1
|
Zhang P, Cheng RJ, Yang QL, Gong Y, Xu Y, Chen LM, Zhou L, Jiang CL. Mitophagy impairment drives microglia activation and results in cognitive deficits in neonatal mice following sevoflurane exposure. Toxicol Lett 2025; 406:20-30. [PMID: 39955081 DOI: 10.1016/j.toxlet.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Sevoflurane exposure induces cognitive deficits in neonatal mice. Mitophagy was closely correlated to sevoflurane inhalation induced neurotoxicity in developing brains. However, the underlying mechanisms have not been fully elucidated. In this study, we attempted to clarify the role of mitophagy in neonatal mice undergoing sevoflurane exposure. BV2 microglial cells were cultured, and mcherry-EGFP-LC3B adenovirus were transfected. The results showed that the fluorescence intensity of GFP was markedly increased after sevoflurane exposure, and rapamycin administration could mitigate this effect. The mitophagy flux test showed that sevoflurane exposure reduced the degree of colocalization between Mito-Traker and Lyso-Traker fluorescent, while which was elevated by rapamycin treatment. The immunofluorescence assay suggested that sevoflurane inhalation resulted in the significant decrease of autolysosome formation, which was sharply enhanced in SEV group after rapamycin treatment. Meanwhile, sevoflurane inhalation shifted microglial M1/M2 phenotypic polarization, and rapamycin administration reversed this status. Moreover, the degree of colocalization among Iba-1, Synaptophysin (Syn) and lysosomal-associated membrane protein 1 (Lamp1) was increased after sevoflurane exposure, and that was reduced following rapamycin treatment. The behavioral performance was worse after sevoflurane inhalation in neonatal mice, and rapamycin treatment effectively improved the cognitive outcome. Collectively, these findings demonstrated that mitophagy impairment induced by sevoflurane exposure promoted microglia M1 phenotypic polarization and enlarged phagocytosis, and resulted in cognitive deficits, while rapamycin administration effectively reversed this tendency.
Collapse
Affiliation(s)
- Piao Zhang
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiao-Ling Yang
- Reproductive Medicine Center, SiChuan Provincial Maternity and Child Health Care Hospital,the Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan 610045, China
| | - Yan Gong
- Reproductive Medicine Center, SiChuan Provincial Maternity and Child Health Care Hospital,the Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan 610045, China
| | - Yan Xu
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling-Min Chen
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhou
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chun-Ling Jiang
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Lu D, Zhang W, Chen K, Feng X. Dual effects of GABA A R agonist anesthetics in neurodevelopment and vulnerable brains: from neurotoxic to therapeutic effects. Neural Regen Res 2024; 21:01300535-990000000-00626. [PMID: 39665822 PMCID: PMC12094567 DOI: 10.4103/nrr.nrr-d-24-00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years. A consensus has been reached that prolonged, repeated, high-dose exposure to anesthetics is associated with a higher incidence of deficits in behavior and executive function, while single exposure has a relatively minor effect on long-term neurological function. In this review, we summarize the dose-dependent neuroprotective or neurotoxic effects of gamma-aminobutyric acid type A receptor agonists, a representative group of sedatives, on developing brains or central nervous system diseases. Most preclinical research indicates that anesthetics have neurotoxic effects on the developing brain through various signal pathways. However, recent studies on low-dose anesthetics suggest that they may promote neurodevelopment during this critical period. These findings are incomprehensible for the general "dose-effect" principles of pharmacological research, which has attracted researchers' interest and led to the following questions: What is the threshold for the dual effects exerted by anesthetics such as propofol and sevoflurane on the developing brain? To what extent can their protective effects be maximized? What are the underlying mechanisms involved in these effects? Consequently, this issue has essentially become a "mathematical problem." After summarizing the dose-dependent effects of gamma-aminobutyric acid type A receptor agonist sedatives in both the developing brain and the brains of patients with central nervous system diseases, we believe that all such anesthetics exhibit specific threshold effects unique to each drug. These effects range from neuroprotection to neurotoxicity, depending on different brain functional states. However, the exact values of the specific thresholds for different drugs in various brain states, as well as the underlying mechanisms explaining why these thresholds exist, remain unclear. Further in-depth exploration of these issues could significantly enhance the therapeutic translational value of these anesthetics.
Collapse
Affiliation(s)
- Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Keyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Chai D, Jiang H, Liu H. The impact of maternal anti-inflammatory drugs on surgical anesthesia-induced neuroinflammation and cognitive impairment in offspring mice. Front Cell Neurosci 2024; 18:1481630. [PMID: 39440002 PMCID: PMC11493650 DOI: 10.3389/fncel.2024.1481630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background The impact of maternal surgery combined with general anesthesia on neuroinflammation and the development of learning and memory impairment in offspring remains unclear. This study utilized a pathogen-free laparotomy model to investigate these changes during the second trimester, as well as their response to anti-inflammatory therapy. Methods C57BL/6 pregnant mice at the 14.5-day embryo stage (E 14.5) were either exposed to sevoflurane anesthesia alone or underwent laparotomy procedure. The neuroinflammatory response was evaluated at 7, 14, 21, and 28 days postnatal (P7, P14, P21, P28). Tau phosphorylation and cognitive ability were assessed at P28 and P30, respectively. The impact of perioperative administration of ibuprofen (60 mg/kg) on these aforementioned changes was subsequently evaluated. Results In the laparotomy group, levels of inflammatory factors (IL-4, IL-8, IL-17A, TGF-β, M-CSF, CCL2) in the brains of offspring mice, including the cerebral cortex and hippocampus, remained consistently elevated from P7 to P28. At P14, while the majority of inflammatory cytokine has no statistical difference, there was still a significant reactivation of inflammatory cytokines observed in the frontal cortex and hippocampus at P28. Furthermore, abnormal phosphorylation of tau and deficits in learning and memory were observed at P28 and P30. Administration of perioperative ibuprofen led to improvements in cognitive performance, reduction of systemic inflammation, and inhibiting abnormal phosphorylation of tau in the frontal cortex and hippocampus. Conclusion Our findings indicate that cognitive dysfunction is correlated with elevated levels of inflammatory cytokines and tau phosphorylation. Cognitive impairment and tau phosphorylation after laparotomy can persist at least until P28. Anti-inflammatory medications have been shown to enhance cognitive function by rapidly reducing inflammation in the brain, while also impacting neurological changes. This discovery may have implications for the development of treatment strategies aimed at managing cognitive impairment in post-operative patients.
Collapse
|
4
|
Shi Q, Wang X, Pradhan AK, Fenzl T, Rammes G. The Effects of Sevoflurane and Aβ Interaction on CA1 Dendritic Spine Dynamics and MEGF10-Related Astrocytic Synapse Engulfment. Int J Mol Sci 2024; 25:7393. [PMID: 39000499 PMCID: PMC11242502 DOI: 10.3390/ijms25137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
General anesthetics may accelerate the neuropathological changes related to Alzheimer's disease (AD), of which amyloid beta (Aβ)-induced toxicity is one of the main causes. However, the interaction of general anesthetics with different Aβ-isoforms remains unclear. In this study, we investigated the effects of sevoflurane (0.4 and 1.2 maximal alveolar concentration (MAC)) on four Aβ species-induced changes on dendritic spine density (DSD) in hippocampal brain slices of Thy1-eGFP mice and multiple epidermal growth factor-like domains 10 (MEGF10)-related astrocyte-mediated synaptic engulfment in hippocampal brain slices of C57BL/6 mice. We found that both sevoflurane and Aβ downregulated CA1-dendritic spines. Moreover, compared with either sevoflurane or Aβ alone, pre-treatment with Aβ isoforms followed by sevoflurane application in general further enhanced spine loss. This enhancement was related to MEGF10-related astrocyte-dependent synaptic engulfment, only in AβpE3 + 1.2 MAC sevoflurane and 3NTyrAβ + 1.2 MAC sevoflurane condition. In addition, removal of sevoflurane alleviated spine loss in Aβ + sevoflurane. In summary, these results suggest that both synapses and astrocytes are sensitive targets for sevoflurane; in the presence of 3NTyrAβ, 1.2 MAC sevoflurane alleviated astrocyte-mediated synaptic engulfment and exerted a lasting effect on dendritic spine remodeling.
Collapse
Affiliation(s)
- Qinfang Shi
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Arpit Kumar Pradhan
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
- Graduate School of Systemic Neuroscience, Ludwig Maximilian University of Munich, 82152 Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
| |
Collapse
|
5
|
Hao JR, Hu QM, Yang X, Wei P, Wang HY, Sun N, Gao C. Isoflurane impairs GluN2B-containing NMDA receptors trafficking and cognition via decreasing histone acetylation and EphB2 expression in aged hippocampal neurons. Basic Clin Pharmacol Toxicol 2023; 132:180-196. [PMID: 36321664 DOI: 10.1111/bcpt.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Perioperative neurocognitive disorders (PND) is a common complication that occurs among elderly patients in the perioperative course. Current clinical evidence has shown that isoflurane exposure could cause cognitive decline, but the exact molecular mechanisms remain unclear. As both NMDARs-dependent synaptic plasticity and histone acetylation play vital roles in processing learning and memory, we postulated that these alternations might occur in the isoflurane-associated PND. Here, we found that isoflurane impaired fear memory in aged mice, decreased GluN2B-containing NMDA receptors phosphorylation and trafficking, as well as the expression of EphB2, a key regulator of synaptic localization of NMDA receptors. We also identified that isoflurane could increase the expression of HDAC2, which was significantly enriched at the ephb2 gene promoter and regulated the transcription of ephb2. Furthermore, we showed that suberoylanilide hydroxamic acid (SAHA), a nonselective HDAC inhibitor or knocking-down HDAC2 rescued the cognitive dysfunction in isoflurane-treated aged mice via increasing acetylation of H3Ac, expression of EphB2 and promoting NMDA receptor trafficking. Collectively, our study highlighted the crucial role of histone posttranslational modifications for EphB2-GluN2B signals in isoflurane-associated PND, and modulating HDAC2 might be a new therapeutic strategy for isoflurane-associated PND.
Collapse
Affiliation(s)
- Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiu-Mei Hu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pan Wei
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu-Yi Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Shi D, Wong JKY, Zhu K, Noakes PG, Rammes G. The Anaesthetics Isoflurane and Xenon Reverse the Synaptotoxic Effects of Aβ 1-42 on Megf10-Dependent Astrocytic Synapse Elimination and Spine Density in Ex Vivo Hippocampal Brain Slices. Int J Mol Sci 2023; 24:ijms24020912. [PMID: 36674434 PMCID: PMC9861496 DOI: 10.3390/ijms24020912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
It has been hypothesised that inhalational anaesthetics such as isoflurane (Iso) may trigger the pathogenesis of Alzheimer's disease (AD), while the gaseous anaesthetic xenon (Xe) exhibits many features of a putative neuroprotective agent. Loss of synapses is regarded as one key cause of dementia in AD. Multiple EGF-like domains 10 (MEGF10) is one of the phagocytic receptors which assists the elimination of synapses by astrocytes. Here, we investigated how β-amyloid peptide 1-42 (Aβ1-42), Iso and Xe interact with MEGF10-dependent synapse elimination. Murine cultured astrocytes as well as cortical and hippocampal ex vivo brain slices were treated with either Aβ1-42, Iso or Xe and the combination of Aβ1-42 with either Iso or Xe. We quantified MEGF10 expression in astrocytes and dendritic spine density (DSD) in slices. In brain slices of wild type and AAV-induced MEGF10 knock-down mice, antibodies against astrocytes (GFAP), pre- (synaptophysin) and postsynaptic (PSD95) components were used for co-localization analyses by means of immunofluorescence-imaging and 3D rendering techniques. Aβ1-42 elevated pre- and postsynaptic components inside astrocytes and decreased DSD. The combined application with either Iso or Xe reversed these effects. In the presence of Aβ1-42 both anaesthetics decreased MEGF10 expression. AAV-induced knock-down of MEGF10 reduced the pre- and postsynaptic marker inside astrocytes. The presented data suggest Iso and Xe are able to reverse the Aβ1-42-induced enhancement of synaptic elimination in ex vivo hippocampal brain slices, presumably through MEGF10 downregulation.
Collapse
Affiliation(s)
- Dai Shi
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, Ismaningerstraße 22, 81675 Munich, Germany
| | - Jaime K. Y. Wong
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 23, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Feodor-Lynen-Straße 23, 81377 Munich, Germany
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, Ismaningerstraße 22, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
7
|
Kameyama A, Asai H, Nomoto M, Ohno S, Ghandour K, Ohkawa N, Saitoh Y, Yamazaki M, Inokuchi K. Sevoflurane-induced amnesia is associated with inhibition of hippocampal cell ensemble activity after learning. Biol Open 2022; 11:286145. [PMID: 36541652 PMCID: PMC9793868 DOI: 10.1242/bio.059666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
General anesthesia could induce amnesia, however the mechanism remains unclear. We hypothesized that suppression of neuronal ensemble activity in the hippocampus by anesthesia during the post-learning period causes retrograde amnesia. To test this hypothesis, two experiments were conducted with sevoflurane anesthesia (2.5%, 30 min): a hippocampus-dependent memory task, the context pre-exposure facilitation effect (CPFE) procedure to measure memory function and in vivo calcium imaging to observe neural activity in hippocampal CA1 during context exploration and sevoflurane/home cage session. Sevoflurane treatment just after context pre-exposure session impaired the CPFE memory, suggesting sevoflurane induced retrograde amnesia. Calcium imaging showed sevoflurane treatment prevented neuronal activity in CA1. Further analysis of neuronal activity with non-negative matrix factorization, which extracts neural ensemble activity based on synchronous activity, showed that sevoflurane treatment reduced the reactivation of neuronal ensembles between during context exploration just before and one day after sevoflurane inhalation. These results suggest that sevoflurane treatment immediately after learning induces amnesia, resulting from suppression of reactivation of neuronal ensembles.
Collapse
Affiliation(s)
- Akiyo Kameyama
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hirotaka Asai
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Authors for correspondence (, )
| | - Masanori Nomoto
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan
| | - Shuntaro Ohno
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan
| | - Khaled Ghandour
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Noriaki Ohkawa
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), JST, Saitama 332-0012, Japan,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yoshito Saitoh
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), JST, Saitama 332-0012, Japan,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Mitsuaki Yamazaki
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Research Center for Idling Brain Science (RCIBS), Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, Toyama 930-0194, Japan,Authors for correspondence (, )
| |
Collapse
|
8
|
Zhang P, Chen Y, Zhang S, Chen G. Mitochondria-Related Ferroptosis Drives Cognitive Deficits in Neonatal Mice Following Sevoflurane Administration. Front Med (Lausanne) 2022; 9:887062. [PMID: 35935755 PMCID: PMC9355652 DOI: 10.3389/fmed.2022.887062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sevoflurane exposure may result in cognitive deficits in neonatal animals. This study attempted to investigate the potential mechanism of sevoflurane-induced neurotoxicity in developing hippocampus. Neonatal animals received sevoflurane anesthesia, then the behavioral tests and Golgi-Cox staining were employed to detect the effect of sevoflurane inhalation in adult mice. And the mitochondrial function was evaluated using MitoSOX staining, Fluo calcium indicators, mitochondrial permeability transition pore (mPTP) assay, and JC-1 probe after sevoflurane administration. Meanwhile, mitochondrial lipid hydroperoxide and ferroptosis were measured by MitoPeDPP and Mito-FerroGreen signals following sevoflurane exposure. Moreover, the ferroptosis and behavioral performance were assessed after deferiprone (DFP) treatment. The results showed that sevoflurane administration induced cognitive impairment accompanied by reducing dendritic length, density, and nodes. Additionally, sevoflurane exposure elevated mitochondrial ROS production and cytoplasm calcium levels, triggered the opening of mPTP, and decreased the mitochondrial membrane potential (MMP). However, supplement of elamipretide (SS-31) effectively reversed mitochondrial dysfunction. Mitochondrial lipid hydroperoxide production was increased after sevoflurane administration, whereas Fer-1 treatment reduced lipid hydroperoxide formation. Sevoflurane exposure induced mitochondrial iron overload, whereas Mito-Tempo treatment reduced iron accumulation. Prussian blue staining showed that the hippocampal iron deposition was apparently increased after sevoflurane inhalation. Additionally, the ferroptosis-related protein expression (including ACSL4, COX2, GPX4, and FTH1) was significantly changed, whereas DFP effectively suppressed ferroptosis and enhanced sevoflurane-induced behavioral malfunction. These findings demonstrated that sevoflurane administration elicited mitochondrial dysfunction and iron dyshomeostasis and eventually resulted in cognitive impairments, whereas protecting mitochondrial function and chelating neurotoxic iron effectively reversed these pathological processes.
Collapse
Affiliation(s)
- Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - ShuXia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Beta-Site Amyloid Precursor Protein-Cleaving Enzyme Inhibition Partly Restores Sevoflurane-Induced Deficits on Synaptic Plasticity and Spine Loss. Int J Mol Sci 2022; 23:ijms23126637. [PMID: 35743082 PMCID: PMC9223703 DOI: 10.3390/ijms23126637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence indicates that inhalative anesthetics enhance the β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) activity, increase amyloid beta 1-42 (Aβ1–42) aggregation, and modulate dendritic spine dynamics. However, the mechanisms of inhalative anesthetics on hippocampal dendritic spine plasticity and BACE-dependent APP processing remain unclear. In this study, hippocampal slices were incubated with equipotent isoflurane (iso), sevoflurane (sevo), or xenon (Xe) with/without pretreatment of the BACE inhibitor LY2886721 (LY). Thereafter, CA1 dendritic spine density, APP processing-related molecule expressions, nectin-3 levels, and long-term potentiation (LTP) were tested. The nectin-3 downregulation on LTP and dendritic spines were evaluated. Sevo treatment increased hippocampal mouse Aβ1–42 (mAβ1–42), abolished CA1-LTP, and decreased spine density and nectin-3 expressions in the CA1 region. Furthermore, CA1-nectin-3 knockdown blocked LTP and reduced spine density. Iso treatment decreased spine density and attenuated LTP. Although Xe blocked LTP, it did not affect spine density, mAβ1–42, or nectin-3. Finally, antagonizing BACE activity partly restored sevo-induced deficits. Taken together, our study suggests that sevo partly elevates BACE activity and interferes with synaptic remodeling, whereas iso mildly modulates synaptic changes in the CA1 region of the hippocampus. On the other hand, Xe does not alternate dendritic spine remodeling.
Collapse
|
10
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Hofmann C, Sander A, Wang XX, Buerge M, Jungwirth B, Borgstedt L, Kreuzer M, Kopp C, Schorpp K, Hadian K, Wotjak CT, Ebert T, Ruitenberg M, Parsons CG, Rammes G. Inhalational Anesthetics Do Not Deteriorate Amyloid-β-Derived Pathophysiology in Alzheimer's Disease: Investigations on the Molecular, Neuronal, and Behavioral Level. J Alzheimers Dis 2021; 84:1193-1218. [PMID: 34657881 DOI: 10.3233/jad-201185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Studies suggest that general anesthetics like isoflurane and sevoflurane may aggravate Alzheimer's disease (AD) neuropathogenesis, e.g., increased amyloid-β (Aβ) protein aggregation resulting in synaptotoxicity and cognitive dysfunction. Other studies showed neuroprotective effects, e.g., with xenon. OBJECTIVE In the present study, we want to detail the interactions of inhalational anesthetics with Aβ-derived pathology. We hypothesize xenon-mediated beneficial mechanisms regarding Aβ oligomerization and Aβ-mediated neurotoxicity on processes related to cognition. METHODS Oligomerization of Aβ 1-42 in the presence of anesthetics has been analyzed by means of TR-FRET and silver staining. For monitoring changes in neuronal plasticity due to anesthetics and Aβ 1-42, Aβ 1-40, pyroglutamate-modified amyloid-(AβpE3), and nitrated Aβ (3NTyrAβ), we quantified long-term potentiation (LTP) and spine density. We analyzed network activity in the hippocampus via voltage-sensitive dye imaging (VSDI) and cognitive performance and Aβ plaque burden in transgenic AD mice (ArcAβ) after anesthesia. RESULTS Whereas isoflurane and sevoflurane did not affect Aβ 1-42 aggregation, xenon alleviated the propensity for aggregation and partially reversed AβpE3 induced synaptotoxic effects on LTP. Xenon and sevoflurane reversed Aβ 1-42-induced spine density attenuation. In the presence of Aβ 1-40 and AβpE3, anesthetic-induced depression of VSDI-monitored signaling recovered after xenon, but not isoflurane and sevoflurane removal. In slices pretreated with Aβ 1-42 or 3NTyrAβ, activity did not recover after washout. Cognitive performance and plaque burden were unaffected after anesthetizing WT and ArcAβ mice. CONCLUSION None of the anesthetics aggravated Aβ-derived AD pathology in vivo. However, Aβ and anesthetics affected neuronal activity in vitro, whereby xenon showed beneficial effects on Aβ 1-42 aggregation, LTP, and spine density.
Collapse
Affiliation(s)
- Carolin Hofmann
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Annika Sander
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xing Xing Wang
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martina Buerge
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Laura Borgstedt
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claudia Kopp
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Neuronal Plasticity, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tim Ebert
- Max Planck Institute of Psychiatry, Neuronal Plasticity, Munich, Germany
| | | | | | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Chen H, Chu H, Jiang Q, Wang C, Tian Y. Irf6 participates in sevoflurane-induced perioperative neurocognitive disorder via modulating M2, but not M1 polarization of microglia. Brain Res Bull 2021; 177:1-11. [PMID: 34536519 DOI: 10.1016/j.brainresbull.2021.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022]
Abstract
Perioperative neurocognitive disorder (PND) frequently occurs in elderly patients following anesthesia, and is associated with pro-inflammatory activation of microglia in hippocampus. In this study, sevoflurane, a commonly used inhaled anesthetic in clinic, was used to induce PND-like symptoms in aged SD rats (18-20 months). Data from novel object recognition and Y-maze tests first confirmed that aged SD rats exposed to 2% sevoflurane for 5 h developed cognitive impairment. Microglia preferred to polarizing towards pro-inflammatory M1 subtype (iNOS+Iba-1 +) in rat hippocampus post sevoflurane exposure, but not anti-inflammatory M2 subtype (Arg-1 +Iba-1 +). Microarray data identified interferon regulatory factor 6 (Irf6) as one (Fold change = -2.52, p = 0.006) of the 15 downregulated genes in hippocampus of the rats exposed to sevoflurane. Co-immunofluorescence data further illustrated that sevoflurane decreased Irf6 expression in hippocampal microglia. In vitro, sevoflurane enhanced lipopolysaccharide-induced M1 polarization of BV-2 cells and inhibited interleukin-4 induced M2 polarization. Interestingly, manipulation of Irf6 expression hardly affected M1 polarization. However, Irf6 overexpression further augmented the inhibitory effects on M2 polarization, and its silencing showed opposite effects. In addition, such M2 polarization-promoting effects of Irf6 knockdown may be associated with induction of peroxisome proliferator activated receptor gamma expression. Collectively, these findings suggest that Irf6 downregulation in hippocampal microglia may be a compensatory mechanism against sevoflurane-induced PND in the elderly.
Collapse
Affiliation(s)
- Hongzhi Chen
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, People's Republic of China
| | - Haichao Chu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, People's Republic of China
| | - Qian Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, People's Republic of China
| | - Cong Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, People's Republic of China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, People's Republic of China.
| |
Collapse
|
13
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
14
|
Wen J, Xu J, Mathena RP, Choi JH, Mintz CD. Early Isoflurane Exposure Impairs Synaptic Development in Fmr1 KO Mice via the mTOR Pathway. Neurochem Res 2021; 46:1577-1588. [PMID: 33791908 DOI: 10.1007/s11064-021-03301-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022]
Abstract
General anesthetics (GAs) may cause disruptions in brain development, and the effect of GA exposure in the setting of pre-existing neurodevelopmental disease is unknown. We tested the hypothesis that synaptic development is more vulnerable to GA-induced deficits in a mouse model of fragile X syndrome than in WT mice and asked whether they were related to the mTOR pathway, a signaling system implicated in both anesthesia toxicity and fragile X syndrome. Early postnatal WT and Fmr1-KO mice were exposed to isoflurane and brain slices were collected in adulthood. Primary neuron cultures isolated from WT and Fmr1-KO mice were exposed to isoflurane during development, in some cases treated with rapamycin, and processed for immunohistochemistry at maturity. Quantitative immunofluorescence microscopy was conducted for synaptic markers and markers of mTOR pathway activity. Isoflurane exposure caused reduction in Synpasin-1, PSD-95, and Gephyrin puncta that was significantly lower in Fmr1-KO mice than in WT mice. Similar results were found in cell culture, where synapse loss was ameliorated with rapamycin treatment. Early developmental exposure to isoflurane causes more profound synapse loss in Fmr1- KO than WT mice, and this effect is mediated by a pathologic increase in mTOR pathway activity.
Collapse
Affiliation(s)
- Jieqiong Wen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jing Xu
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - R Paige Mathena
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun H Choi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - C David Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Schwerin S, Kopp C, Pircher E, Schneider G, Kreuzer M, Haseneder R, Kratzer S. Attenuation of Native Hyperpolarization-Activated, Cyclic Nucleotide-Gated Channel Function by the Volatile Anesthetic Sevoflurane in Mouse Thalamocortical Relay Neurons. Front Cell Neurosci 2021; 14:606687. [PMID: 33551750 PMCID: PMC7858256 DOI: 10.3389/fncel.2020.606687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
As thalamocortical relay neurons are ascribed a crucial role in signal propagation and information processing, they have attracted considerable attention as potential targets for anesthetic modulation. In this study, we analyzed the effects of different concentrations of sevoflurane on the excitability of thalamocortical relay neurons and hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels, which play a decisive role in regulating membrane properties and rhythmic oscillatory activity. The effects of sevoflurane on single-cell excitability and native HCN channels were investigated in acutely prepared brain slices from adult wild-type mice with the whole-cell patch-clamp technique, using voltage-clamp and current-clamp protocols. Sevoflurane dose-dependently depressed membrane biophysics and HCN-mediated parameters of neuronal excitability. Respective half-maximal inhibitory and effective concentrations ranged between 0.30 (95% CI, 0.18–0.50) mM and 0.88 (95% CI, 0.40–2.20) mM. We witnessed a pronounced reduction of HCN dependent Ih current amplitude starting at a concentration of 0.45 mM [relative change at −133 mV; 0.45 mM sevoflurane: 0.85 (interquartile range, 0.79–0.92), n = 12, p = 0.011; 1.47 mM sevoflurane: 0.37 (interquartile range, 0.34–0.62), n = 5, p < 0.001] with a half-maximal inhibitory concentration of 0.88 (95% CI, 0.40–2.20) mM. In contrast, effects on voltage-dependent channel gating were modest with significant changes only occurring at 1.47 mM [absolute change of half-maximal activation potential; 1.47 mM: −7.2 (interquartile range, −10.3 to −5.8) mV, n = 5, p = 0.020]. In this study, we demonstrate that sevoflurane inhibits the excitability of thalamocortical relay neurons in a concentration-dependent manner within a clinically relevant range. Especially concerning its effects on native HCN channel function, our findings indicate substance-specific differences in comparison to other anesthetic agents. Considering the importance of HCN channels, the observed effects might mechanistically contribute to the hypnotic properties of sevoflurane.
Collapse
Affiliation(s)
- Stefan Schwerin
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Claudia Kopp
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Elisabeth Pircher
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Rainer Haseneder
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Stephan Kratzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| |
Collapse
|
16
|
Wang Y, Ming XX, Zhang CP. Fluorine-Containing Inhalation Anesthetics: Chemistry, Properties and Pharmacology. Curr Med Chem 2020; 27:5599-5652. [DOI: 10.2174/0929867326666191003155703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Studies on fluorinated inhalation anesthetics, including synthesis, physical chemistry and
pharmacology, have been summarized in this review. Retrospecting the history of inhalation anesthetics
revealed their increasing reliance on fluorine and ether structures. Halothane causes a rare but
severe immune-based hepatotoxicity, which was replaced by enflurane in the 1970s. Isoflurane replaced
enflurane in the 1980s, showing modest advantages (e.g. lower solubility, better metabolic
stability, and without convulsive predisposition). Desflurane and sevoflurane came into use in the
1990s, which are better anesthetics than isoflurane (less hepatotoxicity, lower solubility, and/or
markedly decreased pungency). However, they are still less than perfect. To gain more ideal inhalation
anesthetics, a large number of fluorinated halocarbons, polyfluorocycloalkanes, polyfluorocycloalkenes,
fluoroarenes, and polyfluorooxetanes, were prepared and their potency and toxicity were
evaluated. Although the pharmacology studies suggested that some of these agents produced anesthesia,
no further studies were continued on these compounds because they showed obvious lacking
as anesthetics. Moreover, the anesthetic activity cannot be simply predicted from the molecular
structures but has to be inferred from the experiments. Several regularities were found by experimental
studies: 1) the potency and toxicity of the saturated linear chain halogenated ether are enhanced
when its molecular weight is increased; 2) the margin of safety decreases and the recovery
time is prolonged when the boiling point of the candidate increases; and 3) compounds with an
asymmetric carbon terminal exhibit good anesthesia. Nevertheless, the development of new inhalation
anesthetics, better than desflurane and sevoflurane, is still challenging not only because of the
poor structure/activity relationship known so far but also due to synthetic issues.
Collapse
Affiliation(s)
- Yuzhong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
17
|
AMPK-SIRT1-PGC1α Signal Pathway Influences the Cognitive Function of Aged Rats in Sevoflurane-Induced Anesthesia. J Mol Neurosci 2020; 70:2058-2067. [PMID: 32514740 DOI: 10.1007/s12031-020-01612-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
To understand the effect of AMP-activated protein kinase (AMPK)-SIRT1 (silent information regulator 1)-PPARγ coactivator-1α (PGC1α) signaling pathway on the cognitive function of sevoflurane-anesthetized aged rats. Aged rats were divided into Normal group, Sevo group (Sevoflurane anesthesia), Sevo + AICAR (the AMPK activator) group, Sevo + EX527 group (the AMPK inhibitor), and Sevo + AICAR + EX527 group. The cognitive function of rats was determined by the Morris water maze. Hippocampal neuronal apoptosis was evaluated by TUNEL and Fluoro-Jade C (FJC) staining, and the expression of cleaved caspase-3 was detected by immunohistochemistry. ROS, SOD, and MDA levels and the fluorescence intensity of GFAP in the hippocampus were assayed. The mitochondrial membrane potential (MMP), mitochondrial mass, ATP level, and the expression of AMPK-SIRT1-PGC1α were determined by the corresponding methods. Rats in the Sevo group manifested significant extension in the escape latency, with fewer platform crossings; and meanwhile, the apoptotic rate, the number of FJC-positive cells, and the fluorescence intensity of GFAP of neurons were elevated, with up-regulation of cleaved caspase-3. Moreover, the level of MDA and ROS was increased evidently, with significant down-regulation of SOD activity, ATP, mitochondrial mass and MMP levels, and AMPK, SIRT1 and PGC-1α protein expressions. However, sevoflurane-induced changes above were improved after the administration of AICAR, and EX527 could reverse AICAR-induced improvements in Sevo-anesthetized aged rats. Activating AMPK-SIRT1-PGC1α pathway can improve the cognitive function and mitigate the neuronal injury in Sevo-anesthetized aged rats by antagonizing the oxidative stress and maintaining the mitochondrial function.
Collapse
|
18
|
Liang L, Xie R, Lu R, Ma R, Wang X, Wang F, Liu B, Wu S, Wang Y, Zhang H. Involvement of homodomain interacting protein kinase 2-c-Jun N-terminal kinase/c-Jun cascade in the long-term synaptic toxicity and cognition impairment induced by neonatal Sevoflurane exposure. J Neurochem 2020; 154:372-388. [PMID: 31705656 PMCID: PMC7496229 DOI: 10.1111/jnc.14910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Sevoflurane is one of the most widely used anesthetics with recent concerns rising about its pediatric application. The synaptic toxicity and mechanisms underlying its long‐term cognition impairment remain unclear. In this study, we investigated the expression and roles of homeodomain interacting protein kinase 2 (HIPK2), a stress activating kinase involved in neuronal survival and synaptic plasticity, and its downstream c‐Jun N‐terminal kinase (JNK)/c‐Jun signaling in the long‐term toxicity of neonatal Sevoflurane exposure. Our data showed that neonatal Sevoflurane exposure results in impairment of memory, enhancement of anxiety, less number of excitatory synapses and lower levels of synaptic proteins in the hippocampus of adult rats without significant changes of hippocampal neuron numbers. Up‐regulation of HIPK2 and JNK/c‐Jun was observed in hippocampal granular neurons shortly after Sevoflurane exposure and persisted to adult. 5‐((6‐Oxo‐5‐(6‐(piperazin‐1‐yl)pyridin‐3‐yl)‐1,6‐dihydropyridin‐3‐yl)methylene)thiazolidine‐2,4‐dione trifluoroacetate, antagonist of HIPK2, could significantly rescue the cognition impairment, decrease in long‐term potentiation, reduction in spine density and activation of JNK/c‐Jun induced by Sevoflurane. JNK antagonist SP600125 partially restored synapse development and cognitive function without affecting the expression of HIPK2. These data, in together, revealed a novel role of HIPK2‐JNK/c‐Jun signaling in the long‐term synaptic toxicity and cognition impairment of neonatal Sevoflurane exposure, indicating HIPK2‐JNK/c‐Jun cascade as a potential target for reducing the synaptic toxicity of Sevoflurane. ![]()
Cover Image for this issue: doi: 10.1111/jnc.14757.
Collapse
Affiliation(s)
- Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Rougang Xie
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Rui Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Ruixue Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiaoxia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Fengjuan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Bing Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
19
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
20
|
Joseph DJ, Liu C, Peng J, Liang G, Wei H. Isoflurane mediated neuropathological and cognitive impairments in the triple transgenic Alzheimer's mouse model are associated with hippocampal synaptic deficits in an age-dependent manner. PLoS One 2019; 14:e0223509. [PMID: 31600350 PMCID: PMC6786564 DOI: 10.1371/journal.pone.0223509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022] Open
Abstract
Many in vivo studies suggest that inhalational anesthetics can accelerate or prevent the progression of neuropathology and cognitive impairments in Alzheimer Disease (AD), but the synaptic mechanisms mediating these ambiguous effects are unclear. Here, we show that repeated exposures of neonatal and old triple transgenic AD (3xTg) and non-transgenic (NonTg) mice to isoflurane (Iso) distinctly increased neurodegeneration as measured by S100β levels, intracellular Aβ, Tau oligomerization, and apoptotic markers. Spatial cognition measured by reference and working memory testing in the Morris Water Maze (MWM) were altered in young NonTg and 3xTg. Field recordings in the cornu ammonis 1 (CA1) hippocampus showed that neonatal control 3xTg mice exhibited hypo-excitable synaptic transmission, reduced paired-pulse facilitation (PPF), and normal long-term potentiation (LTP) compared to NonTg controls. By contrast, the old control 3xTg mice exhibited hyper-excitable synaptic transmission, enhanced PPF, and unstable LTP compared to NonTg controls. Repeated Iso exposures reduced synaptic transmission and PPF in neonatal NonTg and old 3xTg mice. LTP was normalized in old 3xTg mice, but reduced in neonates. By contrast, LTP was reduced in old but not neonatal NonTg mice. Our results indicate that Iso-mediated neuropathologic and cognitive defects in AD mice are associated with synaptic pathologies in an age-dependent manner. Based on these findings, the extent of this association with age and, possibly, treatment paradigms warrant further study.
Collapse
Affiliation(s)
- Donald J. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chunxia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Peng
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Anesthesiology, sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hu X, Hu X, Huang G. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats. J Cell Biochem 2019; 120:18209-18218. [PMID: 31190336 DOI: 10.1002/jcb.29127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of this study is to uncover the effects of long chain noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on sevoflurane-induced neurotoxicity in developing rats. METHODS Sevoflurane neurotoxicity model was established by sevoflurane treatment in 7-day-old Sprague-Dawley rats. The rats were treated with Sevo or MALAT1 small interfering RNA to detect the MALAT1 expression, pathological change, ultrastructure, neuronal apoptosis, expression of apoptosis-related proteins, expression of neurotrophic factors BDNF and NGF, spatial learning and memory function change, as well as neuron cell density of hippocampal tissues. RESULTS MALAT1 was highly expressed in hippocampus tissues of rats. Downregulation of MALAT1 alleviated the pathological change, improved the ultrastructure, inhibited apoptosis of neuronal cells, declined caspase 3 and Bax while elevated Bcl-2, BDNF and NGF, improved capability of spatial learning and memory, and increased density of hippocampal neurons in hippocampal tissues of sevoflurane-induced rats. CONCLUSION Suppression of MALAT1 can reduce the apoptosis of hippocampal neurons induced by sevoflurane anesthesia, improve the capability of spatial learning, and memory function and alleviate the loss of hippocampal nerve cells in developing rats. To a certain extent, it plays the role of protecting brain nerve cells.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Anesthesiology, Yishui Central Hospital, Linyi, People's Republic of China
| | - Xiaodong Hu
- Department of Anesthesiology, Yishui Central Hospital, Linyi, People's Republic of China
| | - Guirong Huang
- Department of Anesthesiology, Yishui Central Hospital, Linyi, People's Republic of China
| |
Collapse
|
22
|
Suberoylanilide hydroxamic acid reversed cognitive and synaptic plasticity impairments induced by sevoflurane exposure in adult mice. Neuroreport 2019; 30:274-279. [DOI: 10.1097/wnr.0000000000001196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Hasegawa K, Kamiya H, Morimoto Y. Sevoflurane inhibits presynaptic calcium influx without affecting presynaptic action potentials in hippocampal CA1 region. Biomed Res 2018; 39:223-230. [PMID: 30333429 DOI: 10.2220/biomedres.39.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although diverse effects of volatile anesthetics have been investigated in various studies, the mechanisms of action of such anesthetics, especially sevoflurane, remain elusive. In contrast to their potent modulation of inhibitory synaptic transmission there is little information about their effects on excitatory transmission in the brain. In this study, we examined the effect of sevoflurane on the excitatory synaptic transmission at CA1 synapses in hippocampal slices of mice. Sevoflurane at 5% was mixed with 95% O2 and 5% CO2 and bubbled in artificial cerebral spinal fluid (0.69 mM). Extracellular recordings of the field excitatory postsynaptic potential (fEPSP) and presynaptic fiber volley (FV) were made at physiological temperature. In addition, fluorescent measurements of presynaptic Ca2+ transients were performed while simultaneously recording fEPSP. Application of sevoflurane reduced the amplitude of fEPSP (45 ± 8%, n = 5). This effect was accompanied by concurrent enhancement of the paired-pulse facilitation of fEPSP (127 ± 5%, n = 12), suggesting a possible presynaptic site of action of sevoflurane. The amplitude of FV was not significantly affected (102 ± 5%, n = 5). In contrast, fluorescent measurements revealed that presynaptic Ca2+ influx was suppressed by sevoflurane (69 ± 5%, n = 7), as was simultaneously recorded fEPSP (44 ± 5%, n = 7). Our results suggest that sevoflurane potently suppresses excitatory synaptic transmission via inhibition of presynaptic Ca2+ influx without affecting presynaptic action potentials.
Collapse
Affiliation(s)
- Kan Hasegawa
- Deptartment of Anesthesiology and Critical Care Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University.,Department of Neurobiology, Faculty of Medicine and Graduate School of Medicine Hokkaido University
| | - Haruyuki Kamiya
- Department of Neurobiology, Faculty of Medicine and Graduate School of Medicine Hokkaido University
| | - Yuji Morimoto
- Deptartment of Anesthesiology and Critical Care Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University
| |
Collapse
|
24
|
Yang ZY, Yuan CX. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol 2018; 18:147. [PMID: 30342469 PMCID: PMC6195755 DOI: 10.1186/s12871-018-0607-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the role of IL-17A in the neuroinflammation and cognitive function of aged rats anaesthetized with sevoflurane through NF-κB pathway. Method The aged and young adult rats were randomly divided into Control (inhale oxygen only), Sevoflurane (inhale oxygen and sevoflurane), Sevo (Sevoflurane) + anti-IL-17A (injected with IL-17A antibody, inhale oxygen and sevoflurane), and Sevo + NC groups (injected with IgG2a antibody, inhale oxygen and sevoflurane). Cognitive function was evaluated by Morris water maze and contextual fear conditioning tests. Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein (MCP)-1 expressions in the hippocampus of rats were detected by ELISA (enzyme-linked immunosorbent assay) assay, and Nuclear factor (NF)-κB pathway-related proteins by Western blot. Results Sevoflurane anaesthetized aged rats showed longer escape latency and swimming distance, fewer platform crossing times, shortened stay time in the platform quadrant compared to Control rats; In addition, increased levels in hippocampal expression of malondialdehyde (MDA), IL-17A, NF-κB p65, inducible nitric oxide synthase (iNOS) and COX-2, as well as a reduced level of superoxide dismutase (SOD) were also observed in these animals. However, the sevoflurane anesthetized aged rats treated with anti-IL-17A presented a completely opposite tendency concerning the above factors (all P < 0.05). Nevertheless, there was no significant difference in the acquisition of learning or memory, neuroinflammation and oxidative stress of young adult rats in all groups (all P > 0.05). Conclusion Anti-IL-17A may alleviate neuroinflammation and oxidative stress via inhibiting NF-κB pathway, thereby attenuating post-operative cognitive dysfunction (POCD) in aged rats anaesthetized with sevoflurane.
Collapse
Affiliation(s)
- Zhan-Yun Yang
- Department of Anesthesia Surgery, Jining NO.1 People's Hospital, No.6, Jiankang Road, Rencheng District, Jining, 272000, Shandong, China
| | - Chang-Xiu Yuan
- Department of Anesthesia Surgery, Jining NO.1 People's Hospital, No.6, Jiankang Road, Rencheng District, Jining, 272000, Shandong, China.
| |
Collapse
|
25
|
Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RL, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer's disease. J Neurochem 2018; 146:649-669. [DOI: 10.1111/jnc.14345] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Chitra Vinnakota
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Karan Govindpani
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Richard L.M. Faull
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| |
Collapse
|
26
|
Cholvin T, Giorgi L, Baril N, Brezun JM, Poucet B, Chaillan FA. Using MRI to predict the fate of excitotoxic lesions in rats. PLoS One 2018; 13:e0200659. [PMID: 30001411 PMCID: PMC6042754 DOI: 10.1371/journal.pone.0200659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Excitotoxic lesions are frequently used to assess the role of cerebral structures in cognitive processes in rodents. However, the precise site and extent of these lesions remain unknown without histological verifications. Using a 7-Teslas MRI system and a T2-weighted turbo-RARE sequence, MR images were acquired at several time points following NMDA lesions (1h, 6h, 24h, 48h, 1 week and 2 weeks). NMDA infusions into the parenchyma induced a clear and delineable hyperintense signal from 1h up to 1-week post-surgery. Hyperintensity volumes were compared with NeuN and Cresyl violet histological quantifications of the lesion magnitude. NMDA-induced hypersignal is observed as soon as 1h post-injection and is a reliable estimate of the presence (or absence) of a lesion. Compared to NeuN, Cresyl violet staining underestimates the extent of the lesion in significant proportions. The MRI hyperintensity generated by NMDA instillation into the parenchyma can be used as a powerful tool to confirm the diffusion of the drug into the cerebral tissue, to ascertain the locus of injection and predict with a high success rate the fate of NMDA lesions as soon as 1h post-surgery. This approach could be very useful in a large variety of lesion studies in rodents.
Collapse
Affiliation(s)
- Thibault Cholvin
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France
- Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Lisa Giorgi
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Nathalie Baril
- Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, Institut des Sciences du Mouvement (UMR 7287), Equipe “Plasticité des Systèmes Nerveux et Musculaire” (PSNM), Faculté des Sciences du Sport, Marseille, France
| | - Bruno Poucet
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France
- Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Franck A. Chaillan
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France
- Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
- * E-mail:
| |
Collapse
|
27
|
Sevoflurane Blocks the Induction of Long-term Potentiation When Present during, but Not When Present Only before, the High-frequency Stimulation. Anesthesiology 2018; 128:555-563. [DOI: 10.1097/aln.0000000000002057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
This study tests the hypothesis that sevoflurane blocks long-term potentiation only if it is present during the high-frequency stimulation that induces long-term potentiation.
Methods
Long-term potentiation, an electrophysiologic correlate of memory, was induced by high-frequency stimulation and measured as a persistent increase in the field excitatory postsynaptic potential slope in the CA1 region.
Results
Long-term potentiation was induced in the no sevoflurane group (171 ± 58% vs. 96 ± 11%; n = 13, mean ± SD); when sevoflurane (4%) was present during the high-frequency stimulation, long-term potentiation was blocked (92 ± 22% vs. 99 ± 7%, n = 6). While sevoflurane reduced the size of the field excitatory postsynaptic potential to single test stimuli by 59 ± 17%, it did not significantly reduce the size of the field excitatory postsynaptic potentials during the 100 Hz high-frequency stimulation. If sevoflurane was removed from the artificial cerebrospinal fluid superfusing the slices 10 min before the high-frequency stimulation, then long-term potentiation was induced (185 ± 48%, n = 7); this was not different from long-term potentiation in the no sevoflurane slices (171 ± 58). Sevoflurane before, but not during, ⊖-burst stimulation, a physiologic stimulus, did not block the induction of long-term potentiation (151 ± 37% vs. 161 ± 34%, n = 7).
Conclusions
Sevoflurane blocks long-term potentiation formation if present during the high-frequency stimulation; this blockage of long-term potentiation does not persist if sevoflurane is discontinued before the high-frequency stimulation. These results may explain why short periods of insufficient sevoflurane anesthesia may lead to recall of painful or traumatic events during surgery.
Collapse
|
28
|
Neonatal Exposure to Low-Dose (1.2%) Sevoflurane Increases Rats' Hippocampal Neurogenesis and Synaptic Plasticity in Later Life. Neurotox Res 2018; 34:188-197. [PMID: 29427282 DOI: 10.1007/s12640-018-9877-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/07/2018] [Accepted: 01/26/2018] [Indexed: 12/14/2022]
Abstract
The increasing usage of general anesthetics on young children and infants has drawn extensive attention to the effects of these drugs on cognitive function later in life. Recent animal studies have revealed improvement in hippocampus-dependent performance after lower concentrations of sevoflurane exposure. However, the long-term effects of low-dose sevoflurane on the developing brain remain elusive. On postnatal day (P) 7, rats were treated with 1.2% sevoflurane (1.2% sevo group), 2.4% sevoflurane (2.4% sevo group), and air control (C group) for 6 h. On P35-40, rats' hippocampus-dependent learning and memory was tested using the Morris water maze. Cognition-related and synapse-related proteins in the hippocampus were measured using Western blotting on P35. On the same day, neurogenesis and synapse ultrastructure were evaluated using immunofluorescence and transmission electron microscopy (TEM). On P35, the rats neonatally exposed to 1.2% sevoflurane showed better behavioral results than control rats, but not in the 2.4% sevo group. Exposure to 1.2% sevoflurane increased the number of 5'-bromo-2-deoxyuridine (BrdU)-positive cells in the dentate gyrus and improved both synaptic number and ultrastructure in the hippocampus. The expression levels of BDNF, TrkB, postsynaptic density (PSD)-95, and synaptophysin in the hippocampus were also increased in the 1.2% sevo group. In contrast, no significant changes in neurogenesis or synaptic plasticity were observed between the C group and the 2.4% sevo group on P35. These results showed that exposure of the developing brain to a low concentration of sevoflurane for 6 h could promote spatial learning and memory function, along with increased hippocampal neurogenesis and synaptic plasticity, in later life.
Collapse
|
29
|
Kratzer S, Mattusch C, Garcia PS, Schmid S, Kochs E, Rammes G, Schneider G, Kreuzer M, Haseneder R. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus. Front Comput Neurosci 2017; 11:109. [PMID: 29321737 PMCID: PMC5732174 DOI: 10.3389/fncom.2017.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro. We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.
Collapse
Affiliation(s)
- Stephan Kratzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Corinna Mattusch
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Paul S Garcia
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Sebastian Schmid
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Kochs
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
30
|
Zhou X, Xian D, Xia J, Tang Y, Li W, Chen X, Zhou Z, Lu D, Feng X. MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Mol Med Rep 2017; 15:2204-2212. [PMID: 28259954 PMCID: PMC5364873 DOI: 10.3892/mmr.2017.6268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/02/2016] [Indexed: 01/30/2023] Open
Abstract
The commonly used inhalation anesthetic, sevoflurane, has been previously demonstrated to induce apoptosis in the developing brain; however, the underlying molecular mechanisms remain largely unknown. MicroRNAs (miRNAs) serve important roles in multiple physiological/pathological processes, such as cell death and survival. In the present study, the miRNA sequence that was most closely associated with sevoflurane‑induced apoptosis in the hippocampus of neonatal rat brains was identified. Seven‑day‑old Sprague Dawley rats were first exposed to 2.3% sevoflurane for 6 h. Hippocampal brain tissues were harvested at 6 h following sevoflurane exposure. Cleaved caspase‑3 levels were examined using an immunofluorescence assay. Alterations in miRNA expression were assessed by microarray analysis and reverse transcription-quantitative polymerase chain reaction. The protein levels of p53, phosphorylated (p)‑p53, B-cell lymphoma-2 (Bcl-2) and Bax were assessed by western blot analysis. Sevoflurane exposure significantly increased the levels of cleaved caspase‑3 in the hippocampus. In addition, among the 688 miRNAs that were observed to be expressed in the hippocampus, sevoflurane exposure altered the expression levels of 266 miRNAs. Among these differentially expressed miRNAs, eight were significantly upregulated and one (miRNA‑34c) was significantly downregulated following sevoflurane exposure. Bioinformatics analyses indicated the miRNA‑34c was a direct downstream target of p53. Sevoflurane exposure induced significant alterations in the level of p‑p53, Bcl‑2 and Bax in the hippocampus of neonatal rats. In conclusion, the results of the present study suggest that miRNA‑34c may be regulated by p53 and is involved in sevoflurane‑induced neural apoptosis in the hippocampus of developing rat brains, potentially via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongfeng Xian
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiehua Xia
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenda Li
- Department of Hepatobiliary Surgery, The Sun Yat‑sen Memorial Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaohui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhibin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
31
|
Luo T, Wang Y, Qin J, Liu ZG, Liu M. Histamine H3 Receptor Antagonist Prevents Memory Deficits and Synaptic Plasticity Disruption Following Isoflurane Exposure. CNS Neurosci Ther 2017; 23:301-309. [PMID: 28168839 DOI: 10.1111/cns.12675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Exposure to pharmacological concentration of inhaled anesthetics such as isoflurane can cause short- or long-term cognitive impairments in preclinical studies. The selective antagonists of the histamine H3 receptors are considered as a promising group of novel therapeutic agents for the treatment of cognitive disorders. In this study, we investigated whether ciproxifan, a nonimidazole antagonist of H3 histamine receptors, could overcome the functional and electrophysiological sequela associated with isoflurane anesthesia. METHODS Adult male Sprague Dawley rats were exposed to 1.4% isoflurane or vehicle gas for 2 h. The memory tests (novel object recognition and passive avoidance) as well as in vivo hippocampal excitatory synaptic potentials were recorded 24 h postanesthesia. Locomotor activity, anxiety, and nociception 24 h after isoflurane were also examined. The drugs (ciproxifan 3 mg/kg or saline) were intraperitoneally injected 30 min prior to the behavioral tests or long-term potentiation induction. RESULTS Animals that were previously (24 h) exposed to 1.4% isoflurane for 2 h displayed no preference for novel objects and had impaired retention of a passive avoidance response at 1 h after sample phase. Treating isoflurane-exposed rats with ciproxifan significantly improved the memory performance, as evidenced by an increased discrimination ratio in objects recognition and prolonged retention time in passive avoidance test. Accordingly, hippocampus long-term potentiation was reduced in animals that received isoflurane, while administration of ciproxifan completely abolished the effect of isoflurane exposure on synaptic plasticity. Neither isoflurane nor ciproxifan altered motor performance, anxiety, and nociceptive responses. CONCLUSION These results suggest that H3R in the CNS, probably in the hippocampus, may serve as therapeutic target for improvement of anesthesia-associated cognitive deficits.
Collapse
Affiliation(s)
- Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Wang
- Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen, China
| | - Jian Qin
- Central Laboratory, Wuhan University Renmin Hospital, Wuhan, China
| | - Zhi-Gang Liu
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Min Liu
- Central Laboratory, Wuhan University Renmin Hospital, Wuhan, China
| |
Collapse
|
32
|
Chen X, Zhou X, Lu D, Yang X, Zhou Z, Chen X, Chen Y, He W, Feng X. Aberrantly expressed long noncoding RNAs are involved in sevoflurane-induced developing hippocampal neuronal apoptosis: a microarray related study. Metab Brain Dis 2016; 31:1031-40. [PMID: 27234990 DOI: 10.1007/s11011-016-9838-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
The commonly used volatile anesthetic sevoflurane has been shown to induce widespread apoptosis in the developing brain, yet the underlying molecular mechanisms are not fully understood. Accumulating research has demonstrated that long noncoding RNAs (lncRNAs) regulate multiple biological processes, including neural development, differentiation and apoptosis. They are aberrantly expressed in multiple neurodegenerative diseases. In this study, we employed a lncRNA-mRNA microarray analysis to determine whether and how lncRNAs are involved in sevoflurane-induced hippocampal neuronal apoptosis in neonatal mice. Our data showed that a single 6-h sevoflurane exposure of P7 mice resulted in significant morphological changes and apoptosis in the hippocampus. Moreover, the microarray simultaneously revealed 817 lncRNAs and 856 of their potential coding targets that related to apoptosis, of which 31 lncRNAs (19 up and 12 down) and 25 mRNAs were significantly differentially expressed (P < 0.05) after sevoflurane exposure. Importantly, we found that Bcl2l11 (BIM), which potentiates mitochondria-dependent apoptosis and its nearby enhancer-like lncRNA ENSMUST00000136025, were both more highly expressed in sevoflurane-treated samples compared with control samples. Subsequent qRT-PCR results confirmed the changes. Further CNC network indicated that lncRNA ENSMUST00000136025 was positively correlated with Bim. Moreover, sevoflurane induced a significant increase of pro-apoptotic protein BIM and Bax but a reduction of anti-apoptotic proteins Bcl-2 in the hippocampus. Our study first demonstrates that aberrantly expressed lncRNAs play a role in sevoflurane-induced hippocampal apoptosis. We noted that up-regulated ENSMUST00000136025 highly likely induced the over-expression of BIM, which eventually promoted mitochondria-mediated apoptosis. Such findings further broaden the understanding of molecular mechanisms responsible for sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoyu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Zhibin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Yanqing Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
| | - Wen He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58 zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
33
|
Arena A, Lamanna J, Gemma M, Ripamonti M, Ravasio G, Zimarino V, De Vitis A, Beretta L, Malgaroli A. Linear transformation of the encoding mechanism for light intensity underlies the paradoxical enhancement of cortical visual responses by sevoflurane. J Physiol 2016; 595:321-339. [PMID: 27416731 DOI: 10.1113/jp272215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The mechanisms of action of anaesthetics on the living brain are still poorly understood. In this respect, the analysis of the differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity might provide important and novel cues. Here we show that the anaesthetic sevoflurane strongly silences the brain but potentiates in a dose- and frequency-dependent manner the cortical visual response. Such enhancement arises from a linear scaling by sevoflurane of the power-law relation between light intensity and the cortical response. The fingerprint of sevoflurane action suggests that circuit silencing can boost linearly synaptic responsiveness presumably by scaling the number of responding units and/or their correlation following a sensory stimulation. ABSTRACT General anaesthetics, which are expected to silence brain activity, often spare sensory responses. To evaluate differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity, we characterized their modulation by sevoflurane and propofol. Power spectra and the bust-suppression ratio from EEG data were used to evaluate anaesthesia depth. ON and OFF cortical responses were elicited by light pulses of variable intensity, duration and frequency, during light and deep states of anaesthesia. Both anaesthetics reduced spontaneous cortical activity but sevoflurane greatly enhanced while propofol diminished the ON visual response. Interestingly, the large potentiation of the ON visual response by sevoflurane was found to represent a linear scaling of the encoding mechanism for light intensity. To the contrary, the OFF cortical visual response was depressed by both anaesthetics. The selective depression of the OFF component by sevoflurane could be converted into a robust potentiation by the pharmacological blockade of the ON pathway, suggesting that the temporal order of ON and OFF responses leads to a depression of the latter. This hypothesis agrees with the finding that the enhancement of the ON response was converted into a depression by increasing the frequency of light-pulse stimulation from 0.1 to 1 Hz. Overall, our results support the view that inactivity-dependent modulation of cortical circuits produces an increase in their responsiveness. Among the implications of our findings, the silencing of cortical circuits can boost linearly the cortical responsiveness but with negative impact on their frequency transfer and with a loss of the information content of the sensory signal.
Collapse
Affiliation(s)
- Alessandro Arena
- Università Vita-Salute San Raffaele, Milan, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Lamanna
- Università Vita-Salute San Raffaele, Milan, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Gemma
- Department of Neuro-anaesthesia and Neuro-intensive Care, Ospedale San Raffaele, Milan, Italy
| | - Maddalena Ripamonti
- Università Vita-Salute San Raffaele, Milan, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Science and Public Health, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Zimarino
- Università Vita-Salute San Raffaele, Milan, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Assunta De Vitis
- Department of Neuro-anaesthesia and Neuro-intensive Care, Ospedale San Raffaele, Milan, Italy
| | - Luigi Beretta
- Department of Neuro-anaesthesia and Neuro-intensive Care, Ospedale San Raffaele, Milan, Italy
| | - Antonio Malgaroli
- Università Vita-Salute San Raffaele, Milan, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Xiao H, Liu B, Chen Y, Zhang J. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int J Dev Neurosci 2015; 48:38-49. [PMID: 26612208 DOI: 10.1016/j.ijdevneu.2015.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/01/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Developmental exposure to volatile anesthetics has been associated with cognitive deficits at adulthood. Rodent studies have revealed impairments in performance in learning tasks involving the hippocampus. However, how the duration of anesthesia exposure impact on hippocampal synaptic plasticity, learning, and memory is as yet not fully elucidated. METHODS On postnatal day 7(P7), rat pups were divided into 3 groups: control group (n=30), 3% sevoflurane treatment for 1h (Sev 1h group, n=30) and 3% sevoflurane treatment for 6h (Sev 6h group, n=28). Following anesthesia, synaptic vesicle-associated proteins and dendrite spine density and synapse ultrastructure were measured using western blotting, Golgi staining, and transmission electron microscopy (TEM) on P21. In addition, the effects of sevoflurane treatment on long-term potentiation (LTP) and long-term depression (LTD), two molecular correlates of memory, were studied in CA1 subfields of the hippocampus, using electrophysiological recordings of field potentials in hippocampal slices on P35-42. Rats' neurocognitive performance was assessed at 2 months of age, using the Morris water maze and novel-object recognition tasks. RESULTS Our results showed that neonatal exposure to 3% sevoflurane for 6h results in reduced spine density of apical dendrites along with elevated expression of synaptic vesicle-associated proteins (SNAP-25 and syntaxin), and synaptic ultrastructure damage in the hippocampus. The electrophysiological evidence indicated that hippocampal LTP, but not LTD, was inhibited and that learning and memory performance were impaired in two behavioral tasks in the Sev 6h group. In contrast, lesser structural and functional damage in the hippocampus was observed in the Sev 1h group. CONCLUSION Our data showed that 6-h exposure of the developing brain to 3% sevoflurane could result in synaptic plasticity impairment in the hippocampus and spatial and nonspatial hippocampal-dependent learning and memory deficits. In contrast, shorter-duration exposure (1h) results in less damage. These results provide further evidences that duration of anesthesia exposure could have differential effects on neuronal plasticity and neurocognitive performance.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Bing Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yali Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Cholinergic synaptic transmissions were altered after single sevoflurane exposure in Drosophila pupa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:485709. [PMID: 25705662 PMCID: PMC4331166 DOI: 10.1155/2015/485709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 01/26/2023]
Abstract
Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure.
Collapse
|
36
|
Abstract
We provide in this chapter a brief overview of the present knowledge about social memory in laboratory rodents with a focus on mice and rats. We discuss in the first part the relevance of the processing of olfactory cues for social recognition in these animals and present information about the brain areas involved in the generation of a long-term social memory including cellular mechanisms thought to underlie memory consolidation. In the second part, we suggest that sensory modalities beyond olfaction may also be important in contributing to the long-term social memory trace including audition and taction (and vision). The exposure to stimuli activating the auditory system and taction is able to produce interference phenomena at defined time points during the consolidation of social memory. This ability of such-nonsocial-stimuli may provide a new approach to dissect the brain processes underlying the generation of the social memory trace in further studies.
Collapse
|
37
|
Shu AH, Wang Q, Chen XB. Effect of different depths of anesthesia on postoperative cognitive function in laparoscopic patients: a randomized clinical trial. Curr Med Res Opin 2015. [PMID: 26202165 DOI: 10.1185/03007995.2015.1075968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) is caused by many factors. This work was conducted to investigate the effect of different depths of anesthesia during combined intravenous-inhalational anesthesia on postoperative cognitive function in young and middle-aged laparoscopic patients. METHODS A total of 192 patients scheduled for gynecologic laparoscopic operations were randomly divided into three groups. Anesthesia was maintained with inhalation of sevoflurane and infusion of remifentanil, which was adjusted to maintain bispectral index (BIS) at 30 < BIS ≤ 40 in Group I, 40 < BIS ≤ 50 in Group II and 50 < BIS ≤ 60 in Group III. The Mini-Mental State Examination (MMSE) and Trail-Making Test (TMT) were used to assess cognitive function on the day before anesthesia and the day after surgery. RESULTS There were no significant differences in age, body mass index, educational level and surgery time. On the day before anesthesia, the average MMSE scores and TMT completion times in the three groups were not significantly different. On the day after surgery, Group II had a significantly higher average MMSE score (29.00 ± 0.89) than Group I (28.36 ± 1.42, p = 0.010) and Group III (28.45 ± 1.27, p = 0.035) and lower TMT completion time (33.68 ± 10.34) than Group I (39.45 ± 13.99, p = 0.027) and Group III (39.50 ± 12.50, p = 0.026). CONCLUSION These results indicated that the depth of anesthesia, 40 < BIS ≤ 50, under combined intravenous-inhalational anesthesia yielded milder influence on postoperative cognitive function in young and middle-aged laparoscopic patients.
Collapse
Affiliation(s)
- Ai-Hua Shu
- a Department of Anesthesiology , Three Gorges University People's Hospital, the First People's Hospital of Yichang , Yichang , Hubei , China
| | - Qiang Wang
- a Department of Anesthesiology , Three Gorges University People's Hospital, the First People's Hospital of Yichang , Yichang , Hubei , China
| | - Xiao-Bo Chen
- a Department of Anesthesiology , Three Gorges University People's Hospital, the First People's Hospital of Yichang , Yichang , Hubei , China
| |
Collapse
|
38
|
Vashchinkina E, Panhelainen A, Aitta-Aho T, Korpi ER. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area. Front Pharmacol 2014; 5:256. [PMID: 25505414 PMCID: PMC4243505 DOI: 10.3389/fphar.2014.00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids) have been found to induce plasticity in the ventral tegmental area (VTA) dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of the circuitry.
Collapse
Affiliation(s)
- Elena Vashchinkina
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, University of Helsinki Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland ; Department of Pharmacology, University of Cambridge Cambridge, UK
| | - Esa R Korpi
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland ; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology Singapore, Singapore
| |
Collapse
|
39
|
Shan Z, Cai S, Zhang T, Kuang L, Wang Q, Xiu H, Wen J, Gu H, Xu K. Effects of sevoflurane on leucine-rich repeat kinase 2-associated Drosophila model of Parkinson's disease. Mol Med Rep 2014; 11:2062-70. [PMID: 25406035 DOI: 10.3892/mmr.2014.2966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 11/05/2022] Open
Abstract
Patients with Parkinson's disease (PD) often require surgery, and therefore may receive inhalation anesthesia. However, it is currently unknown whether inhalation anesthetics affect the prognosis of the disease. Leucine‑rich repeat kinase 2 (LRRK2) genetic mutations are the most common cause of familial PD, contributing to ~39% of all cases in certain populations. The aim of the present study was to determine the effects of inhaled anesthetics on PD, by observing the influence of sevoflurane on a LRRK2‑associated Drosophila model of PD. PD transgenic Drosophila overexpressing LRRK2 were generated by crossing flies expressing an LRRK2 upstream activation sequence, with tyrosine hydroxylase (TH)‑Gal4 flies. Western blot analysis successfully verified that the transgenic Drosophila overexpressed LRRK2. Three days prior to eclosion, three genotypes of Drosophila were divided into four groups, and were exposed to air, 1, 2, or 3% sevoflurane, for 5 hours. Twenty‑four hours after the exposure, the electrophysiological activities of the projection neurons (PN) in the brains of the Drosophila were recorded using a patch clamp. The locomotor activities were tested on days 5, 10, 15, 20, 25, 30, 35 and 40 following eclosion. The frequency of miniature excitatory synaptic currents (mEPSCs) obtained from the PNs of the TH‑wild type LRRK2 (TH‑WT) Drosophila brain, following exposure to air (1.60±0.05 Hz), was lower as compared with the wild type LRRK2 (WT) (2.51±0.07 Hz) and W1118 (2.41±0.10 Hz) Drosophila. After exposure to 1, 2 and 3% sevoflurane, the frequency of mEPSCs in the brains of the TH‑WT group decreased to 0.82±0.04 Hz, 0.63±0.16 Hz and 0.55±0.04 Hz, respectively. The percentage decrease of the frequency of mEPSCs, from exposure to air to 1% sevoflurane, of the TH‑WT group (48.32%±3.08%) was significantly higher, as compared with the WT (39.17%±1.42%) and W1118 (35.10%±2.66%) groups, and there was no statistical difference between the WT and W1118 groups. The transgenic TH‑WT Drosophila presented an early decrease in locomotor ability, as compared with the WT and W1118 groups. Following a 5 hour exposure to sevoflurane, the percentage decrease of the climbing abilities of the TH‑WT group, from exposure to air to 1% sevoflurane, were significantly lower, as compared with the WT and W1118 groups. In conclusion, sevoflurane had negative effects on the control W1118 flies, and also severely aggravated the prognosis of PD in the LRRK2‑associated Drosophila model, through synaptic cholinergic deficits and impairment on locomotor abilities.
Collapse
Affiliation(s)
- Zhiming Shan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Song Cai
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liting Kuang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qi Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanhuan Xiu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kangqing Xu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
40
|
Yin J, Wang SL, Liu XB. The effects of general anaesthesia on memory in children: a comparison between propofol and sevoflurane. Anaesthesia 2014; 69:118-23. [PMID: 24443851 DOI: 10.1111/anae.12504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2013] [Indexed: 11/27/2022]
Affiliation(s)
- J. Yin
- Department of Anesthesia; Second People's Hospital of Wuhu; Wuhu Anhui China
| | - S.-L. Wang
- Department of Anesthesia; Second People's Hospital of Wuhu; Wuhu Anhui China
| | - X.-B. Liu
- Department of Anesthesia; Second People's Hospital of Wuhu; Wuhu Anhui China
| |
Collapse
|
41
|
Hu N, Guo D, Wang H, Xie K, Wang C, Li Y, Wang C, Wang C, Yu Y, Wang G. Involvement of the blood-brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Res 2014; 1551:13-24. [PMID: 24440777 DOI: 10.1016/j.brainres.2014.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 11/17/2022]
Abstract
The underlying causes of postoperative cognitive decline (POCD) in old patients remained unelucidated, and there are little descriptions on mechanisms associated with the blood-brain barrier (BBB) disruption during POCD. We therefore tested the effects of orthopedic surgery with different concentrations of sevoflurane for 2 h on the behavior test and the BBB permeability in aged rats. 18-month rats were divided into control group and surgical group with propofol anesthesia (0.7 mgkg(-1) min(-1)) and 1.0 MAC, 1.3 MAC, and 1.5 MAC sevoflurane inhalation for 2 h. We assessed their cognitive function via Y-maze and fear conditioning test on day 1, 3, and 7 after experiments. Animals were then assigned to control group, propofol (2 h, 0.7 mgkg(-1) min(-1)) group, surgery plus propofol group and surgery plus 1.5 MAC sevoflurane inhalation for 2h. Their hippocampal BBB permeability was detected with Evans blue quantification. Alterations of tight junctions in hippocampus were measured with occludin and claudin-5 western blot. Then we assessed matrix metalloproteinase-2,9 (MMP-2,9) via western blot and immunohistochemistry staining at day 1, 3, 7, and 14 after experiments. Surgery impaired cognitive function and increased Evans blue leakage into the hippocampus in aged rats while 2 h of 1.5 MAC sevoflurane inhalation potentiated these effects. Surgery induced occludin protein expression decreases and MMP-2,9 proteins increase and these influences can be enhanced by high concentration of sevoflurane inhalation. In conclusion, 1.5 MAC sevoflurane for 2 h exacerbated cognitive impairment induced by orthopedic surgery in aged rats and the breach in BBB may be involved in this process.
Collapse
Affiliation(s)
- Nan Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Dongyong Guo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, China.
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Chao Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Chenxu Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| |
Collapse
|
42
|
Marinov V, Valic M, Pecotic R, Karanovic N, Dodig IP, Carev M, Valic Z, Dogas Z. Sevoflurane and isoflurane monoanesthesia abolished the phrenic long-term facilitation in rats. Respir Physiol Neurobiol 2013; 189:607-13. [DOI: 10.1016/j.resp.2013.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
|
43
|
Piao MH, Liu Y, Wang YS, Qiu JP, Feng CS. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms. ACTA ACUST UNITED AC 2013; 32:e135-41. [PMID: 24011619 DOI: 10.1016/j.annfar.2013.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Volatile anesthetic isoflurane contributes to postoperative cognitive dysfunction and inhibition of long-term potentiation (LTP), a synaptic model of learning and memory, but the mechanisms are uncertain. Central neuronal α4β2 subtype nicotinic acetylcholine receptors (nAChRs) are involved in the induction of LTP in the hippocampus. Isoflurane inhibits α4β2 nAChRs at concentrations lower than those used for anesthesia. Therefore, we hypothesized that isoflurane-inhibited LTP induction of hippocampal CA1 neurons via α4β2 nAChRs subtype inhibition. METHODS Transverse hippocampal slices (400μm thick) were obtained from male rats (6-8 weeks old). Population spikes were evoked using extracellular electrodes by electrical stimulation of the Schaffer collateral-commissural pathway of rat hippocampal slices. LTP was induced using high frequency stimulation (HFS; 100Hz, 1s). Clinically relevant concentrations (0.125-0.5mM) of isoflurane with or without nicotine (nAChRs agonist), mecamylamine (nAChRs antagonist), 3-[2(S)-2-azetidinylmethoxy] pyridine (A85380) and epibatidine (α4β2 nAChRs agonist), dihydro β erythroidine (DHβE) (α4β2 nAChRs antagonist) were added to the perfusion solution 20min before HFS to test their effects on LTP by HFS respectively. RESULTS A brief HFS induced stable LTP in rat hippocampal slices, but LTP was significantly inhibited in the presence of isoflurane at concentrations of 0.125-0.5mM. The inhibitive effect of isoflurane on LTP was not only reversible and could be prevented by nAChRs agonist nicotine and α4β2 nAChRs agonist A85380 and epibatidine, but also mimicked and potentiated by nAChRs antagonist mecamylamine and α4β2 nAChRs antagonist DHβE. CONCLUSIONS Inhibition of α4β2 nAChRs subtype of hippocampus participates in isoflurane-mediated LTP inhibition.
Collapse
Affiliation(s)
- M-H Piao
- Department of anesthesiology, the first hospital of Jilin university, n(o) 71, Xinmin St, 130021 Changchun, China; School of public health, Jilin university, Changchun 130021, China
| | | | | | | | | |
Collapse
|
44
|
FIDALGO AR, CIBELLI M, WHITE JPM, NAGY I, WAN Y, MA D. Isoflurane causes neocortical but not hippocampal-dependent memory impairment in mice. Acta Anaesthesiol Scand 2012; 56:1052-7. [PMID: 22471713 DOI: 10.1111/j.1399-6576.2012.02691.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of this study is to investigate the effect of general anaesthesia induced by isoflurane with buprenorphine on hippocampus-dependent and neocortex-dependent memory, respectively, in mice, and in addition, to compare the effects of such anaesthesia on these memory processes with the effects induced by lipopolysaccharide (LPS) administration on the same memory processes. METHODS To assess hippocampus-dependent memory, isoflurane (for 15 min) after buprenorphine injection, or LPS 100 μg/kg (intraperitoneally) was administered 24 h before or after fear conditioning. The effect of these treatments on hippocampus-dependent memory was assessed using contextual fear-conditioning tasks at day 4. To assess neocortex-dependent memory, isoflurane anaesthesia or LPS was given 72 h after contextual fear conditioning. Neocortex-dependent memory assessment was performed at day 32. RESULTS Unlike LPS injection, isoflurane with buprenorphine-induced anaesthesia does not impair freezing responses in hippocampus-dependent fear-conditioning memory tasks. On anterograde amnesia assessment: 49.67 ± 6.87% for the anaesthesia group and 54.5 ± 4.12% for the control group. On retrograde amnesia assessment: 47.16 ± 8.71% for the anaesthesia group and 54.5 ± 4.12% for control group; P > 0.05. Thus, neither isoflurane nor buprenorphine impair hippocampus-dependent memory. However, on the neocortex-dependent memory task, both isoflurane-induced anaesthesia and LPS-induced inflammation result in reduced freezing responses: 62.13 ± 5.80% for the anaesthesia group, 74.63 ± 5.69% for the LPS group, and 81.75 ± 3.26% for the control group; P < 0.05 compared with control group. CONCLUSION General anaesthesia induced by isoflurane with buprenorphine may result in impairment of neocortex-dependent memory in mouse. However, general anaesthesia so induced does not impair hippocampus-dependent memory in mouse in our experimental conditions.
Collapse
Affiliation(s)
- A. R. FIDALGO
- Pain Medicine and Intensive Care Section, Department of Surgery and Cancer; Chelsea and Westminster Hospital, Imperial College School of Medicine; London; UK
| | | | - J. P. M. WHITE
- Pain Medicine and Intensive Care Section, Department of Surgery and Cancer; Chelsea and Westminster Hospital, Imperial College School of Medicine; London; UK
| | - I. NAGY
- Pain Medicine and Intensive Care Section, Department of Surgery and Cancer; Chelsea and Westminster Hospital, Imperial College School of Medicine; London; UK
| | - Y. WAN
- Department of Anesthesiology; Gongli Hospital; Shanghai; China
| | - D. MA
- Pain Medicine and Intensive Care Section, Department of Surgery and Cancer; Chelsea and Westminster Hospital, Imperial College School of Medicine; London; UK
| |
Collapse
|
45
|
|
46
|
Zitta K, Meybohm P, Bein B, Ohnesorge H, Steinfath M, Scholz J, Albrecht M. Cytoprotective effects of the volatile anesthetic sevoflurane are highly dependent on timing and duration of sevoflurane conditioning: findings from a human, in-vitro hypoxia model. Eur J Pharmacol 2010; 645:39-46. [PMID: 20655305 DOI: 10.1016/j.ejphar.2010.07.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/25/2010] [Accepted: 07/11/2010] [Indexed: 12/20/2022]
Abstract
Using animal models, volatile anesthetics have been recognized for their neuroprotective effects. Nevertheless, there is still disagreement about the optimal duration and timing of conditioning with the volatile anesthetic sevoflurane in the human system. In the study presented, we employed a human neuronal cell culture model to investigate the effects of hypoxia and to evaluate potential cytoprotective properties of different sevoflurane conditioning strategies. Sevoflurane was applied to human IMR-32 cells in which hypoxic conditions were induced for 2h using our recently described two-enzyme model (Zitta et al., Eur. J. Pharmacol., 2010). Cellular effects of hypoxia and sevoflurane conditioning were evaluated by lactate dehydrogenase (LDH) measurements, brightfield microscopy, ELISAs, cytometric bead arrays, Westernblotting and RT-PCR. Hypoxia increased the release of LDH into the culture medium after 24h (normoxia: 0.15+/-0.02 a.u; hypoxia: 0.69+/-0.08 a.u, P<0.001) and expression of hypoxia associated genes HIF-1alpha, VEGF, catalase. Cytoprotective effects were observed in cultures that received sevoflurane for 30 min before hypoxia (preconditioning: 0.41+/-0.07 a.u., P<0.01) and for 30 min during the hypoxic period (intraconditioning: 0.20+/-0.01 a.u., P<0.001). Application of sevoflurane after the hypoxic insult did not lead to cytoprotection (postconditioning: 0.73+/-0.12a.u., P>0.05). Conditioning with sevoflurane for a total of 3h before, during and after hypoxia, however, resulted in an enhanced release of LDH (periconditioning: 0.97+/-0.10a.u., P<0.01) and additional cell damage. Hypoxia and sevoflurane intraconditioning were associated with changes in erk1/2 phosphorylation (T202/Y204) and HIF-1alpha protein levels, whereas phosphorylation of akt (S473) was not significantly altered. Our results suggest short pre- and intraconditioning with sevoflurane as most potent strategies to reduce hypoxia induced neuronal cell damage.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|