9.40, −10.60 ± 9.41 vs. −4.83 ± 11.23, all P < 0.05). CCEs were not different between the groups during the study period. Conclusions: In this 12-week pilot study, SSYX was demonstrated to have the benefits of VPCs suppression and cardiac function improvement with good compliance on a background of standard treatment for CHF. Trial Registration: www.chictr.org.cn, ChiCTR-TRC-12002061 (http://www.chictr.org.cn/showproj.aspx?proj=7487) and Clinicaltrials.gov, NCT01612260 (https://clinicaltrials.gov/ct2/show/NCT01612260).
Collapse
Affiliation(s)
- Xi Wang
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Dan Hu
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China; Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY 13501, USA
| | - Song Dang
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - He Huang
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Cong-Xin Huang
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Ming-Jie Yuan
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Yan-Hong Tang
- Department of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Qing-Shan Zheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang Yin
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shu Zhang
- National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bo-Li Zhang
- State Key Laboratory of Modern Chinese Medicine, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Run-Lin Gao
- National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | | |
Collapse
|
9
|
Jeevaratnam K, Chadda KR, Huang CLH, Camm AJ. Cardiac Potassium Channels: Physiological Insights for Targeted Therapy. J Cardiovasc Pharmacol Ther 2017; 23:119-129. [PMID: 28946759 PMCID: PMC5808825 DOI: 10.1177/1074248417729880] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K+ channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K+ channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them.
Collapse
Affiliation(s)
- Kamalan Jeevaratnam
- 1 Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,2 School of Medicine, Perdana University-Royal College of Surgeons Ireland, Serdang, Selangor Darul Ehsan, Malaysia
| | - Karan R Chadda
- 1 Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,3 Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H Huang
- 3 Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,4 Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - A John Camm
- 5 Cardiac Clinical Academic Group, St George's Hospital Medical School, University of London, Cranmer Terrace, London, United Kingdom
| |
Collapse
|
10
|
Naveed M, Wenhua L, Gang W, Mohammad IS, Abbas M, Liao X, Yang M, Zhang L, Liu X, Qi X, Chen Y, Jiadi L, Ye L, Zhijie W, Ding CD, Feng Y, Xiaohui Z. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management. Biomed Pharmacother 2017; 95:701-710. [PMID: 28886530 DOI: 10.1016/j.biopha.2017.07.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
A novel ventricular restraint is the non-transplant surgical option for the management of an end-stage dilated heart failure (HF). To expand the therapeutic techniques we design a novel ventricular restraint device (ASD) which has the ability to deliver a therapeutic drug directly to the heart. We deliver a Traditional Chinese Medicine (TCM) Salvia miltiorrhiza (Danshen Zhusheye) through active hydraulic ventricular support drug delivery system (ASD) and we hypothesize that it will show better results in HF management than the restraint device and drug alone. SD rats were selected and divided into five groups (n=6), Normal, HF, HF+SM (IV), HF+ASD, HF+ASD+SM groups respectively. Post myocardial infarction (MI), electrocardiography (ECG) showed abnormal heart function in all groups and HF+ASD+SM group showed a significant therapeutic improvement with respect to other treatment HF, HF+ASD, and HF+SM (IV) groups on day 30. The mechanical functions of the heart such as heart rate, LVEDP, and LVSP were brought to normal when treated with ASD+SM and show significant (P value<0.01) compared to other groups. BNP significantly declines in HF+ASD+SM group animals compared with other treatment groups. Masson's Trichrome staining was used to study histopathology of cardiac myocytes and quantification of fibrosis was assessed. The large blue fibrotic area was observed in HF, HF+ASD, and HF+SM (IV) groups while HF+ASD+SM showed negligible fibrotic myocyte at the end of study period (30days). This study proves that novel ASD device augments the therapeutic effect of the drug and delivers Salvia miltiorrhiza to the cardiomyocytes significantly as well as provides additional support to the dilated ventricle by the heart failure.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China; Department of Surgery, Aviation General Hospital, Beijing, 100012, PR China
| | - Li Wenhua
- Department of Surgery, Aviation General Hospital, Beijing, 100012, PR China
| | - Wang Gang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China
| | - Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Muhammad Abbas
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China
| | - Xiaoqian Liao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China
| | - Mengqi Yang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China
| | - Li Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China
| | - Xiaolin Liu
- Children's Hospital of Zhengzhou, Zhengzhou, Henan Province, 450053, PR China
| | - Xiaoming Qi
- University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, 030600, PR China
| | - Yineng Chen
- Department of National Training Base for Talents in Life Science and Technology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Lv Jiadi
- Department of Immunology, Peking Union Medical College, Beijing, 100032, PR China
| | - Linlan Ye
- Department of Pharmaceutical Preparation Section, The 3rd Peoples of Wuxi, Wuxi, Jiangsu Province, 214000, PR China
| | - Wang Zhijie
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China.
| | - Chen Ding Ding
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China.
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China.
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, 211198, PR China; Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210017, PR China; Deprtment of Cardiothoracic Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China.
| |
Collapse
|
11
|
Chen YF, Lee NH, Pai PY, Chung LC, Shen CY, Rajendran P, Chen YF, Chen RJ, Padma Viswanadha V, Kuo WW, Huang CY. Tanshinone-induced ERs suppresses IGFII activation to alleviate Ang II-mediated cardiac hypertrophy. J Recept Signal Transduct Res 2017; 37:493-499. [DOI: 10.1080/10799893.2017.1360349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veteran’s General Hospital, Taichung, Taiwan
| | - Nien-Hung Lee
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
12
|
Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM. Natural products modulating the hERG channel: heartaches and hope. Nat Prod Rep 2017; 34:957-980. [PMID: 28497823 PMCID: PMC5708533 DOI: 10.1039/c7np00014f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers natural products modulating the hERG potassium channel. Risk assessment strategies, structural features of blockers, and the duality target/antitarget are discussed.
Covering: 1996–December 2016 The human Ether-à-go-go Related Gene (hERG) channel is a voltage-gated potassium channel playing an essential role in the normal electrical activity in the heart. It is involved in the repolarization and termination of action potentials in excitable cardiac cells. Mutations in the hERG gene and hERG channel blockage by small molecules are associated with increased risk of fatal arrhythmias. Several drugs have been withdrawn from the market due to hERG channel-related cardiotoxicity. Moreover, as a result of its notorious ligand promiscuity, this ion channel has emerged as an important antitarget in early drug discovery and development. Surprisingly, the hERG channel blocking profile of natural compounds present in frequently consumed botanicals (i.e. dietary supplements, spices, and herbal medicinal products) is not routinely assessed. This comprehensive review will address these issues and provide a critical compilation of hERG channel data for isolated natural products and extracts over the past two decades (1996–2016). In addition, the review will provide (i) a solid basis for the molecular understanding of the physiological functions of the hERG channel, (ii) the translational potential of in vitro/in vivo results to cardiotoxicity in humans, (iii) approaches for the identification of hERG channel blockers from natural sources, (iv) future perspectives for cardiac safety guidelines and their applications within phytopharmaceuticals and dietary supplements, and (v) novel applications of hERG channel modulation (e.g. as a drug target).
Collapse
Affiliation(s)
- Jadel M Kratz
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
13
|
Chen PX, Zhang YL, Xu JW, Yu MH, Huang JH, Zhao L, Zhou WL. Sodium tanshinone IIA sulfonate stimulated Cl- secretion in mouse trachea. PLoS One 2017; 12:e0178226. [PMID: 28542554 PMCID: PMC5440052 DOI: 10.1371/journal.pone.0178226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) is a derivate of tanshinone IIA, a lipophilic compound in Salvia miltiorrhiza. This study aimed to investigate the effect of STS on ion transport in mouse tracheal epithelium and the mechanisms underlying it. Short-circuit current (Isc) was measured to evaluate the effect of STS on transepithelial ion transport. Intracellular Ca2+ imaging was performed to observe intracellular Ca2+ concentration ([Ca2+]i) changes induced by STS in primary cultured mouse tracheal epithelial cells. Results showed that the apical application of STS at mouse trachea elicited an increase of Isc, which was abrogated by atropine, an antagonist of muscarinic acetylcholine receptor (mAChR). By removing ambient Cl− or applying blockers of Ca2+-activated Cl− channel (CaCC), the response of STS-induced Isc was suppressed. Moreover, STS elevated the [Ca2+]i in mouse tracheal epithelial cells. As a result, STS stimulated Cl− secretion in mouse tracheal epithelium via CaCC in an mAChR-dependent way. Due to the critical role of Cl− secretion in airway hydration, our findings suggested that STS may be used to ameliorate the airway dehydration symptom in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming-Hao Yu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie-Hong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lei Zhao
- Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4615727. [PMID: 28497050 PMCID: PMC5405360 DOI: 10.1155/2017/4615727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion. We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.
Collapse
|
15
|
Song Q, Chu X, Zhang X, Bao Y, Zhang Y, Guo H, Liu Y, Liu H, Zhang J, Zhang Y, Chu L. Mechanisms underlying the cardioprotective effect of Salvianic acid A against isoproterenol-induced myocardial ischemia injury in rats: Possible involvement of L-type calcium channels and myocardial contractility. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:157-164. [PMID: 27211016 DOI: 10.1016/j.jep.2016.05.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianic acid A (SAA), which is the main water-soluble fraction in Radix Salviae Milthiorrhizae, has been widely applied for treating cardiovascular diseases in China. AIM OF THE STUDY To explore the effects of SAA against myocardial ischemia injury induced by isoproterenol (ISO) in rats and to clarify its underlying myocardial protective mechanisms based on l-type calcium channels and myocardial contractility. MATERIALS AND METHODS The myocardial ischemia injured rat model was induced by administering ISO (85mg/kg) subcutaneously at evenly spaced intervals throughout the day and night for 2 consecutive days. Serum cardiac biomarkers were analyzed, and heart tissues were isolated and prepared for histopathology assay. The regulatory effects of SAA on the L-type calcium current (ICa-L) in rat ventricular myocytes were observed by the patch clamp technique. The IonOptix Myocam detection system was used to observe the contractility of isolated rat ventricular myocytes. RESULTS SAA significantly ameliorated changes in heart morphology and electrocardiographic patterns and reduced serum levels of creatine kinase and lactate dehydrogenase in the ISO-induced myocardial ischemia injured rat model. Meanwhile, SAA reduced ICa-L in a concentration-time dependent way with an IC50 of 1.47×10(-5)M, upshifted the current-voltage, activation, and inactivation curves of ICa-L, and significantly inhibited the amplitude of the cell shortening. CONCLUSIONS These results indicate that SAA exhibits significant cardioprotective effects against the ISO-induced myocardial ischemia injury, potentially through inhibiting ICa-L and decreasing myocardial contractility.
Collapse
Affiliation(s)
- Qiongtao Song
- Hebei Medical University, No.361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Xuan Zhang
- Hebei University of Chinese Medicine, No.3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Yifan Bao
- Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, No. 1, Shennong Road of the Central Door, Nanjing 210038, Jiangsu, China
| | - Yuanyuan Zhang
- Hebei University of Chinese Medicine, No.3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Hui Guo
- Hebei University of Chinese Medicine, No.3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Yang Liu
- Hebei Medical University, No.361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Hongying Liu
- Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Jianping Zhang
- Hebei University of Chinese Medicine, No.3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Ying Zhang
- Hebei University of Chinese Medicine, No.3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Li Chu
- Hebei Medical University, No.361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China; Hebei University of Chinese Medicine, No.3, Xingyuan Road, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
16
|
Gu Y, Liang Z, Wang H, Jin J, Zhang S, Xue S, Chen J, He H, Duan K, Wang J, Chang X, Qiu C. Tanshinone IIA protects H9c2 cells from oxidative stress-induced cell death via microRNA-133 upregulation and Akt activation. Exp Ther Med 2016; 12:1147-1152. [PMID: 27446335 DOI: 10.3892/etm.2016.3400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the cardioprotective effect of tanshinone IIA and the underlying molecular mechanisms. An in vitro model of oxidative stress injury was established in cardiac H9c2 cells, and the effects of tanshinone IIa were investigated using cell viability, reverse transcription-quantitative polymerase chain reaction and western blotting assays. The results demonstrated that tanshinone IIA protects H9c2 cells from H2O2-induced cell death in a concentration-dependent manner, via a mechanism involving microRNA-133 (miR-133), and that treatment with TIIA alone exerted no cytotoxic effects on H9c2. In order to further elucidate the mechanisms underlying the actions of TIIA, reverse transcription-quantitative polymease chain reaction and western blot analysis were performed. Reductions in miR-133 expression levels induced by increasing concentrations of H2O2 were reversed by treatment with tanshinone IIA. In addition, the inhibition of miR-133 by transfection with an miR-133 inhibitor abolished the cardioprotective effects of tanshinone IIA against H2O2-induced cell death. Furthermore, western blot analysis demonstrated that tanshinone IIA activated Akt kinase via the phosphorylation of serine 473. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by pretreatment with the PI3K specific inhibitors wortmannin and LY294002 also eliminated the cardioprotective effects of tanshinone IIA against H2O2-induced cell death. Western blot analysis demonstrated that H2O2-induced reductions in B cell lymphoma 2 (Bcl-2) expression levels were reversed by tanshinone IIA. In addition, the effect of tanshinone IIA on Bcl-2 protein expression level in an oxidative environment was suppressed by a PI3K inhibitor, wortmannin, indicating that tanshinone IIA exerts cardioprotective effects against H2O2-induced cell death via the activation of the PI3K/Akt signal transduction pathway and the consequent upregulation of Bcl-2. In conclusion, the present study demonstrates that TIIA is able to protcet H9c2 cells from oxidative stress-induced cell death through signalling pathways involving miR-133 and Akt, and that tanshinone IIA is a promising natural cardioprotective agent.
Collapse
Affiliation(s)
- Yunfei Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China; Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Zhuo Liang
- Department of Cardiology, The General Hospital of People's Liberation Army, Beijing 100853, P.R. China
| | - Haijun Wang
- Department of Cardiology, The General Hospital of People's Liberation Army, Beijing 100853, P.R. China
| | - Jun Jin
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Shufeng Xue
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Jianfeng Chen
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Huijuan He
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Kadan Duan
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Jing Wang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Xuewei Chang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Chunguang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
17
|
Akaberi M, Iranshahi M, Mehri S. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology. Phytother Res 2016; 30:878-93. [PMID: 26988179 DOI: 10.1002/ptr.5599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Akaberi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Weng YS, Wang HF, Pai PY, Jong GP, Lai CH, Chung LC, Hsieh DJY, HsuanDay C, Kuo WW, Huang CY. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1567-1591. [PMID: 26621443 DOI: 10.1142/s0192415x15500895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- * Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsueh-Fang Wang
- ¶ Institute of Biomedical Nutrition, Hungkuang University, Taichung, Taiwan
| | - Pei-Ying Pai
- ∥ Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Gwo-Ping Jong
- ** Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chao-Hung Lai
- † Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- ** Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- †† Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Dennis Jine-Yuan Hsieh
- ‡‡ School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Cecilia HsuanDay
- §§ Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Wei-Wen Kuo
- ‡ Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- * Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
- § Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- ¶¶ Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
20
|
Yan HM, Sun E, Cui L, Jia XB, Jin X. Improvement in oral bioavailability and dissolution of tanshinone IIA by preparation of solid dispersions with porous silica. J Pharm Pharmacol 2015; 67:1207-14. [DOI: 10.1111/jphp.12423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/27/2015] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
This study aims to evaluate the oral bioavailability and dissolution of tanshinone IIA (tanIIA) by preparation of solid dispersions (SDs) with porous silica.
Methods
SDs of tanIIA were prepared using a solvent method. The physicochemical properties, dissolution property, drug stability and in-vivo performance of the SDs prepared were all evaluated.
Key findings
Compared with tanIIA alone and corresponding physical mixtures, tanIIA from SDs showed remarkably improved in-vitro dissolution rate. After forming the SDs, tanIIA changed into an amorphous state, which can infer from differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Fourier transform infrared spectroscopy (FTIR) also revealed the presence of interactions between tanIIA and porous silica in SDs. During the stability study, there is no significant decreasing in either the in-vitro dissolution or the drug content, which was observed following storage at room temperature for 12 months. The results of a pharmacokinetic study in rats showed the areas under the concentration–time curve from 0 h to 24 h (AUC0–24h) for the SDs and tanIIA were 1019.87 ± 161.819 mg/h per litre and 343.70 ± 75.628 mg/h per litre, respectively.
Conclusions
SDs with porous silica as carrier could achieve superior oral bioavailability by improving drug dissolution, whereas drug stability could be maintained.
Collapse
Affiliation(s)
- Hong-mei Yan
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - E Sun
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-bin Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Jin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of pharmacy, Suqian First Hospital, Suqian, Jiangsu, China
| |
Collapse
|
21
|
Li HZ, Lu YH, Huang GS, Chen Q, Fu Q, Li ZL. Tanshinone II A inhibits dendritic cell-mediated adaptive immunity: potential role in anti-atherosclerotic activity. Chin J Integr Med 2014; 20:764-9. [PMID: 23001464 DOI: 10.1007/s11655-012-1213-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Antigen-presenting cells such as monocytes and dendritic cells (DCs) stimulate T-cell proliferation and activation during adaptive immunity. This cellular interaction plays a role in the growth of atherosclerotic plaques. Tanshinone II A (TSN) had been shown to decrease the growth of atherosclerotic lesions. We therefore investigated the ability of TSN to inhibit human monocyte-derived DCs and their T-cellstimulatory capacity. METHODS DCs derived from human monocytes cultured with recombinant human interleukin (IL)-4 and recombinant human granulocyte-macrophage colony-stimulating factor were co-cultured with TSN and lipopolysaccharide for 48 h. Phosphate-buffered saline was used as a negative control. Activation markers and the capacity of DCs for endocytosis were measured by flow cytometry, and proinflammatory cytokines were measured by enzyme-linked immunosorbent assays. DCs were co-cultured with lymphocytes to measure T-cell proliferation and IL-2 secretion by mixed lymphocyte reactions. RESULTS TSN dose-dependently attenuated DC expression of costimulatory molecules (CD86), and decreased expression of major histocompatibility complex class II (human loukocyte antigen-DR) and adhesion molecules (CD54). Moreover, TSN reduced secretion of the proinflammatory cytokines IL-12 and IL-1 by human DCs, and restored the capacity for endocytosis. Finally, TSN-preincubated DCs showed a reduced capacity to stimulate T-cell proliferation and cytokine secretion. CONCLUSIONS TSN inhibits DC maturation and decreases the expression of proinflammatory cytokines, while impairing their capacity to stimulate T-cell proliferation and cytokine secretion. These effects may contribute to the influence of TSN on the progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Hong-zhan Li
- Integrative Hospital, College of Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | | | | | | | | | | |
Collapse
|
22
|
Jiang YR, Zhang ZH, Huang SY, Lu Y, Ma TT, Jia XB. Enhanced dissolution and stability of Tanshinone IIA base by solid dispersion system with nano-hydroxyapatite. Pharmacogn Mag 2014; 10:332-7. [PMID: 25210322 PMCID: PMC4159928 DOI: 10.4103/0973-1296.137375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/19/2013] [Accepted: 07/24/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Tanshinone IIA (TSIIA) exhibits a variety of cardiovascular effects; however, it has low solubility in water. The preparation of poorly soluble drugs for oral delivery is one of the greatest challenges in the field of formulation research. Among the approaches available, solid dispersion (SD) technique has proven to be one of the most commonly used these methods for improving dissolution and bioavailability of drugs, because of its relative simplicity and economy in terms of both preparation and evaluation. Objective: This study was aimed at investigating the dissolution behavior and physical stability of SDs of TSIIA by employing nano-hydroxyapatite (n-HAp). Materials and Methods: The TSIIA SDs was prepared to use a spray-drying method. First, an in vitro dissolution test was performed to assess dissolution characteristics. Next, a set of complementary techniques (differential scanning calorimetry, scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy) was used to monitor the physicochemical properties of the SDs. The SDs was stored at 40°C/75% relative humidity for 6 months, after which their stability was assessed. Results: TSIIA dissolution remarkably improved because of the formulation of the SDs with n-HAp particles. Comparisons with the corresponding physical mixtures revealed changes in the SDs and explained the formation of the amorphous phase. In the stability test, virtually no time-dependent decrease was observed in either in vitro drug dissolution or drug content. Conclusion: SD formulation with n-HAp may be a promising approach for enhancing the dissolution and stability of TSIIA.
Collapse
Affiliation(s)
- Yan-Rong Jiang
- Chinese Herb Preparation Room, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China ; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen-Hai Zhang
- Chinese Herb Preparation Room, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sai-Yan Huang
- Chinese Herb Preparation Room, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian-Tian Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Bin Jia
- Chinese Herb Preparation Room, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Jiang YR, Zhang ZH, Liu QY, Hu SY, Chen XY, Jia XB. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles. Int J Nanomedicine 2013; 8:2285-93. [PMID: 23836971 PMCID: PMC3699171 DOI: 10.2147/ijn.s40374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01). Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone.
Collapse
Affiliation(s)
- Yan-rong Jiang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Dingxin Recipe (定心方) prevents ischemia/reperfusion-induced arrhythmias via up-regulating prohibitin and suppressing inflammatory responses. Chin J Integr Med 2013; 18:120-9. [PMID: 22311408 DOI: 10.1007/s11655-012-0998-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Indexed: 11/27/2022]
|
25
|
Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 – September 2012). Expert Opin Ther Pat 2012; 23:19-29. [DOI: 10.1517/13543776.2013.736494] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Wu YB, Ni ZY, Shi QW, Dong M, Kiyota H, Gu YC, Cong B. Constituents from Salvia Species and Their Biological Activities. Chem Rev 2012; 112:5967-6026. [DOI: 10.1021/cr200058f] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yi-Bing Wu
- School of
Pharmaceutical Sciences,
Hebei Key Laboratory of Forensic Medicine, Hebei Medical University,
Shijiazhuang, Hebei Province 050017, China
| | - Zhi-Yu Ni
- School of
Pharmaceutical Sciences,
Hebei Key Laboratory of Forensic Medicine, Hebei Medical University,
Shijiazhuang, Hebei Province 050017, China
| | - Qing-Wen Shi
- School of
Pharmaceutical Sciences,
Hebei Key Laboratory of Forensic Medicine, Hebei Medical University,
Shijiazhuang, Hebei Province 050017, China
| | - Mei Dong
- Department of Forensic Medicine,
Hebei Medical University, Hebei Key Laboratory of Forensic Medicine,
Shijiazhuang, Hebei Province 050017, China
| | - Hiromasa Kiyota
- Department of Bioscience and Biotechnology
for Future Bioindustry, Graduate School of Agricultural Science, Tohoku
University, 1-1 Tsutsumidori-Amamiya, Aoba-ku, Sendai 981-8555, Japan
| | - Yu-Cheng Gu
- School of
Pharmaceutical Sciences,
Hebei Key Laboratory of Forensic Medicine, Hebei Medical University,
Shijiazhuang, Hebei Province 050017, China
- Syngenta Jealott’s Hill
International Research Centre, Berkshire RG42 6EY, United Kingdom
| | - Bin Cong
- Department of Forensic Medicine,
Hebei Medical University, Hebei Key Laboratory of Forensic Medicine,
Shijiazhuang, Hebei Province 050017, China
| |
Collapse
|
27
|
Liu P, Li J, Liu J, Yang J, Fan Y. Release Behavior of Tanshinone IIA Sustained-Release Pellets Based on Crack Formation Theory. J Pharm Sci 2012; 101:2811-20. [DOI: 10.1002/jps.23199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/29/2012] [Accepted: 04/27/2012] [Indexed: 11/09/2022]
|
28
|
Hong HJ, Liu JC, Chen PY, Chen JJ, Chan P, Cheng TH. Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. Int J Cardiol 2012; 157:174-179. [PMID: 21190747 DOI: 10.1016/j.ijcard.2010.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/10/2010] [Accepted: 12/04/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Doxorubicin, one of the original anthracyclines, remains among the most effective anticancer drugs ever developed. Clinical use of doxorubicin is, however, greatly limited by its serious adverse cardiac effects that may ultimately lead to cardiomyopathy and heart failure. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as 'Danshen' in traditional Chinese medicine for treating cardiovascular disorders. The objective of this study was set to evaluate the protective effect of tanshinone IIA on doxorubicin-induced cardiomyocyte apoptosis, and to explore its intracellular mechanism(s). METHODS Primary cultured neonatal rat cardiomyocytes were treated with the vehicle, doxorubicin (1 μM), tanshinone IIA (0.1, 0.3, 1 and 3 μM), or tanshinone IIA plus doxorubicin. RESULTS We found that tanshinone IIA (1 and 3 μM) inhibited doxorubicin-induced reactive oxygen species generation, reduced the quantity of cleaved caspase-3 and cytosol cytochrome c, and increased BcL-x(L) expression, resulting in protecting cardiomyocytes from doxorubicin-induced apoptosis. In addition, Akt phosphorylation was enhanced by tanshinone IIA treatment in cardiomyocytes. The wortmannin (100 nM), LY294002 (10 nM), and siRNA transfection for Akt significantly reduced tanshinone IIA-induced protective effect. CONCLUSIONS These findings suggest that tanshinone IIA protects cardiomyocytes from doxorubicin-induced apoptosis in part through Akt-signaling pathways, which may potentially protect the heart from the severe toxicity of doxorubicin.
Collapse
Affiliation(s)
- Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
29
|
Shang Q, Xu H, Huang L. Tanshinone IIA: A Promising Natural Cardioprotective Agent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:716459. [PMID: 22454677 PMCID: PMC3292221 DOI: 10.1155/2012/716459] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/03/2011] [Indexed: 11/17/2022]
Abstract
Tanshinone IIA (Tan IIA) is a member of the major lipophilic components extracted from the root of Salvia miltiorrhiza Bunge, which is currently used in China and other neighboring countries to treat patients suffering from myocardial infarction (MI), angina pectoris, stroke, diabetes, sepsis, and other conditions. However, Tan IIA is not easy to be absorbed through intestinal pathway. To raise the bioavailability of the herb, sodium tanshinone IIA sulfonate (STS) was developed. This paper discussed the pharmacology of Tan IIA, STS, and their potential cardioprotective effects.
Collapse
Affiliation(s)
- Qinghua Shang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- National Integrative Medicine Center for Cardiovascular Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hao Xu
- Cardiovascular Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Li Huang
- National Integrative Medicine Center for Cardiovascular Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
30
|
Fang X, Wang J, Zhang S, Zhao Q, Zheng Z, Song Z. Simultaneous extraction of hydrosoluble phenolic acids and liposoluble tanshinones from Salviae miltiorrhizae radix by an optimized microwave-assisted extraction method. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2011.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Li J, Liu P, Liu JP, Zhang WL, Yang JK, Fan YQ. Novel Tanshinone II A ternary solid dispersion pellets prepared by a single-step technique: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2012; 80:426-32. [DOI: 10.1016/j.ejpb.2011.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
32
|
Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis 2012; 220:3-10. [DOI: 10.1016/j.atherosclerosis.2011.06.041] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022]
|
33
|
Wang X, Wang Y, Jiang M, Zhu Y, Hu L, Fan G, Wang Y, Li X, Gao X. Differential cardioprotective effects of salvianolic acid and tanshinone on acute myocardial infarction are mediated by unique signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:662-71. [PMID: 21497648 DOI: 10.1016/j.jep.2011.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/06/2011] [Accepted: 03/22/2011] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianolic acid (SAL) and tanshinone (TAN) are major hydrophilic and lipophilic compounds, respectively, from one herbal medicine, Danshen, which has been widely and successfully used for treating cardiovascular diseases in Asian countries. Because few studies have reported different molecular mechanisms between the different compounds in same herb, we investigate if separate molecular pathways are involved in cardioprotective effect by different active components of Danshen. MATERIALS AND METHODS We used an acute myocardial infarction (MI) model to compare the cardioprotective effects of SAL and TAN in rats. Both infarct size and echocardiographic response were evaluated at 3, 7, 14 and 28 days after surgery. Genes involved in ischemic injury and in responses to SAL or TAN treatment in ischemic hearts were identified by microarray analysis and verified by quantitative real-time RT-PCR. RESULTS Results showed that both SAL and TAN delay the development of ischemia by decreasing infarct size and improving systolic function post MI. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated different kinetics and gene expression profiles by SAL and TAN. SAL acts in a later period after ischemia, and its effect is probably mediated by downregulation of genes involved in oxidative stress, certain G-protein coupled receptor activities and apoptosis. On the other hand, TAN acts relatively early after ischemic injury and its effect is at least in part mediated by inhibition of intracellular calcium, cell adhesion and alternative complement pathway. Strikingly, we found that TAN, a recently identified member of selective estrogen receptor modifier (SERM), indeed regulates genes known to be involved in estrogen metabolism post MI. CONCLUSIONS Although both SAL and TAN contribute to the cardioprotective effect of Danshen, there are significant mechanistic and temporal differences between the two: TAN acts at an early stage after ischemic injury mainly by inhibition of intracellular calcium and cell adhesion pathways whereas SAL acts mainly by down-regulating apoptosis.
Collapse
Affiliation(s)
- Xiaoying Wang
- Institute of Traditional Chinese Medicine Research, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sun D, Shen M, Li J, Li W, Zhang Y, Zhao L, Zhang Z, Yuan Y, Wang H, Cao F. Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3β dependent pathway in experimental diabetic cardiomyopathy. Cardiovasc Diabetol 2011; 10:4. [PMID: 21232147 PMCID: PMC3033797 DOI: 10.1186/1475-2840-10-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022] Open
Abstract
Aims Diabetic cardiomyopathy, characterized by myocardial structural and functional changes, is a specific cardiomyopathy develops in patients with diabetes mellitus. The present study was to investigate the role of kinin B2 receptor-Akt-glycogen synthase kinase (GSK)-3β signalling pathway in mediating the protective effects of tanshinone IIA (TSN) on diabetic cardiomyopathy. Methods and results Streptozocin (STZ) induced diabetic rats (n = 60) were randomized to receive TSN, TSN plus HOE140 (a kinin B2 receptor antagonist), or saline. Healthy Sprague-Dawley (SD) rats (n = 20) were used as control. Left ventricular function, myocardial apoptosis, myocardial ultrastructure, Akt, GSK-3β and NF-κB phosphorylation, the expression of TNF-α, IL-6 and myeloperoxidase (MPO) were examined. Cardiac function was well preserved as evidenced by increased left ventricular ejection fraction (LVEF) and ± dp/dt (maximum speed of contraction/relaxation), along with decreased myocardial apoptotic death after TSN administration. TSN pretreatment alleviated mitochondria ultrastructure changes. TSN also enhanced Akt and GSK-3β phosphorylation and inhibited NF-κB phosphorylation, resulting in decreased TNF-α, IL-6 and MPO activities. Moreover, pretreatment with HOE140 abolished the beneficial effects of TSN: a decrease in LVEF and ± dp/dt, an inhibition of cardiomyocyte apoptosis, a destruction of cardiomyocyte mitochondria cristae, a reduction of Akt and GSK-3β phosphorylation, an enhancement of NF-κB phosphorylation and an increase of TNF-α, IL-6 and MPO production. Conclusion These data indicated that TSN is cardioprotective in the context of diabetic cardiomyopathy through kinin B2 receptor-Akt-GSK-3β dependent pathway.
Collapse
Affiliation(s)
- Dongdong Sun
- Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chan P, Liu JC, Lin LJ, Chen PY, Cheng TH, Lin JG, Hong HJ. Tanshinone IIA inhibits angiotensin II-induced cell proliferation in rat cardiac fibroblasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:381-394. [PMID: 21476213 DOI: 10.1142/s0192415x11008890] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Tanshinone IIA extracted from danshen, a popular medicinal herb used in traditional Chinese medicine, exhibits cardio-protective effects. However, the mechanism of its cardioprotective effect is not well established. The aims of this study were to examine whether tanshinone IIA may alter angiotensin II (Ang II)-induced cell proliferation and to identify the putative underlying signaling pathways in rat cardiac fibroblasts. Cultured rat cardiac fibroblasts were pre-treated with tanshinone IIA and stimulated with Ang II, cell proliferation and endothelin-1 (ET-1) expression were examined. The effect of tanshinone IIA on Ang II-induced reactive oxygen species (ROS) formation, and extracellular signal-regulated kinase (ERK) phosphorylation were also examined. In addition, the effect of tanshinone IIA on nitric oxide (NO) production, and endothelial nitric oxide synthase (eNOS) phosphorylation were tested to elucidate the intracellular mechanism. The increased cell proliferation and ET-1 expression by Ang II (100 nM) were partially inhibited by tanshinone IIA. Tanshinone IIA also inhibited Ang II-increased ROS formation, and ERK phosphorylation. In addition, tanshinone IIA was found to increase the NO generation, and eNOS phosphorylation. N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, and the short interfering RNA transfection for eNOS markedly attenuated the inhibitory effect of tanshinone IIA on Ang II-induced cell proliferation. The results suggest that tanshinone IIA prevents cardiac fibroblast proliferation by interfering with the generation of ROS and involves the activation of the eNOS-NO pathway.
Collapse
Affiliation(s)
- Paul Chan
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Hong HJ, Liu JC, Cheng TH, Chan P. Tanshinone IIA attenuates angiotensin II-induced apoptosis via Akt pathway in neonatal rat cardiomyocytes. Acta Pharmacol Sin 2010; 31:1569-1575. [PMID: 21102479 PMCID: PMC4002950 DOI: 10.1038/aps.2010.176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/12/2010] [Indexed: 01/27/2023]
Abstract
AIM to examine the effects of tanshinone IIA, the main effective component of Salvia miltiorrhiza (known as 'Danshen' in traditional Chinese medicine) on angiotensin II (Ang II)-mediated cardiomyocyte apoptosis. METHODS rat neonatal cardiomyocytes were primarily cultured with Ang II or Ang II plus tanshinone IIA. Myocyte apoptosis was evaluated by caspase-3 activity and DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining. Western blot analysis was employed to determine the related protein expression and flow cytometry assay was used to determine the TUNEL positive cells and the intracellular reactive oxygen species (ROS) production. SiRNA targeted to Akt was used. RESULTS ang II (0.1 micromol/L) remarkably increased caspase-3 activity, TUNEL positive cells, and cleaved caspase-3 and cytochrome c expression, but reduced Bcl-X(L) expression. These effects were effectively antagonized by pretreatment with tanshione IIA (1-3 micromol/L). Tanshinone IIA had no effect on basal ROS level, while attenuated the ROS production by Ang II. Interestingly, tanshione IIA significantly increased the phosphorylated Akt level, which was countered by the PI3K antagonist wortmannin or LY294002. Knockdown of Akt with Akt siRNA significantly reduced Akt protein levels and tanshinone IIA protective effect. CONCLUSION tanshinone IIA prevents Ang II-induced apoptosis, thereby suggesting that tanshinone IIA may be used for the prevention of the cardiac remodeling process.
Collapse
Affiliation(s)
- Hong-jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Ju-chi Liu
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, China
| | - Tzu-hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, China
| | - Paul Chan
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, China
| |
Collapse
|
37
|
Zhang Y, Wei L, Sun D, Cao F, Gao H, Zhao L, Du J, Li Y, Wang H. Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes Obes Metab 2010; 12:316-22. [PMID: 20380652 DOI: 10.1111/j.1463-1326.2009.01166.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Diabetes Mellitus (DM) is widely acknowledged to increase the risk of cardiovascular death, which warrants the use of aggressive primary prevention strategies. The aim of the present study was to investigate the pretreatment effects of tanshinone IIA (TSN), a traditional Chinese medicine, on myocardial infarct size, apoptosis, inflammation and cardiac functional recovery in diabetic rats subjected to myocardial ischaemia/reperfusion (I/R). METHODS Streptozocin (STZ) induced diabetic rats (n = 80) were randomized to receive TSN, TSN plus wortmannin [a phosphatidylinositol 3-kinase (PI3K) inhibitor] or saline. They were exposed to a 30-min ischaemia by ligation of the left coronary artery except for the sham group. Haemodynamics, infarct size and myocardial apoptosis were examined 3 h after reperfusion. The effects of TSN on Akt and NF-kappaB phosphorylation and the expression of tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cardiac tissues were examined. RESULTS Our results revealed that TSN administration significantly reduced myocardial infarct size (0.252 +/- 0.038 vs. 0.327 +/- 0.027, p < 0.05), improved left ventricular ejection fraction (LVEF) (0.774 +/- 0.058 vs. 0.716 +/- 0.054, p < 0.05), decreased myocardial apoptotic death (0.114 +/- 0.026 vs. 0.191 +/- 0.023, p < 0.05) compared with I/R group. Western blot analysis showed that TSN treatment enhanced Akt phosphorylation and inhibited NF-kappaB phosphorylation in cardiac tissues. Moreover, pretreatment with wortmannin abolished the beneficial effects of TSN: a reduction of infarct size, a decrease in LVEF, inhibition of myocardial apoptosis and Akt phosphorylation, enhancement of NF-kappaB phosphorylation and an increase of cytokine production including TNF-alpha and IL-6 after I/R injury in diabetic rats. CONCLUSIONS This study indicates that TSN pretreatment reduces infarct size and improves cardiac dysfunction after I/R injury in diabetic rats. This was accompanied with decreased cardiac apoptosis and inflammation. The possible mechanism responsible for the effects of TSN is associated with the PI3K/Akt-dependent pathway.
Collapse
Affiliation(s)
- Y Zhang
- Department of Cardiovascular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032., China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ren ZH, Tong YH, Xu W, Ma J, Chen Y. Tanshinone II A attenuates inflammatory responses of rats with myocardial infarction by reducing MCP-1 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:212-218. [PMID: 19800776 DOI: 10.1016/j.phymed.2009.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/02/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
The root of Salvia miltiorrhiza Bunge, a well-known traditional Chinese medicine, has been used effectively for the treatment of cardiovascular diseases for a long time. The mechanisms underlying this therapeutic effect are not, however, fully understood. Tanshinone IIA (Tan IIA) is one of the major active components of this Chinese medicine. Therefore, the present study was performed to investigate whether Tan IIA, which has shown a cardio-protective capacity in myocardial ischemia, has an inhibitory effect on the inflammatory responses following myocardial infarction (MI) and its potential mechanisms. In an in vivo study, rat MI model was induced by permanent left anterior descending coronary artery (LAD) ligation. After the operation rats were divided into three groups (sham, MI and Tan IIA). Tan IIA was administered intragastrically at a dose of 60mg/kg body wt./day. One week later, rats were sacrificed and the hemodynamic, pathological and molecular biological indices were examined. In an in vitro study, the inflammatory model was established by TNF-alpha stimuli on cardiacmyocyte and cardiac fibroblasts. Tan IIA attenuates the MI pathological changes and improves heart function, and reduces expression of MCP-1, TGF-beta(1) and macrophage infiltration. Furthermore, Tan IIA could also decrease the expression of TNF-alpha and activation of nuclear transcription factor-kappa B (NF-kappaB). In vitro, Tan IIA could reduce MCP-1 and TGF-beta(1)secretion of cardiac fibroblasts. The present study demonstrated that the cardioprotective effects of Tan IIA might be attributed to its capacity for inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Z H Ren
- College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | | | | | | | | |
Collapse
|
39
|
Grunnet M. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle? Acta Physiol (Oxf) 2010; 198 Suppl 676:1-48. [PMID: 20132149 DOI: 10.1111/j.1748-1716.2009.02072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cardiac action potential can be divided into five distinct phases designated phases 0-4. The exact shape of the action potential comes about primarily as an orchestrated function of ion channels. The present review will give an overview of ion channels involved in generating the cardiac action potential with special emphasis on potassium channels involved in phase 3 repolarization. In humans, these channels are primarily K(v)11.1 (hERG1), K(v)7.1 (KCNQ1) and K(ir)2.1 (KCNJ2) being the responsible alpha-subunits for conducting I(Kr), I(Ks) and I(K1). An account will be given about molecular components, biophysical properties, regulation, interaction with other proteins and involvement in diseases. Both loss and gain of function of these currents are associated with different arrhythmogenic diseases. The second part of this review will therefore elucidate arrhythmias and subsequently focus on newly developed chemical entities having the ability to increase the activity of I(Kr), I(Ks) and I(K1). An evaluation will be given addressing the possibility that this novel class of compounds have the ability to constitute a new anti-arrhythmic principle. Experimental evidence from in vitro, ex vivo and in vivo settings will be included. Furthermore, conceptual differences between the short QT syndrome and I(Kr) activation will be accounted for.
Collapse
Affiliation(s)
- M Grunnet
- NeuroSearch A/S, Ballerup, and Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark.
| |
Collapse
|
40
|
Li GR, Dong MQ. Pharmacology of Cardiac Potassium Channels. CARDIOVASCULAR PHARMACOLOGY - HEART AND CIRCULATION 2010; 59:93-134. [DOI: 10.1016/s1054-3589(10)59004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Liang Q, Yang L, Wang Z, Huang S, Li S, Yang G. Tanshinone IIA selectively enhances hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel instantaneous current. J Pharmacol Sci 2009; 110:381-8. [PMID: 19609069 DOI: 10.1254/jphs.08334fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tanshinone IIA, one of the main active components from the Chinese herb Danshen, is widely used to treat cardiovascular diseases in Asian countries, especially in China. To further elucidate its heart rate-reducing and anti-ischemic mechanisms, here we investigated the effects of tanshinone IIA on hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels expressed in Xenopus oocytes using two-electrode voltage clamp techniques. When applied to the extracellular solution, 100 microM tanshinone IIA caused a slowing of activation and deactivation and an increase of minimum open probabilities (from 0.06 +/- 0.01 to 0.29 +/- 0.03, P<0.05) in HCN2 channels without shifting the voltage dependence of channel activation. Tanshinone IIA potently enhanced the amplitude of voltage-independent current (instantaneous current) of HCN2 at -90 mV in a concentration-dependent manner with an EC(50) of 107 microM. Similar but 2.3-fold less sensitivity to tanshinone IIA was observed in the HCN1 subtype. More significant effect on HCN2 and MiRP1 co-expression was observed. In conclusion, tanshinone IIA changed HCN channel gating by selectively enhancing the instantaneous current (one population of HCN channels), which resulted in the corresponding increment of minimum open probabilities, slowing channel activation and deactivation processes with little effect on the voltage-dependent current (another population of HCN channels).
Collapse
Affiliation(s)
- Qiansheng Liang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
42
|
Huang YF, Liu ML, Dong MQ, Yang WC, Zhang B, Luan LL, Dong HY, Xu M, Wang YX, Liu LL, Gao YQ, Li ZC. Effects of sodium tanshinone II A sulphonate on hypoxic pulmonary hypertension in rats in vivo and on Kv2.1 expression in pulmonary artery smooth muscle cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:436-443. [PMID: 19635545 DOI: 10.1016/j.jep.2009.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/15/2009] [Accepted: 07/19/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY To investigate the effect of sodium tanshinone IIA sulphonate (STS), a water-soluble derivative of tanshinone II A, on hypoxic pulmonary hypertension (HPH) in rats and its underlying mechanisms. MATERIALS AND METHODS Rats were exposed to hypoxia for two or three weeks, pretreated with or without STS. We detected mean pulmonary arterial pressure (mPAP), the ratio of right ventricle weight to left ventricle with septum weight [RV/(LV+S)], wall thickness and voltage-activated potassium channel (Kv) 2.1 mRNA level of pulmonary arteries (PAs), respectively, and the in vitro effects of STS on proliferation and Kv2.1 expression of cultured pulmonary smooth muscle cells (PASMCs) from normal rats. Cell proliferation was determined by 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyltetrazoliumbromiede (MTT) assay and direct cell counting. Kv2.1 mRNA and protein level were evaluated by reverse transcription-polymerase chain reaction and Western blot, respectively. RESULTS Chronic hypoxia increased values of mPAP and RV/(LV+S) and inhibited Kv2.1 mRNA level in PAs. Three weeks' daily STS pretreatment inhibited the hypoxia-induced increased mPAP and RV/(LV+S), pulmonary arterial thickening and up-regulated Kv2.1 mRNA level in PAs. Further study in vitro showed that STS suppressed significantly hypoxia-induced PASMCs proliferation and inhibition of Kv2.1 expression in PASMCs. CONCLUSIONS STS might play protective effects on HPH through decreasing mPAP, V/(LV+S) and inhibiting structural remodeling in distal PAs. The mechanism of these effects may be attributed to inhibiting PASMCs proliferation and stimulating Kv2.1 expression.
Collapse
Affiliation(s)
- Yu-fang Huang
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China; Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shan H, Li X, Pan Z, Zhang L, Cai B, Zhang Y, Xu C, Chu W, Qiao G, Li B, Lu Y, Yang B. Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1. Br J Pharmacol 2009; 158:1227-35. [PMID: 19775284 DOI: 10.1111/j.1476-5381.2009.00377.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Tanshinone IIA is an active component of a traditional Chinese medicine based on Salvia miltiorrhiza, which reduces sudden cardiac death by suppressing ischaemic arrhythmias. However, the mechanisms underlying the anti-arrhythmic effects remain unclear. EXPERIMENTAL APPROACH A model of myocardial infarction (MI) in rats by ligating the left anterior descending coronary artery was used. Tanshinone IIA or quinidine was given daily, before (7 days) and after (3 months) MI; cardiac electrical activity was monitored by ECG recording. Whole-cell patch-clamp techniques were used to measure the inward rectifying K(+) current (I(K1)) in rat isolated ventricular myocytes. Kir2.1 and serum response factor (SRF) levels were analysed by Western blot and microRNA-1 (miR-1) level was determined by real-time RT-PCR. KEY RESULTS Tanshinone IIA decreased the incidence of arrhythmias induced by acute cardiac ischaemia and mortality in rats 3 months after MI. Tanshinone IIA restored the diminished I(K1) current density and Kir2.1 protein after MI in rat ventricular myocytes, while quinidine further inhibited I(K1)/Kir2.1. MiR-1 was up-regulated in MI, possibly due to the concomitant increase in SRF, a transcriptional activator of the miR-1 gene, accounting for decreased Kir2.1. Treatment with tanshinone IIA prevented increased SRF and hence increased miR-1 post-MI, whereas quinidine did not. CONCLUSIONS AND IMPLICATIONS Down-regulation of miR-1 and consequent recovery of Kir2.1 may account partially for the efficacy of tanshinone IIA in suppressing ischaemic arrhythmias and cardiac mortality. These finding support the proposal that miR-1 could be a potential therapeutic target for the prevention of ischaemic arrhythmias.
Collapse
Affiliation(s)
- Hongli Shan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mao H, Zhang H, Wang H, Wang Y, Zhao F, Hu L, Yanagihara N, Gao X. Dual effects of lipophilic extract of Salvia miltiorrhiza (Danshen) on catecholamine secretion in cultured bovine adrenal medullary cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:59-67. [PMID: 19549564 DOI: 10.1016/j.jep.2009.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/03/2009] [Accepted: 06/14/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (Danshen) is a well known traditional Chinese herb, which has been used widely in China for the treatment of cardiovascular diseases in clinic. AIM OF THIS STUDY The aim of the present study is to clarify the effects of lipophilic extract of Salvia miltiorrhiza (LESM) on catecholamine (CA) secretion, a traditional Chinese medicine used widely for the treatment of cardiovascular diseases in China. MATERIALS AND METHODS LESM was evaluated for its effects on CA secretion using HPLC-ECD method. The effects of LESM on 22Na+ influx and intracellular calcium ([Ca2+]i) were also investigated. RESULTS Our results showed that LEMS directly stimulated basal CA secretion in an extracellular Ca2+-dependent manner. And the stimulation was not affected by combination of hexamethonium (Hex),an inhibitor of nAChR. LESM also directly elevated [Ca2+]i. In addition, using selective blockers of voltage-dependent Ca2+ channels, such as nitrendipine (for L-type), omega-agatoxin-IVA (for P-type) and -conotoxin-GVIA (for N-type), it was found that nitrendipine suppressed the elevation of [Ca2+]i induced by LESM, but not omega-agatoxin-IVA or omega-conotoxin-GVIA. Compared with acetylcholine (ACh) only, however, combination of LESM with ACh inhibited the raise of CA secretion, 22Na+ influx and [Ca2+]i in a concentration-dependent manner. Furthermore, LESM also inhibited CA secretion induced by veratridine (Ver), and 56 mM K+ at concentrations similar to those for [Ca2+]i rise. One of the lipophilic active compounds, cryptotanshione (Cryp), also had the same effects on CA secretion with LESM. CONCLUSIONS All these findings suggest that LESM exerts dual effects on CA secretion in cultured bovine adrenal medullary cells. LESM exerts antagonistic effects on nAChR, voltage-dependent Na+ and Ca2+ channels, whereas it is an agonist of L-type Ca2+ channel when it used alone.
Collapse
Affiliation(s)
- Haoping Mao
- Tianjin University of Traditional Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 300-193, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Blockade of the IKs potassium channel: An overlooked cardiovascular liability in drug safety screening? J Pharmacol Toxicol Methods 2009; 60:1-10. [DOI: 10.1016/j.vascn.2009.04.197] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/25/2009] [Indexed: 12/25/2022]
|