1
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
2
|
La Mura V, Cardinale V, De Cristofaro R, De Santis A, Di Minno G, Fabris L, Marra F, Morisco F, Peyvandi F, Pompili M, Santoro C, Zanon E, Castaman G. Liver-related aspects of valoctocogene roxaparvovec gene therapy for hemophilia A: expert guidance for clinical practice. Blood Adv 2024; 8:5725-5734. [PMID: 39226466 PMCID: PMC11599981 DOI: 10.1182/bloodadvances.2024013750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Adeno-associated virus-based gene therapy (valoctocogene roxaparvovec) is an attractive treatment for hemophilia A. Careful clinical management is required to minimize the risk of hepatotoxicity, including assessment of baseline liver condition to determine treatment eligibility and monitoring liver function after gene therapy. This article describes recommendations (developed by a group of hemophilia experts) on hepatic function monitoring before and after gene therapy. To prevent harmful liver-related effects, gene therapy is contraindicated in patients with uncontrolled liver infections, autoimmune hepatitis, liver stiffness ≥8 kPa, or cirrhosis. Before using gene therapy in patients with liver steatosis or other liver disorders, the risk of liver damage should be considered using a highly individualized approach. Treatment is not recommended in patients with abnormal liver enzymes, including alanine aminotransferase (ALT) at any level above the upper limit of normal (ULN). Therefore, pretreatment assessment of liver health should include laboratory tests, abdominal ultrasound, and liver stiffness measurements by transient elastography (TE). In the first year after therapy, ALT levels should be monitored 1 to 2 times per week to detect elevations ≥1.5× ULN, which may require immunosuppressant therapy. Patients with ALT elevation should receive prednisone 60 mg/d for 2 weeks, followed by stepwise tapering when ALT returns to baseline. ALT monitoring should continue long term (every 3-6 months), along with abdominal ultrasound (every 6 months) and TE (yearly) evaluations. When patients with good liver health are selected for treatment and closely monitored thereafter, ALT elevations can be promptly treated and are expected to resolve without long-term hepatic sequelae.
Collapse
Affiliation(s)
- Vincenzo La Mura
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Cardinale
- Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore Roma, Rome, Italy
| | - Adriano De Santis
- Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Giovanni Di Minno
- Regional Reference Centre for Hemo-Coagulation Diseases, Federico II University, Naples, Italy
| | - Luca Fabris
- Department of Medicine, Clinical Medicine 1, University-Hospital of Padua, Padua, Italy
- Department of Internal Medicine, Digestive Disease Section, Yale Liver Center, Yale University, New Haven, CT
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Liver and Biliary Diseases Unit, University Federico II, Naples, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maurizio Pompili
- UOC Medicina Interna e del Trapianto di Fegato, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del S. Cuore, Rome, Italy
| | - Cristina Santoro
- Department of Hematology, University Hospital Policlinico Umberto I, Rome, Italy
| | - Ezio Zanon
- Hemophilia Centre, Clinical Medicine 1, University Hospital of Padua, Padua, Italy
| | - Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
3
|
Karadenizli Taşkin S, Şahin D, Dede F, Ünal Halbutoğullari ZS, Sarihan M, Kurnaz Özbek S, Özsoy ÖD, Kasap M, Yazir Y, Ateş N. Endoplasmic reticulum stress produced by Thapsigargin affects the occurrence of spike-wave discharge by modulating unfolded protein response pathways and activating immune responses in a dose-dependent manner. Eur J Pharmacol 2024; 974:176613. [PMID: 38670446 DOI: 10.1016/j.ejphar.2024.176613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
The Endoplasmic Reticulum (ER) is associated with many cellular functions, from post-transcriptional modifications to the proper folding of proteins, and disruption of these functions causes ER stress. Although the relationship between epileptic seizures and ER stress has been reported, the contribution of ER stress pathways to epileptogenesis is still unclear. This study aimed to investigate the possible effects of ER stress-related molecular pathways modulated by mild- and high-dose Thapsigargin (Tg) on absence epileptic activity, CACNA1H and immune responses in WAG/Rij rats. For this purpose, rats were divided into four groups; mild-dose (20 ng) Tg, high-dose (200 ng) Tg, saline, and DMSO and drugs administered intracerebroventriculary. EEG activity was recorded for 1 h and 24 h after drug administration following the baseline recording. In cortex and thalamus tissues, GRP78, ERp57, GAD153 protein changes (Western Blot), Eif2ak3, XBP-1, ATF6, CACNA1H mRNA expressions (RT-PCR), NF-κB and TNF-α levels (ELISA) were measured. Mild-dose-Tg administration resulted in increased spike-wave discharge (SWD) activity at the 24th hour compared to administration of saline, and high-dose-Tg and it also significantly increased the amount of GRP78 protein, the expression of Eif2ak3, XBP-1, and CACNA1H mRNA in the thalamus tissue. In contrast, high-dose-Tg administration suppressed SWD activity and significantly increased XBP-1 and ATF6 mRNA expression in the thalamus, and increased NF-κB and TNF-α levels. In conclusion, our findings indicate that Tg affects SWD occurrence by modulating the unfolded protein response pathway and activating inflammatory processes in a dose-dependent manner.
Collapse
Affiliation(s)
| | - Deniz Şahin
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Fazilet Dede
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | | | - Mehmet Sarihan
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Sema Kurnaz Özbek
- Department of Histology and Embryology, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Özgür Doğa Özsoy
- Department of Biochemistry, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Murat Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Yusufhan Yazir
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Nurbay Ateş
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| |
Collapse
|
4
|
Sui Y, Feng X, Ma Y, Zou Y, Liu Y, Huang J, Zhu X, Wang J. BHBA attenuates endoplasmic reticulum stress-dependent neuroinflammation via the gut-brain axis in a mouse model of heat stress. CNS Neurosci Ther 2024; 30:e14840. [PMID: 38973202 PMCID: PMC11228358 DOI: 10.1111/cns.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. β-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1β, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1β) in mouse BV2 cells. CONCLUSION β-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.
Collapse
Affiliation(s)
- Yuzhen Sui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yimeng Zou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanli Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Mu W, Zhi Y, Zhou J, Wang C, Chai K, Fan Z, Lv G. Endoplasmic reticulum stress and quality control in relation to cisplatin resistance in tumor cells. Front Pharmacol 2024; 15:1419468. [PMID: 38948460 PMCID: PMC11211601 DOI: 10.3389/fphar.2024.1419468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The endoplasmic reticulum (ER) is a crucial organelle that orchestrates key cellular functions like protein folding and lipid biosynthesis. However, it is highly sensitive to disturbances that lead to ER stress. In response, the unfolded protein response (UPR) activates to restore ER homeostasis, primarily through three sensors: IRE1, ATF6, and PERK. ERAD and autophagy are crucial in mitigating ER stress, yet their dysregulation can lead to the accumulation of misfolded proteins. Cisplatin, a commonly used chemotherapy drug, induces ER stress in tumor cells, activating complex signaling pathways. Resistance to cisplatin stems from reduced drug accumulation, activation of DNA repair, and anti-apoptotic mechanisms. Notably, cisplatin-induced ER stress can dualistically affect tumor cells, promoting either survival or apoptosis, depending on the context. ERAD is crucial for degrading misfolded proteins, whereas autophagy can protect cells from apoptosis or enhance ER stress-induced apoptosis. The complex interaction between ER stress, cisplatin resistance, ERAD, and autophagy opens new avenues for cancer treatment. Understanding these processes could lead to innovative strategies that overcome chemoresistance, potentially improving outcomes of cisplatin-based cancer treatments. This comprehensive review provides a multifaceted perspective on the complex mechanisms of ER stress, cisplatin resistance, and their implications in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Wu H, Zhang Y, Liang J, Wu J, Zhang Y, Su H, Zhang Q, Shen Y, Shen S, Wang L, Zou X, Hang C, Zhang S, Lv Y. Lithium chloride induces apoptosis by activating endoplasmic reticulum stress in pancreatic cancer. Transl Oncol 2023; 38:101792. [PMID: 37806114 PMCID: PMC10579530 DOI: 10.1016/j.tranon.2023.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Lithium compounds, a classic class of metal complex medicine that target GSK 3β and are widely known as mood-stabilizer, have recently been reported as potential anti-tumor drugs. The objective of this investigation was to explore the anticancer potential of lithium chloride (LiCl) and elucidate its mode of action in pancreatic cancer cells. The MTT, colony formation, and Edu assay were used to evaluate the impact of LiCl on pancreatic cancer cell proliferation. Various methods were employed to investigate the anti-tumor activity of LiCl and its underlying mechanisms. Cell cycle analysis and apoptosis detection assays were utilized for in vitro experiments, while the orthotopic pancreatic cancer mouse model was employed to evaluate the effectiveness of LiCl treatment in vivo. Furthermore, the impact of LiCl on the proliferation of patient-derived organoids was also studied. The results demonstrated that LiCl inhibited the proliferation of pancreatic cancer (PC) cells, induced G2/M phase arrest, and activated apoptosis. Notably, the triggering of endoplasmic reticulum (ER) stress by LiCl was observed, leading to the activation of the PERK/CHOP/GADD34 pathway, which subsequently promoted apoptosis in PC cells. In the future, Lithium compounds could become an essential adjunct in the treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Geriatrics, Nanjing Red Cross Hospital, No. 242, Baixia Road, Qinhuai District, Nanjing 21000 Jiangsu, PR China
| | - Yin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Jiawei Liang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Jianzhuang Wu
- Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210033 Jiangsu, PR China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Haochen Su
- Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008 Jiangsu, PR China
| | - Qiyue Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210023 Jiangsu, PR China
| | - Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang 215400 Jiangsu, PR China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210023 Jiangsu, PR China.
| |
Collapse
|
8
|
Wang L, Song R, Ma M, Chen Y, Jiang Y, Li J, Yang Z, Zhang L, Jing M, Wang X, Zhang M, Fan J. Inhibition of autophagy can promote the apoptosis of bladder cancer cells induced by SC66 through the endoplasmic reticulum stress pathway. Chem Biol Interact 2023; 384:110725. [PMID: 37741534 DOI: 10.1016/j.cbi.2023.110725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Bladder cancer is among the ten most prevalent cancer types worldwide, and its prognosis has not improved significantly in the past three decades because of cognitive limitations in the molecular mechanisms that drive the malignant progression of bladder cancer. Therefore, there is an urgent need to identify new therapeutic drugs or molecular targets to improve the prognosis of patients with bladder cancer. SC66, a novel allosteric inhibitor of AKT, has recently been reported to exert potent anticancer effects on various cancer cells. However, the mechanisms underlying its anticancer effects in bladder cancer remain largely unknown. Consequently, this study aimed to conduct a series of molecular and cellular biology experiments to verify the anticancer effect and potential mechanism of action of SC66 in bladder cancer in vitro. A xenograft tumor model was established to confirm its anticancer role in vivo. Our results showed that SC66 inhibited cell proliferation, triggered mitochondria-mediated apoptosis, and initiated autophagy in bladder cancer cells dose-dependently. In addition, our results suggested that SC66-caused apoptosis and autophagy were endoplasmic reticulum stress-dependent. Interestingly, the activation of autophagy can partially protect bladder cancer cells from apoptosis under endoplasmic reticulum stress induced by SC66 treatment. This study shows that SC66 exerts its anticancer impact on bladder cancer by inhibiting cell proliferation and inducing apoptosis. It also reveals that inhibiting autophagy can increase the cytotoxic effects of SC66 in bladder cancer. Overall, this is the first study on the anticancer effect of SC66 mediated by the endoplasmic reticulum stress pathway and the first report on the AKT-independent anticancer mechanism of SC66 in bladder cancer. Conclusively, exploring the relationship between apoptosis, autophagy, and endoplasmic reticulum stress induced by SC66 indicates that SC66 is a promising novel agent for patients with bladder cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rundong Song
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunzhong Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianpeng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zezhong Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.
| |
Collapse
|
9
|
Barua D, Sultana A, Islam MN, Cox F, Gupta A, Gupta S. RRM2 and CDC6 are novel effectors of XBP1-mediated endocrine resistance and predictive markers of tamoxifen sensitivity. BMC Cancer 2023; 23:288. [PMID: 36997866 PMCID: PMC10061897 DOI: 10.1186/s12885-023-10745-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Endocrine-resistant breast cancers have elevated expression of XBP1, where it drives endocrine resistance by controlling the expression of its target genes. Despite the in-depth understanding of the biological functions of XBP1 in ER-positive breast cancer, effectors of endocrine resistance downstream of XBP1 are poorly understood. The aim of this study was to identify the XBP1-regulated genes contributing to endocrine resistance in breast cancer. METHODS XBP1 deficient sub-clones in MCF7 cells were generated using the CRISPR-Cas9 gene knockout strategy and were validated using western blot and RT-PCR. Cell viability and cell proliferation were evaluated using the MTS assay and colony formation assay, respectively. Cell death and cell cycle analysis were determined using flow cytometry. Transcriptomic data was analysed to identify XBP1-regulated targets and differential expression of target genes was evaluated using western blot and qRT-PCR. Lentivirus and retrovirus transfection were used to generate RRM2 and CDC6 overexpressing clones, respectively. The prognostic value of the XBP1-gene signature was analysed using Kaplan-Meier survival analysis. RESULTS Deletion of XBP1 compromised the upregulation of UPR-target genes during conditions of endoplasmic reticulum (EnR) stress and sensitized cells to EnR stress-induced cell death. Loss of XBP1 in MCF7 cells decreased cell growth, attenuated the induction of estrogen-responsive genes and sensitized them to anti-estrogen agents. The expression of cell cycle associated genes RRM2, CDC6, and TOP2A was significantly reduced upon XBP1 deletion/inhibition in several ER-positive breast cancer cells. Expression of RRM2, CDC6, and TOP2A was increased upon estrogen stimulation and in cells harbouring point-mutants (Y537S, D538G) of ESR1 in steroid free conditions. Ectopic expression of RRM2 and CDC6 increased cell growth and reversed the hypersensitivity of XBP1 KO cells towards tamoxifen conferring endocrine resistance. Importantly, increased expression of XBP1-gene signature was associated with poor outcome and reduced efficacy of tamoxifen treatment in ER-positive breast cancer. CONCLUSIONS Our results suggest that RRM2 and CDC6 downstream of XBP1 contribute to endocrine resistance in ER-positive breast cancer. XBP1-gene signature is associated with poor outcome and response to tamoxifen in ER-positive breast cancer.
Collapse
Affiliation(s)
- David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Afrin Sultana
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Discipline of Biochemistry, School of Medicine, University of Galway, Galway, Ireland
| | - Fergus Cox
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Ananya Gupta
- Discipline of Physiology, Human Biology Building, School of Medicine, University of Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
10
|
Bian X, Fan N, Li M, Han D, Li J, Fan L, Li X, Kong L, Tang H, Ding S, Song F, Li S, Cheng W. An ER-Horse Detonating Stress Cascade for Hepatocellular Carcinoma Nanotherapy. ACS NANO 2023; 17:4896-4912. [PMID: 36811530 DOI: 10.1021/acsnano.2c11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persisting and excessive endoplasmic reticulum stress (ERS) can evoke rapid cell apoptosis. Therapeutic interference of ERS signaling holds enormous potential for cancer nanotherapy. Herein, a hepatocellular carcinoma (HCC) cell-derived ER vesicle (ERV) encapsulating siGRP94, denoted as ER-horse, has been developed for precise HCC nanotherapy. Briefly, ER-horse, like the Trojan horse, was recognized via homotypic camouflage, imitated the physiological function of ER, and exogenously opened the Ca2+ channel. Consequently, the mandatory pouring-in of extracellular Ca2+ triggered the aggravated stress cascade (ERS and oxidative stress) and apoptosis pathway with the inhibition of unfolded protein response by siGRP94. Collectively, our findings provide a paradigm for potent HCC nanotherapy via ERS signaling interference and exploring therapeutic interference of physiological signal transduction pathways for precision cancer therapy.
Collapse
Affiliation(s)
- Xintong Bian
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Meng Li
- The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Siqiao Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
11
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
12
|
Rahman MK, Umashankar B, Choucair H, Pazderka C, Bourget K, Chen Y, Dunstan CR, Rawling T, Murray M. Inclusion of the in-chain sulfur in 3-thiaCTU increases the efficiency of mitochondrial targeting and cell killing by anticancer aryl-urea fatty acids. Eur J Pharmacol 2023; 939:175470. [PMID: 36543287 DOI: 10.1016/j.ejphar.2022.175470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Curtis Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Yongjuan Chen
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia; Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Colin R Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
13
|
Dalil D, Iranzadeh S, Kohansal S. Anticancer potential of cryptotanshinone on breast cancer treatment; A narrative review. Front Pharmacol 2022; 13:979634. [PMID: 36188552 PMCID: PMC9523165 DOI: 10.3389/fphar.2022.979634] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer has recently been known as the first lethal malignancy in women worldwide. Despite the existing treatments that have improved the patients’ prognosis, some types of breast cancer are serious challenges to treat. Therefore, efforts are underway to provide more efficient therapy. Cryptotanshinone (CPT) is a liposoluble diterpenoid derivation of a traditional Chinese herbal medicine called Salvia miltiorrhiza Bunge. It has been considered in the past decades due to its vast therapeutic properties, including anti-tumor, anti-inflammatory, and anti-fibrosis. Recently, studies have found that CPT showed a significant anti-breast cancer effect in vivo and in vitro through different physiological and immunological mechanisms. This study summarized the latest research findings on the antitumor effect of CPT in breast cancer. Further, the main molecular mechanisms based on breast cancer types and combination with other drugs were reviewed to provide essential evidence for future longitudinal research and its clinical application in breast cancer treatment.
Collapse
|
14
|
Yang R, Ma S, Zhuo R, Xu L, Jia S, Yang P, Yao Y, Cao H, Ma L, Pan J, Wang J. Suppression of endoplasmic reticulum stress-dependent autophagy enhances cynaropicrin-induced apoptosis via attenuation of the P62/Keap1/Nrf2 pathways in neuroblastoma. Front Pharmacol 2022; 13:977622. [PMID: 36188599 PMCID: PMC9523313 DOI: 10.3389/fphar.2022.977622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy has dual roles in cancer, resulting in cellular adaptation to promote either cell survival or cell death. Modulating autophagy can enhance the cytotoxicity of many chemotherapeutic and targeted drugs and is increasingly considered to be a promising cancer treatment approach. Cynaropicrin (CYN) is a natural compound that was isolated from an edible plant (artichoke). Previous studies have shown that CYN exhibits antitumor effects in several cancer cell lines. However, it anticancer effects against neuroblastoma (NB) and the underlying mechanisms have not yet been investigated. More specifically, the regulation of autophagy in NB cells by CYN has never been reported before. In this study, we demonstrated that CYN induced apoptosis and protective autophagy. Further mechanistic studies suggested that ER stress-induced autophagy inhibited apoptosis by activating the p62/Keap1/Nrf2 pathways. Finally, in vivo data showed that CYN inhibited tumour growth in xenografted nude mice. Overall, our findings suggested that CYN may be a promising candidate for the treatment of NB, and the combination of pharmacological inhibitors of autophagy may hold novel therapeutic potential for the treatment of NB. Our paper will contribute to the rational utility and pharmacological studies of CYN in future anticancer research.
Collapse
Affiliation(s)
- Randong Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Shurong Ma
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Lingqi Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Siqi Jia
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Pengcheng Yang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Ye Yao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Haibo Cao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Liya Ma
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Jian Pan, ; Jian Wang,
| | - Jian Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Jian Pan, ; Jian Wang,
| |
Collapse
|
15
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
16
|
Guttman O, Le Thomas A, Marsters S, Lawrence DA, Gutgesell L, Zuazo-Gaztelu I, Harnoss JM, Haag SM, Murthy A, Strasser G, Modrusan Z, Wu T, Mellman I, Ashkenazi A. Antigen-derived peptides engage the ER stress sensor IRE1α to curb dendritic cell cross-presentation. J Biophys Biochem Cytol 2022; 221:213173. [PMID: 35446348 PMCID: PMC9036094 DOI: 10.1083/jcb.202111068] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure. Here, we show that antigen-derived hydrophobic peptides can directly engage ER-resident IRE1α, masquerading as unfolded proteins. IRE1α activation depletes MHC-I heavy-chain mRNAs through regulated IRE1α-dependent decay (RIDD), curtailing antigen cross-presentation. In tumor-bearing mice, IRE1α disruption increased MHC-I expression on tumor-infiltrating DCs and enhanced recruitment and activation of CD8+ T cells. Moreover, IRE1α inhibition synergized with anti–PD-L1 antibody treatment to cause tumor regression. Our findings identify an unexpected cell-biological mechanism of antigen-driven IRE1α activation in DCs, revealing translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Ofer Guttman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Adrien Le Thomas
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Scot Marsters
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - David A Lawrence
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Lauren Gutgesell
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | | | - Simone M Haag
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Aditya Murthy
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | - Zora Modrusan
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA
| | - Thomas Wu
- Departments of Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - Ira Mellman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Avi Ashkenazi
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
17
|
Hussain Y, Khan H, Efferth T, Alam W. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:153985. [PMID: 35358935 DOI: 10.1016/j.phymed.2022.153985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is still an all-times issue due to a large and even increasing number of deaths. Impaired genes regulating cell proliferation and apoptosis are targets for the development of novel cancer treatments. HYPOTHESIS Increased transcription of NADPH oxidase activator (NOXA), Bcl2-like11 (BIM), BH3-only proteins and p53 unregulated apoptosis modulator (PUMA) is caused by the imbalance between pro- and anti-apoptotic Bcl-2 proteins due to endoplasmic reticulum (ER) stress. The membranous network of ER is present in all eukaryotic cells. ER stress facilitates the interaction between Bax and PUMA, triggering the release of cytochrome C. As a main intracellular organelle, ER is responsible for translocation as well as post-translation modification and protein folding. RESULTS Hesperetin is a cytoprotective flavonone, which acts against ER stress and protects from cell damage induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Hesperetin inhibits lipid peroxidation induced by Fe2+ and l-ascorbic acid in rat brain homogenates. CONCLUSION This review deals with the anticancer effects of hesperetin regarding the regulation of ER stress as a principal mechanism in the pathogenesis of tumors.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, 215123, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| |
Collapse
|
18
|
KDEL Receptors: Pathophysiological Functions, Therapeutic Options, and Biotechnological Opportunities. Biomedicines 2022; 10:biomedicines10061234. [PMID: 35740256 PMCID: PMC9220330 DOI: 10.3390/biomedicines10061234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KDEL receptors (KDELRs) are ubiquitous seven-transmembrane domain proteins encoded by three mammalian genes. They bind to and retro-transport endoplasmic reticulum (ER)-resident proteins with a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence or variants thereof. In doing this, KDELR participates in the ER quality control of newly synthesized proteins and the unfolded protein response. The binding of KDEL proteins to KDELR initiates signaling cascades involving three alpha subunits of heterotrimeric G proteins, Src family kinases, protein kinases A (PKAs), and mitogen-activated protein kinases (MAPKs). These signaling pathways coordinate membrane trafficking flows between secretory compartments and control the degradation of the extracellular matrix (ECM), an important step in cancer progression. Considering the basic cellular functions performed by KDELRs, their association with various diseases is not surprising. KDELR mutants unable to bind the collagen-specific chaperon heat-shock protein 47 (HSP47) cause the osteogenesis imperfecta. Moreover, the overexpression of KDELRs appears to be linked to neurodegenerative diseases that share pathological ER-stress and activation of the unfolded protein response (UPR). Even immune function requires a functional KDELR1, as its mutants reduce the number of T lymphocytes and impair antiviral immunity. Several studies have also brought to light the exploitation of the shuttle activity of KDELR during the intoxication and maturation/exit of viral particles. Based on the above, KDELRs can be considered potential targets for the development of novel therapeutic strategies for a variety of diseases involving proteostasis disruption, cancer progression, and infectious disease. However, no drugs targeting KDELR functions are available to date; rather, KDELR has been leveraged to deliver drugs efficiently into cells or improve antigen presentation.
Collapse
|
19
|
Li L, Yang Z, Zheng Y, Chen Z, Yue X, Bian E, Zhao B. Identification of an endoplasmic reticulum stress-related signature associated with clinical prognosis and immune therapy in glioma. BMC Neurol 2022; 22:192. [PMID: 35614390 PMCID: PMC9131635 DOI: 10.1186/s12883-022-02709-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Glioma is the most common brain tumor in adults and is characterized by a short survival time and high resistance to chemotherapy. It is imperative to determine the prognosis and therapy-related targets for glioma. Endoplasmic reticulum stress (ERS), as an adaptive protective mechanism, indicates the unfolded protein response (UPR) to determine cell survival and affects chemotherapy sensitivity, which is related to the prognosis of glioma. Methods Our research used the TCGA database as the training group and the CGGA database as the testing group. Lasso regression and Cox analysis were performed to construct an ERS signature-based risk score model in glioma. Three methods (time-dependent receiver operating characteristic analysis and multivariate and univariate Cox regression analysis) were applied to assess the independent prognostic effect of texture parameters. Consensus clustering was used to classify the two clusters. In addition, functional and immune analyses were performed to assess the malignant process and immune microenvironment. Immunotherapy and anticancer drug response prediction were adopted to evaluate immune checkpoint and chemotherapy sensitivity. Results The results revealed that the 7-gene signature strongly predicts glioma prognosis. The two clusters have markedly distinct molecular and prognostic features. The validation group result revealed that the signature has exceptional repeatability and certainty. Functional analysis showed that the ERS-related gene signature was closely associated with the malignant process and prognosis of tumors. Immune analysis indicated that the ERS-related gene signature is strongly related to immune infiltration. Immunotherapy and anticancer drug response prediction indicated that the ERS-related gene signature is positively correlated with immune checkpoint and chemotherapy sensitivity. Conclusions Collectively, the ERS-related risk model can provide a novel signature to predict glioma prognosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02709-y.
Collapse
Affiliation(s)
- Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
20
|
Wu Y, Li S, Chen Y, He W, Guo Z. Recent advances in noble metal complex based photodynamic therapy. Chem Sci 2022; 13:5085-5106. [PMID: 35655575 PMCID: PMC9093168 DOI: 10.1039/d1sc05478c] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) utilizes light-activated photosensitizers (PSs) to generate toxic species for therapeutics. It has become an emerging solution for cancer treatment because of its specific spatiotemporal selectivity and minimal invasiveness. Noble metal (Ru, Ir and Pt) complexes are of increasing interest as photosensitizers for their excellent photophysical, photochemical, and photobiological properties. In this review, we highlight recent advancements in the development of noble metal complex photosensitizers for PDT during the last 5 years. We will summarize the design strategies of noble metal complexes for efficient and precise PDT, including increasing the light penetration depth, reducing the oxygen-dependent nature and improving target ability. Finally, we summarize recent efforts for the development of noble-based PSs and discuss the limitations of such PSs in clinical application and future perspectives in this field, such as the combination of PDT with other treatment modalities.
Collapse
Affiliation(s)
- Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Shumeng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| |
Collapse
|
21
|
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol 2022; 13:828875. [PMID: 35211123 PMCID: PMC8861358 DOI: 10.3389/fimmu.2022.828875] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bilal Azakir
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Stéphane Terry
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
22
|
Use of Hypolipidemic Drugs and the Risk of Second Primary Malignancy in Colorectal Cancer Patients. Cancers (Basel) 2022; 14:cancers14071699. [PMID: 35406471 PMCID: PMC8997159 DOI: 10.3390/cancers14071699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Hypolipidemic drugs are among the most frequently prescribed medications in the Western world. Since many studies have indicated their role in carcinogenesis, this work aimed to investigate their association with the occurrence of a second primary malignancy in colorectal cancer survivors. The overall incidence of a second neoplasm was not linked to hypolipidemic medication; however, a subgroup analysis revealed a lower incidence of secondary neoplasia in statin users. When stratified by cancer types, a significant increase in gastric and bladder cancer was detected among colorectal cancer patients using hypolipidemic drugs. Survival outcomes in patients with early-stage colorectal carcinoma who suffered second cancer were significantly worse if treated with hypolipidemic drugs. Although our results do not provide evidence for a causative relationship between hypolipidemic medication and carcinogenesis, these correlations might steer the direction of tertiary prevention care towards specific risk factors shared between cardiovascular diseases and cancer. Abstract An increasing number of studies has brought evidence of the protective role of statin use against different types of cancer. However, data on their association with second primary malignancies (SPMs) are lacking. The purpose of this study was to determine the role of hypolipidemic treatment in the prevention of second primary cancer in colorectal cancer (CRC) survivors. We conducted a retrospective single-institution study of 1401 patients with newly diagnosed colorectal cancer from January 2003 to December 2016, with follow-up until December 2020. An SPM was detected in 301 patients (21%), and the incidence was significantly lower in patients with statin medication. However, stratification by cancer types revealed an increased incidence of bladder and gastric cancer in hypolipidemic users. A Kaplan−Meier analysis of early-stage CRC survivors with an SPM showed a significant survival benefit in patients without a history of hypolipidemic treatment. Despite the protective role of statins on overall second cancer incidence, these data indicate that CRC survivors treated with hypolipidemic drugs should be screened more cautiously for SPMs, especially for gastric and bladder cancer.
Collapse
|
23
|
Milano L, Charlier CF, Andreguetti R, Cox T, Healing E, Thomé MP, Elliott RM, Samson LD, Masson JY, Lenz G, Henriques JAP, Nohturfft A, Meira LB. A DNA repair-independent role for alkyladenine DNA glycosylase in alkylation-induced unfolded protein response. Proc Natl Acad Sci U S A 2022; 119:e2111404119. [PMID: 35197283 PMCID: PMC8892324 DOI: 10.1073/pnas.2111404119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/08/2022] [Indexed: 01/25/2023] Open
Abstract
Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation.
Collapse
Affiliation(s)
- Larissa Milano
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7WG Guildford, United Kingdom
- Center of Biotechnology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Center, Quebec City, QC G1V 0A6, Canada
| | - Clara F Charlier
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7WG Guildford, United Kingdom
| | - Rafaela Andreguetti
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7WG Guildford, United Kingdom
| | - Thomas Cox
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7WG Guildford, United Kingdom
| | - Eleanor Healing
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Marcos P Thomé
- Department of Biophysics, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Ruan M Elliott
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Center, Quebec City, QC G1V 0A6, Canada
| | - Guido Lenz
- Center of Biotechnology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
- Department of Biophysics, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - João Antonio P Henriques
- Center of Biotechnology, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
- Department of Biophysics, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Axel Nohturfft
- Molecular and Clinical Sciences Research Institute, St. George's University of London, SW17 0RE London, United Kingdom
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7WG Guildford, United Kingdom;
| |
Collapse
|
24
|
The aryl-ureido fatty acid CTU activates endoplasmic reticulum stress and PERK/NOXA-mediated apoptosis in tumor cells by a dual mitochondrial-targeting mechanism. Cancer Lett 2022; 526:131-141. [PMID: 34822928 DOI: 10.1016/j.canlet.2021.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.
Collapse
|
25
|
Xiang Y, Chen L, Liu C, Yi X, Li L, Huang Y. Redirecting Chemotherapeutics to the Endoplasmic Reticulum Increases Tumor Immunogenicity and Potentiates Anti-PD-L1 Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104591. [PMID: 34859582 DOI: 10.1002/smll.202104591] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) in cancer cells has been considered as a pharmacological target. Still, the effects of a ER-targeted system remain less investigated, due to the fact that most chemo-drugs take actions in the nucleus. Here, it is demonstrated that ER-targeted delivery of doxorubicin (DOX), a typically nucleus-tropic-and-acting agent, attenuates its original effect on cytotoxicity while generating new functions favorable for immune activation. First, a library of DOX derivatives with variable ER-targeting abilities is synthesized. The results reveal that higher ER-targeting efficiency correlates with greater ER stress. As compared with naïve drug, ER-targeted DOX considerably alters the mode of action from nuclear DNA damage-associated cytotoxicity to ER stress-mediated calreticulin exposure. Consequently, ER-targeted DOX decreases cytotoxicity but increases the capability to induce immunogenic cell death (ICD). Therefore, a platform combining naïve and ER-targeted DOX is constructed for in vivo application. Conventional polymer-DOX conjugate inhibits tumor growth by exerting a direct killing effect, and ER-targeted polymer-DOX conjugate suppresses residual tumors by eliciting ICD-associated immunity, together resulting in considerable tumor regression. In addition, simultaneous inhibition of adaptive PD-L1 enrichment (due to negative-feedback to ICD induction) further leads to greater therapeutic outcome. Collectively, ER-targeted therapy can enhance anticancer efficacy by promoting ICD-associated immunotherapy, and potentiating chemotherapy and checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yucheng Xiang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Liqiang Chen
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Chendong Liu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Xiaoli Yi
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| |
Collapse
|
26
|
Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 2022; 38:717-734. [PMID: 35064413 DOI: 10.1007/s10719-021-10031-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
27
|
Wu C, Wang C, Zhang T, Gao G, Wei M, Chen Y, Li X, Wang F, Liang G. Lysosome-Targeted and Fluorescence-Turned "On" Cytotoxicity Induced by Alkaline Phosphatase-Triggered Self-Assembly. Adv Healthc Mater 2022; 11:e2101346. [PMID: 34624168 DOI: 10.1002/adhm.202101346] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/04/2021] [Indexed: 01/03/2023]
Abstract
Selectively inducing lysosomal membrane permeabilization (LMP) is a promising strategy for cancer therapy. But integrating alkaline phosphatase (ALP)-instructed self-assembly and lysosome-targeting to induce LMP for selective killing of cancer cells was not reported. Herein, a pyrene-peptide conjugate Py-Phe-Phe-Glu-Tyr(H2 PO3 )-Gly-lyso (Py-Yp-Lyso) is rationally designed and demonstrated for its lysosome-targeting cytotoxicity on cancer cells, together with its pyrene (Py) excimer fluorescence turning "on" at 480 nm. In vitro results showed that, Py-Yp-Lyso is efficiently dephosphorylated by ALP to yield Py-Phe-Phe-Glu-Tyr-Gly-lyso (Py-Y-Lyso) which self-assembles into nanofibers. Cell experiments verified that, after being taken up by HeLa cells, the excimer fluorescence of Py-Yp-Lyso assemblies has turned "on" and the assemblies specifically target the lysosomes, inducing LMP and ultimate cancer cell death. In vivo experiments indicated that Py-Yp-Lyso has the highest inhibition effect on HeLa tumors among the four compounds studied. This is anticipated for applying Py-Yp-Lyso to treat cancers in the clinic in the future.
Collapse
Affiliation(s)
- Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Tong Zhang
- School of Life Sciences University of Science and Technology of China 443 Huangshan Road Hefei Anhui 230027 China
| | - Ge Gao
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 China
| | - Mengxing Wei
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yinglu Chen
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xiaoyan Li
- Analysis Center Nanjing Medical University 140 Hanzhong Road Nanjing Jiangsu 210029 China
| | - Fuqiang Wang
- Analysis Center Nanjing Medical University 140 Hanzhong Road Nanjing Jiangsu 210029 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 China
| |
Collapse
|
28
|
Sun G, Zhao Z, Lang J, Sun B, Zhao Q. Nrf2 loss of function exacerbates endoplasmic reticulum stress-induced apoptosis in TBI mice. Neurosci Lett 2021; 770:136400. [PMID: 34923041 DOI: 10.1016/j.neulet.2021.136400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in neuroprotection and recover. Our studies have showed that endoplasmic reticulum (ER) stress-induced apoptosis aggravates secondary damage following traumatic brain injury (TBI). Whether Nrf2 involved in ER stress and ER stress-mediated apoptosis is not clearly investigated. This present study explored the effect of Nrf2 knockout on ER stress and ER stress-induced apoptosis in TBI mice. A lateral fluid percussion injury (FPI)model of TBI was built based on Nrf2 knockout (Nrf2(-/-)) mice and wild-type (Nrf2(+/+)) mice, and the expressions of marker proteins of ER stress and ER stress-induced apoptosis were checked at 24 h following TBI. We found that Nrf2(-/-) mice presented more severe neurological deficit, brain edema and neuronal cell apoptosis compared with Nrf2(+/+) mice. And, the TBI Nrf2(-/-) mice were significantly increased expression of marker proteins of ER stress and ER stress-induced apoptotic pathway including glucose regulated protein (GRP78), protein kinase RNA-like ER kinase (PERK), inositol requiring enzyme (IRE1), activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), caspase-12 and caspase-3, compared with that in WT mice. These results suggest that Nrf2 could ameliorate TBI-induced second brain injury partly through ER stress signal pathway.
Collapse
Affiliation(s)
- Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China.
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Qitao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| |
Collapse
|
29
|
Shiwani HA, Elfaki MY, Memon D, Ali S, Aziz A, Egom EE. Updates on sphingolipids: Spotlight on retinopathy. Biomed Pharmacother 2021; 143:112197. [PMID: 34560541 DOI: 10.1016/j.biopha.2021.112197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
The sphingolipids ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (Sph), and sphingosine-1-phosphate (S1P)) are key signaling molecules that regulate many patho-biological processes. During the last decade, they have gained increasing attention since they may participate in important and numerous retinal processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Cer for instance has emerged as a key mediator of inflammation and death of neuronal and retinal pigment epithelium cells in experimental models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. S1P may have opposite biological actions, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1- phosphate may also contribute to uveitis. Furthermore, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), have been shown to preserve neuronal viability and retinal function. Collectively, the expanding role for these sphingolipids in the modulation of vital processes in retina cell types and in their dysregulation in retinal degenerations makes them attractive therapeutic targets.
Collapse
Affiliation(s)
- Haaris A Shiwani
- Department of Ophthalmology, Royal Preston Hospital, United Kingdom.
| | | | - Danyal Memon
- Department of Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Suhayb Ali
- Department of Acute Medicine, Ulster Hospital, Belfast, United Kingdom
| | - Abdul Aziz
- Department of Respiratory Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Emmanuel E Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, University of Ottawa, Ottawa, ON, Canada; Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.
| |
Collapse
|
30
|
Qiao L, Shao X, Gao S, Ming Z, Fu X, Wei Q. Research on endoplasmic reticulum-targeting fluorescent probes and endoplasmic reticulum stress-mediated nanoanticancer strategies: A review. Colloids Surf B Biointerfaces 2021; 208:112046. [PMID: 34419809 DOI: 10.1016/j.colsurfb.2021.112046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 01/18/2023]
Abstract
Subcellular localization of organelles can achieve accurate drug delivery and maximize drug efficacy. As the largest organelle in eukaryotic cells, the endoplasmic reticulum (ER) plays an important role in protein synthesis, folding, and posttranslational modification; lipid biosynthesis; and calcium homeostasis. Observing the changes in various metal ions, active substances, and the microenvironment in the ER is crucial for diagnosing and treating many diseases, including cancer. Excessive endoplasmic reticulum stress (ERS) can have a killing effect on malignant cells and can mediate cell apoptosis, proper modulation of ERS can provide new perspectives for the treatment of many diseases, including cancer. Therefore, the ER is used as a new anticancer target in cancer treatment. This review discusses ER-targeting fluorescent probes and ERS-mediated nanoanticancer strategies.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xinxin Shao
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijie Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zheng Ming
- International Office, Shandong University of Traditional Chinese Medicine, PR China
| | - Xianjun Fu
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
31
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
32
|
Kamynina M, Tskhovrebova S, Fares J, Timashev P, Laevskaya A, Ulasov I. Oncolytic Virus-Induced Autophagy in Glioblastoma. Cancers (Basel) 2021; 13:cancers13143482. [PMID: 34298694 PMCID: PMC8304501 DOI: 10.3390/cancers13143482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common and aggressive brain tumor with an incidence rate of nearly 3.19/100,000. Current therapeutic options fall short in improving the survival of patients with GBM. Various genetic and microenvironmental factors contribute to GBM progression and resistance to therapy. The development of gene therapies using self-replicating oncolytic viruses can advance GBM treatment. Due to GBM heterogeneity, oncolytic viruses have been genetically modified to improve the antiglioma effect in vitro and in vivo. Oncolytic viruses can activate autophagy signaling in GBM upon tumoral infection. Autophagy can be cytoprotective, whereby the GBM cells catabolize damaged organelles to accommodate to virus-induced stress, or cytotoxic, whereby it leads to the destruction of GBM cells. Understanding the molecular mechanisms that control oncolytic virus-induced autophagic signaling in GBM can fuel further development of novel and more effective genetic vectors. Abstract Autophagy is a catabolic process that allows cells to scavenge damaged organelles and produces energy to maintain cellular homeostasis. It is also an effective defense method for cells, which allows them to identify an internalized pathogen and destroy it through the fusion of the autophagosome and lysosomes. Recent reports have demonstrated that various chemotherapeutic agents and viral gene therapeutic vehicles provide therapeutic advantages for patients with glioblastoma as monotherapy or in combination with standards of care. Despite nonstop efforts to develop effective antiglioma therapeutics, tumor-induced autophagy in some studies manifests tumor resistance and glioma progression. Here, we explore the functional link between autophagy regulation mediated by oncolytic viruses and discuss how intracellular interactions control autophagic signaling in glioblastoma. Autophagy induced by oncolytic viruses plays a dual role in cell death and survival. On the one hand, autophagy stimulation has mostly led to an increase in cytotoxicity mediated by the oncolytic virus, but, on the other hand, autophagy is also activated as a cell defense mechanism against intracellular pathogens and modulates antiviral activity through the induction of ER stress and unfolded protein response (UPR) signaling. Despite the fact that the moment of switch between autophagic prosurvival and prodeath modes remains to be known, in the context of oncolytic virotherapy, cytotoxic autophagy is a crucial mechanism of cancer cell death.
Collapse
Affiliation(s)
- Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Salome Tskhovrebova
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N. N. Semenov Institute of Chemical Physics, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
- Correspondence:
| |
Collapse
|
33
|
Novel therapeutic strategies and perspectives for pancreatic cancer: Autophagy and apoptosis are key mechanisms to fight pancreatic cancer. Med Oncol 2021; 38:74. [PMID: 34019188 DOI: 10.1007/s12032-021-01522-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the most lethal malignancy of the gastrointestinal tract. The poor prognosis of patients with PC is primarily due to lack of effective treatments against its progressive and metastatic behavior. Hence, figuring out the mechanisms underlying PC development and putting up with effective targeted therapies are of great significance to improve the prognosis of patients with PC. Apoptosis and autophagy serve to maintain tissue homoeostasis. Escaping from apoptosis or autophagy is one of the features of malignancy. PC is seriously resistant to autophagy and apoptosis, which explains its invasiveness and resistance to conventional treatment. Recently, several biological activities and pharmacological functions found in natural product extracts have been reported to inhibit PC progression. The current review focuses on understanding natural product extracts and their derivatives as one kind of novel treatments through affecting the apoptosis or autophagy in PC.
Collapse
|
34
|
Read DE, Gupta A, Cawley K, Fontana L, Agostinis P, Samali A, Gupta S. Downregulation of miR-17-92 Cluster by PERK Fine-Tunes Unfolded Protein Response Mediated Apoptosis. Life (Basel) 2021; 11:life11010030. [PMID: 33418948 PMCID: PMC7825066 DOI: 10.3390/life11010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 01/07/2023] Open
Abstract
An important event in the unfolded protein response (UPR) is activation of the endoplasmic reticulum (ER) kinase PERK. The PERK signalling branch initially mediates a prosurvival response, which progresses to a proapoptotic response upon prolonged ER stress. However, the molecular mechanisms of PERK-mediated cell death are not well understood. Here we show that expression of the primary miR-17-92 transcript and mature miRNAs belonging to the miR-17-92 cluster are decreased during UPR. We found that miR-17-92 promoter reporter activity was reduced during UPR in a PERK-dependent manner. Furthermore, we show that activity of the miR-17-92 promoter is repressed by ectopic expression of ATF4 and NRF2. Promoter deletion analysis mapped the region responding to UPR-mediated repression to a site in the proximal region of the miR-17-92 promoter. Hypericin-mediated photo-oxidative ER damage reduced the expression of miRNAs belonging to the miR-17-92 cluster in wild-type but not in PERK-deficient cells. Importantly, ER stress-induced apoptosis was inhibited upon miR-17-92 overexpression in SH-SY5Y and H9c2 cells. Our results reveal a novel function for ATF4 and NRF2, where repression of the miR-17-92 cluster plays an important role in ER stress-mediated apoptosis. Mechanistic details are provided for the potentiation of cell death via sustained PERK signalling mediated repression of the miR-17-92 cluster.
Collapse
Affiliation(s)
- Danielle E. Read
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Karen Cawley
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland; (K.C.); (A.S.)
| | - Laura Fontana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, 02138 MA, USA;
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland; (K.C.); (A.S.)
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
35
|
Kim P, Scott MR, Meador-Woodruff JH. Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol Psychiatry 2021; 26:1321-1331. [PMID: 31578497 PMCID: PMC7113111 DOI: 10.1038/s41380-019-0537-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Abnormalities in protein localization, function, and posttranslational modifications are targets of schizophrenia (SCZ) research. As a major contributor to the synthesis, folding, trafficking, and modification of proteins, the endoplasmic reticulum (ER) is well-positioned to sense cellular stress. The unfolded protein response (UPR) is an evolutionarily conserved adaptive reaction to environmental and pathological perturbation in ER function. The UPR is a highly orchestrated and complex cellular response, which is mediated through the ER chaperone protein, BiP, three known ER transmembrane stress sensors, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF6), inositol requiring enzyme 1α (IRE1α), and their downstream effectors. In this study, we measured protein expression and phosphorylation states of UPR sensor pathway proteins in the dorsolateral prefrontal cortex (DLPFC) of 22 matched pairs of elderly SCZ and comparison subjects. We observed increased protein expression of BiP, decreased PERK, and decreased phosphorylation of IRE1α. We also observed decreased p-JNK2 and increased sXBP1, downstream targets of the IRE1α arm of the UPR. The disconnect between decreased p-IRE1α and increased sXBP1 protein expression led us to measure sXbp1 mRNA. We observed increased expression of the ratio of sXbp1/uXbp1 transcripts, suggesting that splicing of Xbp1 mRNA by IRE1α is increased and drives upregulation of sXBP1 protein expression. These findings suggest an abnormal pattern of UPR activity in SCZ, with specific dysregulation of the IRE1α arm. Dysfunction of this system may lead to abnormal responses to cellular stressors and contribute to protein processing abnormalities previously observed in SCZ.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Madeline R. Scott
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - James H. Meador-Woodruff
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
36
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
37
|
Simvastatin Induces Unfolded Protein Response and Enhances Temozolomide-Induced Cell Death in Glioblastoma Cells. Cells 2020; 9:cells9112339. [PMID: 33105603 PMCID: PMC7690447 DOI: 10.3390/cells9112339] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor with a very poor survival rate. Temozolomide (TMZ) is the common chemotherapeutic agent used for GBM treatment. We recently demonstrated that simvastatin (Simva) increases TMZ-induced apoptosis via the inhibition of autophagic flux in GBM cells. Considering the role of the unfolded protein response (UPR) pathway in the regulation of autophagy, we investigated the involvement of UPR in Simva–TMZ-induced cell death by utilizing highly selective IRE1 RNase activity inhibitor MKC8866, PERK inhibitor GSK-2606414 (PERKi), and eIF2α inhibitor salubrinal. Simva–TMZ treatment decreased the viability of GBM cells and significantly increased apoptotic cell death when compared to TMZ or Simva alone. Simva–TMZ induced both UPR, as determined by an increase in GRP78, XBP splicing, eukaryote initiation factor 2α (eIF2α) phosphorylation, and inhibited autophagic flux (accumulation of LC3β-II and inhibition of p62 degradation). IRE1 RNase inhibition did not affect Simva–TMZ-induced cell death, but it significantly induced p62 degradation and increased the microtubule-associated proteins light chain 3 (LC3)β-II/LC3β-I ratio in U87 cells, while salubrinal did not affect the Simva–TMZ induced cytotoxicity of GBM cells. In contrast, protein kinase RNA-like endoplasmic reticulum kinase (PERK) inhibition significantly increased Simva–TMZ-induced cell death in U87 cells. Interestingly, whereas PERK inhibition induced p62 accumulation in both GBM cell lines, it differentially affected the LC3β-II/LC3β-I ratio in U87 (decrease) and U251 (increase) cells. Simvastatin sensitizes GBM cells to TMZ-induced cell death via a mechanism that involves autophagy and UPR pathways. More specifically, our results imply that the IRE1 and PERK signaling arms of the UPR regulate Simva–TMZ-mediated autophagy flux inhibition in U251 and U87 GBM cells.
Collapse
|
38
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
39
|
Nan C, Zheng Y, Fan H, Sun H, Huang S, Li N. Antitumorigenic Effect of Hsp90 Inhibitor SNX-2112 on Tongue Squamous Cell Carcinoma is Enhanced by Low-Intensity Ultrasound. Onco Targets Ther 2020; 13:7907-7919. [PMID: 32884285 PMCID: PMC7434630 DOI: 10.2147/ott.s262174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose The novel Hsp90 inhibitor SNX-2112 showed broad antitumor activity. However, it was still necessary to optimize the therapeutic dosage of SNX-2112 applied on tumors to obtain effective therapy with minimal dose to reduce toxicity. We investigated the role of low-intensity US in promoting antitumorigenic effect of low doses of SNX-2112 on tongue squamous cell carcinoma. Methods Cell viability was measured using CCK-8 assay or staining with Calcein AM/PI. Relative cumulative levels of SNX-2112 in cells were detected using high-performance liquid chromatography. The production of ROS was analyzed using fluorescence microscope and flow cytometer. Cellular apoptosis was detected using flow cytometer. The expression levels of proteins of the ERS-associated apoptosis signaling pathway were detected using Western blotting analysis. The efficacy and biosafety of SNX-2112 were also investigated in a mouse xenograft model. Results Low-intensity US combined with SNX-2112 exhibited significant antitumor effect, increased the absorption of SNX-2112 by cells even with a low dose, enhanced ROS generation and apoptosis. The combination regimen also inhibited the protein expression of Hsp90 and triggered apoptosis through endoplasmic reticulum stress (ERS) by enhancing PERK, CHOP and Bax protein levels, while downregulating the level of Bcl-2. Additionally, N-acetyl-L-cysteine (NAC), ROS scavenger, was able to reverse these results. Low-intensity US combined with SNX-2112 significantly inhibited tumor growth, prolonged survival of mice, decreased proliferation and promoted apoptosis with no visible damage or abnormalities in major organs in the mouse xenograft model with tongue squamous cell carcinoma. Conclusion The antitumor effects of SNX-2112 were enhanced by low-intensity US. The most probable mechanism was that US sonoporation induced more SNX-2112 delivery to the cells and enhanced ROS production, triggering the ERS-associated apoptosis signaling pathway. Therefore, low-intensity US may increase the efficiency of conventional chemotherapy and reduce the dosage of SNX-2112 required and its side effects.
Collapse
Affiliation(s)
- Chuanchuan Nan
- Department of Intensive Care Unit, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, People's Republic of China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Haipeng Sun
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Shengxing Huang
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| |
Collapse
|
40
|
Barabutis N. Unfolded Protein Response in Lung Health and Disease. Front Med (Lausanne) 2020; 7:344. [PMID: 32850879 PMCID: PMC7406640 DOI: 10.3389/fmed.2020.00344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is a complex element, destined to protect the cells against a diverse variety of extracellular and intracellular challenges. UPR activation devises highly efficient responses to counteract cellular threats. If those activities fail, it will dictate cellular execution. The current work focuses on the role of UPR in pulmonary function, by immersing into the highly interrelated network that operates toward the endothelial barrier function. A highly sophisticated UPR manipulation shall reveal new therapeutic possibilities against inflammatory lung disease, such as acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
41
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
42
|
Ren L, Liu J, Wei J, Du Y, Zou K, Yan Y, Wang Z, Zhang L, Zhang T, Lu H, Zhou X, Sun Z. Silica nanoparticles induce unfolded protein reaction mediated apoptosis in spermatocyte cells. Toxicol Res (Camb) 2020; 9:454-460. [PMID: 32905213 DOI: 10.1093/toxres/tfaa036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/19/2023] Open
Abstract
With increasing air pollution, silica nanoparticles (SiNPs), as a main inorganic member of PM2.5, have gained increasing attention to its reproductive toxicity. Most existing studies focused on the acute exposure, while data regarding the chronic effect of SiNPs on reproduction is limited. Therefore, this study was designed to evaluate the chronic toxicity of SiNPs on spermatocyte cells. The cells were continuously exposed to SiNPs for 1, 10, 20 and 30 generations at dose of 5 μg/ml SiNPs for 24 h per generation after attachment. The results showed that with the increasing generations of the exposure, SiNPs decreased the viability of spermatocyte cells, induced apoptosis and increased the level of reactive oxygen species in spermatocyte cells. Moreover, SiNPs increased the protein expression of GRP-78, p-PERK, IRE1α, ATF6 and Cleaved caspase-3 in spermatocyte cells, suggesting that SiNPs improved unfolded protein response (UPR) and apoptosis. The present results indicated that the long-term and low-dose exposure to SiNPs could induce apoptosis by triggering ROS-mediated UPR in spermatocyte cells.
Collapse
Affiliation(s)
- Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
| | - Jialiu Wei
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Yefan Du
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kaiyue Zou
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yongyang Yan
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhihao Wang
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Linruo Zhang
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tong Zhang
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hong Lu
- Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China
| |
Collapse
|
43
|
Elhassanny AEM, Soliman E, Marie M, McGuire P, Gul W, ElSohly M, Van Dross R. Heme-Dependent ER Stress Apoptosis: A Mechanism for the Selective Toxicity of the Dihydroartemisinin, NSC735847, in Colorectal Cancer Cells. Front Oncol 2020; 10:965. [PMID: 32626657 PMCID: PMC7313430 DOI: 10.3389/fonc.2020.00965] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death in the United States. Artemisinin derivatives, including the dihydroartemisinin (DHA) monomers, are widely used as clinical agents for the treatment of malaria. Numerous studies demonstrate that these molecules also display antineoplastic activity with minimal toxicity. Of interest, dimeric DHA molecules are more active than their monomeric counterparts. Our previous data showed that the DHA dimer, NSC735847, was a potent inducer of death in different cancer cell types. However, the mechanism of action and activity of NSC735847 in colon cancer cells was not explored. The present study investigated the anticancer activity of NSC735847 and four structurally similar analog in human tumorigenic (HT-29 and HCT-116) and non-tumorigenic (FHC) colon cell lines. NSC735847 was more cytotoxic toward tumorigenic than non-tumorigenic colonocytes. In addition, NSC735847 exhibited greater cytotoxicity and tumor selectivity than the NSC735847 derivatives. To gain insight into mechanisms of NSC735847 activity, the requirement for endoplasmic reticulum (ER) stress and oxidative stress was tested. The data show that ER stress played a key role in the cytotoxicity of NSC735847 while oxidative stress had little impact on cell fate. In addition, it was observed that the cytotoxic activity of NSC735847 required the presence of heme, but not iron. The activity of NSC735847 was then compared to clinically utilized CRC therapeutics. NSC735847 was cytotoxic toward colon tumor cells at lower concentrations than oxaliplatin (OX). In addition, cell death was achieved at lower concentrations in colon cancer cells that were co-treated with folinic acid (Fol), 5-FU (F), and NSC735847 (FolFNSC), than Fol, F, and OX (FolFOX). The selective activity of NSC735847 and its ability to induce cytotoxicity at low concentrations suggest that NSC735847 may be an alternative for oxaliplatin in the FolFOX regimen for patients who are unable to tolerate its adverse effects.
Collapse
Affiliation(s)
- Ahmed E M Elhassanny
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona Marie
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Paul McGuire
- Medical Doctor Program, Brody School of Medicine, Greenville, NC, United States
| | - Waseem Gul
- ElSohly Laboratories Inc., Oxford, MS, United States.,National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Mahmoud ElSohly
- ElSohly Laboratories Inc., Oxford, MS, United States.,National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
44
|
Kim D, Park M, Haleem I, Lee Y, Koo J, Na YC, Song G, Lee J. Natural Product Ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in Cancer Treatment: A Review of the Pharmacological Mechanisms and Pharmacokinetics. Front Pharmacol 2020; 11:521. [PMID: 32425780 PMCID: PMC7212460 DOI: 10.3389/fphar.2020.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023] Open
Abstract
Panax ginseng has been used as an herbal medicine for thousands of years. Most of its pharmacological effects are attributed to its constituent ginsenosides, including 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (20(S)-25-OCH3-PPD), which is one of the protopanaxadiol type ginsenosides. It has been found to exhibit anticancer effects by interacting with multiple pharmacological pathways, such as the Wnt/β-catenin, MDM2, ERK/MAPK, and STAT3 signaling pathways. However, its therapeutic potential could be limited by its low bioavailability mainly due to its low aqueous solubility. Thus, several studies have been conducted on its pharmacokinetics and its delivery systems, so as to increase its oral bioavailability. In this review, comprehensive information on its varying pharmacological pathways in cancer, as well as its pharmacokinetic behavior and pharmaceutical strategies, is provided. This information would be useful in the understanding of its diverse mechanisms and pharmacokinetics as an anticancer drug, leading to the design of superior 20(S)-25-OCH3-PPD-containing formulations that maximize its therapeutic potential.
Collapse
Affiliation(s)
- Dohyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Minwoo Park
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Iqra Haleem
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Younghong Lee
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jain Koo
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Young Chae Na
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Gidong Song
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
45
|
Yang L, Guo N, Fan W, Ni C, Huang M, Bai L, Zhang L, Zhang X, Wen Y, Li Y, Zhou X, Bai J. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology 2020; 78:163-169. [PMID: 32203791 DOI: 10.1016/j.neuro.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) has been reported to induce endoplasmic reticulum (ER) stress and neuronal apoptosis in the central nervous system (CNS) during the development of addiction. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays an important role in inhibiting apoptosis and protects neurons from cytotoxicity through ER and mitochondria-mediated pathways. Our previous study has been reported that Trx-1 protects mice from METH-induced rewarding effect. However, whether Trx-1 plays the role in resisting METH injury is still unclear. Here, we aim to investigate whether Trx-1 participates in the regulation of METH-induced CNS injury via ER stress and mitochondria-mediated pathways. Our study first repeated the conditioned place preference expression induced by METH. Then we detected and found that METH increased the expression of N-methyl-d-asparate (NMDA) receptor subunit 2B (NR2B) and the level of glutamate (Glu) in the ventral tegmental area (VTA) and nucleus accumbens (NAc), while Trx-1 overexpression suppressed the increases. We further examined ER stress-related proteins and mitochondrial apoptosis pathway in the VTA and NAc, and found that METH increased the expressions of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Bax, as same time decreased the expressions of procaspase12, Bcl-2, and procaspase3, while Trx-1 overexpression blocked these changes. These results indicate that Trx-1 blocks METH-induced injury by suppressing ER stress and mitochondria-mediated apoptosis in the VTA and NAc via targeting glutamatergic system.
Collapse
Affiliation(s)
- Lihua Yang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China; Narcotics Control School, Yunnan Police College, Kunming, 650223, China
| | - Ningning Guo
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Fan
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chunmin Ni
- Narcotics Control School, Yunnan Police College, Kunming, 650223, China
| | - Mengbing Huang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Le Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xianwen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yunbo Wen
- Narcotics Control School, Yunnan Police College, Kunming, 650223, China
| | - Ye Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoshuang Zhou
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
46
|
The Prospects of Therapeutic Potential and Drug Development Targeting Autophagy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:663-679. [PMID: 32671784 DOI: 10.1007/978-981-15-4272-5_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autophagy is a self-protection mechanism of cells. Cells can degrade damaged organelles and macromolecules in this way to guarantee the growth and development of cells. In recent years, more and more researches have found that autophagy also plays a certain role in the occurrence and development of tumors. The dual role of autophagy in the development of tumors includes inhibiting the development of tumors; meanwhile, under the condition of insufficient nutrition, autophagy degrades organelles to reduce oxidative stress and provide nutrition and energy for tumor cells so as to protect tumor cells. The regulation of autophagy depends on the development of the tumor, and the corresponding autophagy inducers or inhibitors are constantly emerging, which provides a new direction for tumor treatment.
Collapse
|
47
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
48
|
Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α/ATF4 and IRE1 α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3480569. [PMID: 31930117 PMCID: PMC6942794 DOI: 10.1155/2019/3480569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
Collapse
|
49
|
Ștefanache T, Forna N, Bădescu M, Jitaru D, Dragos ML, Rezuș C, Diaconescu BM, Bădulescu O, Rezuș E, Ciocoiu M, Bădescu C. Modulation of the activity of certain genes involved in tumor cell metabolism in the presence of the cytotoxic peptides defensin and cathelicidin LL37. Exp Ther Med 2019; 18:5033-5040. [PMID: 31819768 PMCID: PMC6895780 DOI: 10.3892/etm.2019.8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 11/06/2022] Open
Abstract
It is common knowledge that some natural antimicrobial peptides also have a tumoricidal effect. We have shown that the peptides defensin and cathelicidin LL37 have cytostatic effects on human tumor cell lines HT29 (colorectal carcinoma) and A549 (alveolar carcinoma). In order to determine the modulating mechanism of these peptides we assessed the gene expression of the AKT, HIF-1α, XBP, NRF2, PERK, CHOP, BCL2, IRE1α and PI3K molecular targets involved in the survival, growth, proliferation and apoptosis pathways of tumor cells in the presence or absence of the studied peptides. Thus, this research enabled us to determine molecular markers and methods of assessment and monitoring of tumor cell cytotoxicity by high-performance molecular biology techniques. Defensin and cathelicidin LL37 activated tumor cell apoptosis, especially for the HT29, but also for A549 line, by increasing gene expression of CHOP and by lowering BCL2 gene expression. Oxidative stress determined the increase in gene expression of XBP, which directly influenced CHOP. The decrease in NRF2 gene expression highlighted the inhibition of cell proliferation, while the decrease in HIF1α gene expression evidenced the decrease in cell survival.
Collapse
Affiliation(s)
- Teodor Ștefanache
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Norina Forna
- Department of Implantology, Dental Medicine, 700115 Iaşi, Romania
| | - Magda Bădescu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Daniela Jitaru
- Regional Institute of Oncology Iasi, 700115 Iaşi, Romania
| | | | - Ciprian Rezuș
- Department of Internal Medicine, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Bogdan Mihail Diaconescu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Oana Bădulescu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Elena Rezuș
- Rehabilitation Hospital of Iasi, Rheumatology Clinic, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| | - Codruta Bădescu
- Department of Internal Medicine, University of Medicine and Pharmacy 'Grigore T. Popa', 700115 Iaşi, Romania
| |
Collapse
|
50
|
Redox-Mediated Mechanism of Chemoresistance in Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100471. [PMID: 31658599 PMCID: PMC6826977 DOI: 10.3390/antiox8100471] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular reactive oxygen species (ROS) status is stabilized by a balance of ROS generation and elimination called redox homeostasis. ROS is increased by activation of endoplasmic reticulum stress, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family members and adenosine triphosphate (ATP) synthesis of mitochondria. Increased ROS is detoxified by superoxide dismutase, catalase, and peroxiredoxins. ROS has a role as a secondary messenger in signal transduction. Cancer cells induce fluctuations of redox homeostasis by variation of ROS regulated machinery, leading to increased tumorigenesis and chemoresistance. Redox-mediated mechanisms of chemoresistance include endoplasmic reticulum stress-mediated autophagy, increased cell cycle progression, and increased conversion to metastasis or cancer stem-like cells. This review discusses changes of the redox state in tumorigenesis and redox-mediated mechanisms involved in tolerance to chemotherapeutic drugs in cancer.
Collapse
|